School Choice with Consent: An Experiment

Claudia Cerrone^{*} Yoan Hermstrüwer[†] Onur Kesten[‡]

*Middlesex University London

[†]Max Planck Institute for Research on Collective Goods

[‡]University of Sydney

Matching Problems

Schools

Daycare

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆○

Matching Problems

Schools

Daycare

• • • • • • • •

프 N 시 프 N / 프

How can admissions procedures (matching mechanisms)...

- maximize assignments to preferred schools and
- ...minimize violations of the admissions criteria at the same time?

Challenge

Objective 1: Make students better off

Pareto-efficiency

- Assign students to their most preferred schools
- No alternative assignment that can improve at least one student's assignment without making any other student worse off

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > 三 Ξ = ・ ○ Q @

Challenge

Objective 1: Make students better off

Pareto-efficiency

- Assign students to their most preferred schools
- No alternative assignment that can improve at least one student's assignment without making any other student worse off

Objective 2: Minimize violations of the admissions criteria

- Stability
- Assign students in a way that eliminates priority violations
- No student prefers another school (e.g. B) over the school she is currently assigned to (e.g. A) and student has no higher priority at B than others

Problem: Efficiency-stability trade-off

- ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ ● 日 → ○ ● ○

This Paper

What we do

- Build on a mechanism designed to mitigate the efficiency-stability trade-off
- ▶ Test the mechanism (EADAM) in an online experiment
- Use insights from behavioral economics to improve the mechanism

▲ロ → ▲園 → ▲ 恵 → ▲目 → ④ ▲ ◎ → ▲ □ →

This Paper

What we do

- Build on a mechanism designed to mitigate the efficiency-stability trade-off
- Test the mechanism (EADAM) in an online experiment
- Use insights from behavioral economics to improve the mechanism

What we show

- EADAM makes students better off without violating the admissions criteria
- More truth-telling under EADAM than under DA
- A small effect of default rules on matching outcomes

▲ Ξ ▶ ▲ Ξ ▶ ▲ Ξ ■ • ○ Q ○

Foundation: Deferred Acceptance Algorithm (DA)

Strategy-proofness 🗹

Incentive to rank schools truthfully (procedural fairness)

Stability 🗹

No priority violations (distributive fairness)

Efficiency 🛛

Students could improve their matching by trading slots

(신문) 신문) 문법

Option 1: Post-DA Trading?

Efficiency 🗹

Coasian trading improves assignments for students

Stability 🛛

Amsterdam Court of Appeal, 2015: "If swapping were allowed, (...) it could lead to a student with a [lower priority] bypassing a student with a [higher priority]. Under these conditions, equal opportunities are no longer guaranteed."

Strategy-proofness 🛛

Amsterdam Court of Appeal, 2015: "If students know that swapping is allowed after the placement is made, it would be optimal for them to place popular schools (not necessarily their own preferences) high on their preferred list. (...) [T]hat slot can be used in a trade."

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Option 2: EADAM!

Efficiency-adjusted DA mechanism (EADAM)

- Designed to mitigate the efficiency-stability trade-off
- We experimentally test EADAM and explore potential improvements

Idea: Increase efficiency of stable matching produced by DA

- Students can consent to waiving priorities that do not affect their placement
- Consent does not harm consenting students but may help others
- ▶ Downside: Strategy-proofness ⊠, but not obviously manipulable

Efficiency gains increase with

- ► Consent rates → more waivers are better
- Truthful preference rankings (less gaming is better)

(신문) 신문) 모님

Experimental Design

	Intro	Procedure	Example	Ranking Decision		
Ranking Decision: Ro	und 1					
		Your	type: Type	1		
Please rank the schools here.						
First choice:			~			
Second choice:			~			
Third choice:			~			
Fourth choice:			~			
Fifth choice:			~			
Back					Next	

- Incentivized online experiment
- ▶ 5 students and 5 schools with a capacity of one seat respectively
- Participants submit preference rankings over schools

▶ ▲ 문 ▶ 문 남

Experimental Design

(Treatment 1) DA

(Treatment 2) EADAM Consent

- Priority waiver is non-automatic (no consent by default)
- ► Students can consent to the waiver → "liberty"

(Treatment 3) EADAM Object

- Priority waiver is automatic (consent by default)
- Students can object to the waiver → "nudge"

(Treatment 4) EADAM Enforced

- Priority waiver is enforced
- ► Students cannot dodge the waiver → "hard intervention"

<ロ> <同> < 回> < 回> < 回> < 回> < 回</p>

Results: Efficiency

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results: Stability

● ● ● ● ● ● ● ● ● ● ● ●

Results: Truth-telling

● ● ● ● ● ● ● ● ● ● ● ●

Conclusion

Improve assignments while fully respecting the admissions criteria

- Possible to mitigate the efficiency-stability trade-off through EADAM
- EADAM Object seems to combine the best properties

Reduce indirect discrimination

- Less manipulation under EADAM than under DA
- Not obviously manipulable is better than strategy-proof

Policy implications

- Strategy-proofness may be much less of a normative concern
- Mechanism could help vulnerable populations

(신문) 신문) 모님

Not every student can be admitted at Hogwarts. But we can increase the chances of being admitted there and respect the priorities of wizard schools.

Appendix

Solution 1: Deferred Acceptance Algorithm (DA)

Step 1

- Students apply to their **first choice** school.
- Schools tentatively admit applicants with highest priority and reject others.

★ E ▶ ★ E ▶ E E ♥ 9 € 6

Image: A mathematical states and a mathem

Solution 1: Deferred Acceptance Algorithm (DA)

Step 1

- Students apply to their **first choice** school.
- Schools **tentatively** admit applicants with highest priority and reject others.

Step 2

- Students rejected in Step 1 apply to their **next choice** school.
- Schools tentatively admit applicants with highest priority, among new applicants and applicants on hold, and reject others.

<ロ> <同> <同> < 同> < 同> < 同> < 同) のQ(0)

Solution 1: Deferred Acceptance Algorithm (DA)

Step 1

- Students apply to their **first choice** school.
- Schools tentatively admit applicants with highest priority and reject others.

Step 2

- Students rejected in Step 1 apply to their **next choice** school.
- Schools tentatively admit applicants with highest priority, among new applicants and applicants on hold, and reject others.

Step k

And so on.

End

Algorithm terminates when no more rejections are issued.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solution 2: Trading Slots

Problem

- ► Trade → generates a Pareto-improvement (Coase)
- But suppose Carl has a higher priority at School B than Bea
- ► Trade → violates Carl's priority at School B

Solution 3: EADAM

Art. 253/16 § 2 of the Flemish Decree on the Right of Enrollment

Students are assigned a place on the basis of a standard algorithm made available by the Flemish Government, based on the following principles: (...)

b) a student who is favorably ranked for several schools or places of establishment is assigned to the highest school of preference and is removed from the schools of lower choice \Rightarrow waiver

c) after the final assignment, there can be no student who have each other's higher choice \Rightarrow efficient

d) after the final ranking (...), there can be no students with a higher priority at each other's higher choice school \Rightarrow stable

・ロト・(日)・(日)・(日)・(日)・

- 1. Does EADAM increase efficiency relative to DA?
- 2. How can consent rates under EADAM be increased?
- 3. What is the impact of EADAM on truth-telling?

▲ Ξ ▶ ▲ Ξ ▶ ▲ Ξ ■ • ○ Q ○

Image: A matrix

Step	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>S</i> ₄	<i>S</i> ₅
1	i ₁	i ₂	<i>i</i> ₄ , <i>i</i> ₅	İ ₃	
2	<i>i</i> 1	i 2 , i 5	$\overline{i_4}$	İ ₃	
3	i 1 , <i>i</i> 5	$\overline{i_2}$	i ₄	İ ₃	
4	<i>i</i> ₁	i ₂	İ4	i ₅ , i ₃	
5	<i>i</i> ₁ , <i>i</i> ₃	i ₂	İ4	$\overline{i_5}$	
6	$\overline{i_1}$	<i>i</i> ₂ , <i>i</i> ₃	i ₄	İ ₅	
7	i ₁	$\overline{i_2}$	<i>i</i> ₃ , <i>i</i> ₄	İ ₅	
8	$ \dot{i}_4 , \dot{i}_1 $	i ₂		İ ₅	
9	$\overline{i_4}$	i ₂	i_3 , i_1	İ ₅	
10	i ₄	i ₂	$\overline{i_3}$	<i>i</i> ₅ , <i>i</i> ₁	
11	i ₄	<i>i</i> ₁ , <i>i</i> ₂	İ ₃		
12	i ₄	$\overline{i_1}$	i ₃	i ₅ , i ₂	
13	<i>i</i> ₂ , <i>i</i> ₄	<i>i</i> 1	İ ₃		
14	l is	i_4 , i_1	İ3	/5 ⁴ □ ▸ ੶	

Cerrone, Hermstrüwer & Kesten

▲目▶ 目目 のへの

Step	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>S</i> ₄	<i>S</i> ₅
1		i ₂	i ₄ , i ₁ , i ₅	İ ₃	
2		i ₂ , i ₅	i ₄	<i>i</i> ₃ , <i>i</i> ₁	
3	İ ₅	i_2	i ₄	i ₃	<i>i</i> 1

If i_1 does not consent, we identify the next interruption: (i_4, s_1) . If i_4 consents,

schools s_1 and s_3 are removed from her preference list. Re-running DA produces a Pareto-superior matching, as shown below. Two students (i_3, i_5) are assigned to their top choice, two students (i_2, i_4) to their third choice, one student (i_1) is assigned to her last choice.

<ロ> <四> <四> <三</p>

Step	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>S</i> ₄	<i>S</i> ₅
1	<i>i</i> 1	i ₄ , i ₂	İ ₅	İ ₃	
2	i ₁	i ₄	i ₅	<i>i</i> ₃ , <i>i</i> ₂	
3	i_2 , i_1	i ₄	İ ₅		
4	$\overline{i_2}$	i ₄	i ₅ , i ₁	i ₃	
5	i ₂	i ₄	İ5	i_3 , i_1	
6	i ₂	<i>i</i> ₄ , <i>i</i> ₁	i ₅	i ₃	
7	i ₂	$\overline{i_4}$	İ ₅	İ ₃	i_1

If neither i_1 nor i_4 consents, we identify the next interruption: (i_2, s_2) . If i_2

consents, schools s_2 is removed from her preference list. Re-running DA produces a Pareto-inefficient matching that is equivalent to the DA matching. No student is assigned to her top choice.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

_	Step	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>S</i> ₄	<i>S</i> ₅
	1	<i>i</i> 1		İ ₄ , İ ₅	i ₃ , i ₂	
	2	i ₂ , i ₁	İ ₅	$\overline{i_4}$	i ₃	
	3	i ₂	İ5	<i>i</i> 4 , <i>i</i> 1	İ ₃	
	4	i ₂	İ ₅	i ₄	i ₃ , i ₁	
	5	i ₂	i ₁ , i ₅	İ4	i ₃	
	6	i ₂ , i ₅	$\overline{i_1}$	İ4	İ ₃	
	7	i ₂	<i>i</i> 1	İ4	i ₅ , i ₃	
	8	i ₂ , i ₃	<i>i</i> ₁	İ4		
	9	i ₂	\dot{I}_1 , \dot{I}_3	İ4	i ₅	
	10	i ₂	$\overline{i_1}$	<i>i</i> ₃ , <i>i</i> ₄	İ5	
	11	<i>i</i> ₂ , <i>i</i> ₄	<i>i</i> 1	İ ₃	i ₅	
	12	i ₂	i_4 , i_1	İ ₃	i ₅	
	13	i ₂	<i>i</i> ₄	i ₃	i ₅	i ₁

(日) (日) (日) (日) (日) (日) (日) (日)

Results: Inequality

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results: Consent

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results: Efficiency

Table: Impact of EADAM on efficiency compared to DA (binary measure)

DV: Efficiency Baseline: DA				
Dasenne. DA	(1)	(2)	(3)	(4)
EADAM Consent	0.374***	0.374***	0.374***	0.366***
EADAM Object	(0.044)	(0.044)	(0.044)	(0.044) 0.481***
EADAM Enforced	(0.048) 0.739***	(0.048) 0.739***	(0.048) 0.739***	(0.048) 0.737***
Туре	(0.034)	(0.034) Yes	(0.034) Yes	(0.034) Yes
Round			Yes	Yes
Truth-telling				0.041***
				(0.010)
Wald test	41.86***	41.86***	41.88***	43.58***
NI	10.000	10.000	10.000	10.000
N _G	50	50	50	50

p < 0.01; p < 0.05; p < 0.1

Three-level mixed-effects logit regression. Standard errors in parentheses. All coefficients are reported as average marginal effects. *Efficiency* is a dummy variable that takes value 1 if assignments are Pareto-efficient and 0 otherwise. N_I denotes the number of individual observations. N_G denotes the number of experimental matching groups.

Results: Efficiency

Table: Efficiency comparison between EADAM variants (binary measure)

	Obj	ect vs. Cons	sent	Enforced vs. Object		
DV: Efficiency Baseline:	EA	DAM Conso (1)	ent	E	EADAM Objec (2)	t
EADAM Object	0.113*	0.113*	0.113*			
	(0.063)	(0.063)	(0.063)			
EADAM Enforced				0.252***	0.252***	0.252***
Туре		Yes	Yes	(0.056)	(0.056) Yes	(0.056) Yes
Round			Yes			Yes
N.	10.000	10 000	10 000	10.000	10.000	10.000
N _G	50	50	50	50	50	50

*** p < 0.01; ** p < 0.05; * p < 0.1

Three-level mixed-effects logit regression. Standard errors in parentheses. *Efficiency* is a dummy variable that takes value 1 if assignments are Pareto-efficient and 0 otherwise. *N_i* denotes the number of individual observations. *N_G* denotes the number of experimental matching groups. Column 1: All coefficients are reported as average marginal effects at DA and EADAM Enforced = 0. Column 2: All coefficients are reported as average marginal effects at DA and EADAM Consent = 0.

Results: Stability

DV: Stability Baseline: DA				
	(1)	(2)	(3)	(4)
EADAM Consent	0.045	0.045	0.044	0.013
	(0.044)	(0.044)	(0.044)	(0.042)
EADAM Object	0.076*	0.076*	0.076*	0.049
	(0.044)	(0.044)	(0.044)	(0.042)
EADAM Enforced	-0.045	-0.045	-0.045	-0.067
	(0.050)	(0.050)	(0.050)	(0.048)
Туре		Yes	Yes	Yes
Round			Yes	Yes
Truth-telling				0.114***
				(0.011)
Wald test	7.38**	7.38**	7.39**	6.91**
N	10.000	10.000	10.000	10.000
N_G	50	50	50	50

Table: Impact of EADAM on stability compared to DA

*** p < 0.01; ** p < 0.05; * p < 0.1

Three-level mixed-effects logit regression. Standard errors in parentheses. All coefficients are reported as average marginal effects. *Stability* is a dummy variable that takes value 1 if assignments are stable and 0 otherwise. N_l denotes the number of experimental matching groups.

Results: Stability

		Object v	s. Consent		Enforced vs. Object			
DV: Stability Baseline:		EADAN (1 Consent 1)			EADAN (2	l Object 2)	
EADAM Object	0.032	0.032	0.032	0.036				
EADAM Enforced	(0.040)	(0.040)	(0.040)	(0.039)	-0.121*** (0.046)	-0.121*** (0.046)	-0.121*** (0.046)	-0.116** (0.045)
Туре		Yes	Yes	Yes	(0.010)	Yes	Yes	Yes
Round			Yes	Yes			Yes	Yes
Truth-telling				0.108***				0.107***
				(0.012)				(0.012)
Ni	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000
N _G	50	50	50	50	50	50	50	50

Table: Stability comparison between EADAM variants

*** p < 0.01; ** p < 0.05; * p < 0.1

Three-level mixed-effects logit regression. Standard errors in parentheses. Stability is a dummy variable that takes value 1 if assignments are stable and 0 otherwise. N_i denotes the number of individual observations. N_c denotes the number of experimental matching groups. Column 1: All coefficients are reported as average marginal effects at DA and EADAM Enforced = 0. Column 2: All coefficients are reported as average marginal effects at DA and EADAM Enforced = 0.

《口》《問》《臣》《臣》 토曰.

Results: Truth-telling

DV: Truth-telling Baseline: DA			
	(1)	(2)	(3)
EADAM Consent	0.253***	0.246***	0.246***
	(0.039)	(0.033)	(0.033)
EADAM Object	0.246***	0.235***	0.235***
	(0.040)	(0.034)	(0.034)
EADAM Enforced	0.183***	0.177***	0.177***
	(0.041)	(0.035)	(0.035)
Туре		Yes	Yes
Round			Yes
Wald test	5.19*	5.45*	5.46*
N	10.000	10.000	10.000
N_G	50	50	50

*** p < 0.01; ** p < 0.05; * p < 0.1

Three-level mixed-effects logit regression. Standard errors in parentheses. All coefficients are reported as average marginal effects. *Truth-telling* is a dummy variable that takes value 1 if students report their preferences truthfully and 0 otherwise. N_i denotes the number of individual observations. N_G denotes the number of experimental matching groups.

▲ロ → ▲園 → ▲ 臣 → ▲目 → ④ ● ●

Results: Truth-telling

Table:	Truth-telling	comparison	between	EADAM	variants
--------	---------------	------------	---------	-------	----------

	Object – Consent			Enforced – Object		
DV: Truth-telling Baseline:	EADAM Consent (1)			EADAM Object (2)		
EADAM Object	-0.007	-0.011	-0.011			
EADAM Enforced	(0.031)	(0.030)	(0.030)	-0.063* (0.035)	-0.058* (0.033)	-0.058* (0.033)
Туре		Yes	Yes		Yes	Yes
Round			Yes			Yes
N	10.000	10.000	10.000	10.000	10.000	10.000
N _G	50	50	50	50	50	50

**** p < 0.01; ** p < 0.05; * p < 0.1

Three-level mixed-effects logit regression. Standard errors in parentheses. *Truth-telling* is a dummy variable that takes value 1 if students report their preferences truthfully and 0 otherwise. N_i denotes the number of experimental matching groups. Column 1: All coefficients are reported as average marginal effects at DA and EADAM Enforced = 0. Column 2: All coefficients are reported as average marginal effects at DA and EADAM Consent = 0.