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Abstract

In most countries, public schools in disadvantaged districts have relatively fewer experienced teachers

than those in more privileged districts. As teacher experience is an important indicator of good educa-

tion outcomes, this presents itself as an important shortcoming of public education. Moreover, many

of such countries use centralized matching mechanisms for assigning new teachers to their first jobs at

schools and reassigning tenured teachers who would like to move. We address the unfair teacher distri-

bution problem through a market design approach by introducing two new centralized (re)assignment

mechanisms. The defining property of these mechanisms is that the final allocation improves not only

teachers’ welfare but also the distribution of teachers’ experience in schools with respect the status quo.

While both mechanisms are strategy-proof for teachers, one achieves two-sided Pareto efficiency and

in particular teacher optimality and the other one achieves an appropriately defined stability property,

targeted for countries that already use stability-based assignment schemes. We empirically estimate

teacher preferences using data from the existing assignment system in France and test our proposals’

performance using several empirical metrics. We observe that imposing that the distribution of teach-

ers’ experience improves with respect the status quo together with a stability property can backfire:

these constraints are so demanding that mobility of tenured teacher is almost zero. As a consequence,

the experience gap between unattractive and attractive regions may be higher compared to what is

achieved by mechanisms which do not impose such constraints. This issue does not occur under our

efficient mechanism which successfully reduces the experience gap among attractive and unattractive

regions.
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Keywords: Matching Theory, Market Design, Teacher Reassignment

1



1 Introduction

Most education systems around the world suffer from a common problem: good teachers are not

equally distributed between schools. In the United States, good teachers tend to work in schools

that serve more affluent students (Hanushek, Kain and Rivkin, 2004, Jackson, 2009). In Noway,

England, and France, good teachers prefer schools with a higher share of native and high-achieving

students (Bonesrønning, Falch and Strøm, 2005, Allen, Burgess and Mayo, 2018). Some countries try

to solve this unequal distribution by making disadvantaged schools more attractive through higher

salaries, lower class size, or better working conditions (Biasi, forthcoming, Falch, 2010, OECD,

2005). Yet, the scope to solve teachers’ unequal distribution through higher salaries is often limited

by a fundamental constraint: most teachers are civil servants, which implies that their salary is

regulated by a fixed pay scale that prevents policy makers from using it as a compensating factor.

In such contexts, countries that use centralized matching mechanisms benefit from an additional

tool to mitigate this unequal distribution: the centralized assignment system.

In this paper, we design matching mechanisms whose objective is to improve the distribution of

teachers in schools (compared to an initial assignment), and we empirically quantify the gains that

these mechanisms would bring in a real-life teacher assignment setting. We start by introducing a

two-sided matching framework in which we explicitly model schools’ preferences as a proxy for the

central authority’s distributional objective. This objective could be to better balance inexperienced

teachers across schools for instance. To help define a distribution, we introduce a new concept:

Each teacher has a type which captures her observable characteristics that the central authority

might want to better balance such as her experience, education, past performance, etc. In addition,

in our model, teachers can either be tenured or new. Tenured teachers are initially assigned, which

is captured by a status-quo matching. New teachers can be new graduates or the teachers who are

employed by private schools. As in the standard setting, teachers have preferences over schools.

To incorporate distributional constraints in the model, a novelty of our approach is to consider

that schools are part of a resource pool that is collectively managed by a central authority, whose

objective is to improve the distribution of teachers in the school system. Schools have “preferences”

over sets of teachers, and we think of these preferences as reflecting the central authority’s objective.

In many countries, this objective might be to assign experienced teachers to disadvantaged schools

where inexperienced teachers are overrepresented and new graduates to schools where experienced

teachers are overrepresented in order to improve the experience of new graduates. In that case, in our

model, the disadvantaged schools would have a preference ordering over types that ranks teachers

by decreasing levels of experience, i.e., the most experienced teachers would always be preferred

to the least experienced teachers. Beyond this specific example, each school has a customized

preference ordering over teachers’ types. We assume that a school gets better-off if the distribution

of types increases according to first-order stochastic dominance. In other words, given a set of

teachers assigned to a school and given a schools’ preference over teachers’ types, a school gets

better-off if, for each teacher’s type, the fraction of teachers with this type or a more-preferred type

increases after the match. By construction, when schools get better off compared to the status-quo
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assignment, the distribution of teachers improves. We allow schools to have empty positions in the

status-quo assignment.

We impose that our mechanisms produce assignments that improve upon the status-quo for

teachers but also for schools: Both sides should get weakly better-off compared to the initial as-

signment. This defines the class of mechanisms that are status-quo improving (SI hereafter). This

is an important criterion that ensures that a better welfare of teachers is not achieved at the cost

of a poorer distribution of teachers, or vice versa. Status-quo improvement and strategy-proofness

(for teachers) are the two fundamental properties we require in our mechanisms. We then build on

this by considering two additional criteria that matchings should respect: efficiency (where welfare

entities are teachers) and stability. Since these criteria are in conflict (Balinski and Sönmez, 1999),

we introduce two mechanisms that are status-quo improving and strategy-proof. One will produce a

matching that is efficient for teacher among SI mechanisms; the other one achieves a stable matching

where stability is appropriately defined for our environment.

The first mechanism we propose is two-sided Pareto efficient, and in particular, SI teacher

optimal, i.e. efficient for teachers among status-quo improving mechanisms. This mechanism, named

the status-quo improving cycles and chains (hereafter, SI-CC), is related to top-trading cycles (TTC)

mechanisms (in particular, inspired by Gale’s TTC of Shapley and Scarf (1974), YRMH-IGYT of

Abdulkadiroğlu and Sönmez (1999), and TTCC of Roth, Sönmez and Ünver (2004)) but has one key

feature different: While these TTC-type mechanisms ensure that only teachers necessarily get better

off as we execute exchanges, both teachers and schools get better off with respect to the status-quo

under SI-CC. To reach this objective, we introduce two main innovations in the mechanism. First,

we define the schools’ pointing rule where the order in which the school would like to send out its

initial (aka status-quo) employees. By pointing, the school effectively gives permission to one of

its status-quo employees to be assigned to a different school. We define the pointing order such

that less-preferred-type employees are pointed first (therefore leaving first) and more-preferred-type

employees are pointed later. The second innovation pertains to the teacher pointing rule, which lets

teachers point to schools, and therefore determines which teachers can be assigned to a school. We

only allow a teacher to point to a school if replacing the pointed teacher by that school with her

does not make the school worse-off.

Next, we turn our attention to stability, noting that stability and status-quo improvement may

in general be in conflict (e.g., Compte and Jehiel (2008), Pereyra (2013)). Indeed, due to the

individual rationality constraint for teachers, a tenured teacher has the right to stay at her status-

quo assignment if she does not obtain any of the schools she ranks. If this tenured teacher is disliked

by all schools (including her initial school), blocking pairs may form. To overcome the conflict

between stability and individual rationality, the standard approach consists in weakening stability

by ignoring blocking pairs that where assigning the teacher to the school of the blocking pair would

displace a status-quo employee. We show that when imposing status-quo improvement in contexts

where schools may initially have vacant seats, this weakening alone does not resolve the conflict.

We introduce a stability notion which implicitly gives new teachers rights over status-quo empty

seats of a school. Under a mild overdemand assumption involving new teachers and schools with
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excess status-quo capacity, we show the existence of a strategy-proof and SI-stable mechanism, the

status-quo improving deferred acceptance mechanism (hereafter, SI-DA).1 Although it may appear

counter intuitive to give a new teacher priority for the empty seats of a school, we show by means

of examples that this is necessary to sustain status-quo improvement. Moreover, the main reason

for giving priority to new teachers for the empty seats is achieving status-quo improvement for the

schools.

To define the SI-DA mechanism, we need to define auxiliary choice functions for schools. To

this end, we first distribute status-quo employees to individual positions of the school, and consider

an order of precedence among these positions based on the desirability of the teacher occupying

the position. Vacant status-quo positions of a school, if there are any, are placed at the very end

of this order of precedence. We construct an auxiliary “preference” ranking for each position such

that some teachers are unacceptable and each status-quo teacher is ranked first by her position.

The rest of the preference ranking for each occupied position is determined by making only the

teachers who are at least as good as the occupying teacher acceptable and ranked according to

desirability just below this teacher. For the vacant positions, new teachers are ranked first in terms

of their desirability and then the remaining teachers. When a set of applicants apply a school in

the SI-DA mechanism, its auxiliary choice function fills positions according to the precedence order

of positions: the first position gets the most desirable acceptable applicant in terms of its auxiliary

preference ranking, the second position gets the most desirable acceptable applicant among the rest

in terms of its auxiliary preference ranking, and so on. The construction of this auxiliary choice

function has similarities with the use of slot specific priorities model introduced by Kominers and

Sönmez (2016).

Applicability of our theoretical framework is not only limited to centralized teacher assignment.

In fact, our framework can be applied to any centralized two sided matching market in which status-

quo assignment is aimed to be improved for both sides of the market. Examples of such markets are,

including, but not limited to, student exchange programs between colleges, public school districts

targeting racial balances among schools, and rotational task allocations to employees. Moreover,

our model does not restrict the way schools value the experience of the teachers. Hence, our results

hold as long as each school has rankings based on a coarse metric of characteristics of teachers such

that different schools use possibly different metrics.

In the second part of the paper, we quantify the gains that our mechanisms bring by using

data on the annual assignment of teacher to regions in France. Like many other countries, France

uses a centralized process to assign teachers to regions and then to schools.2 This labor market

is particularly appropriate to study our question because it suffers from severe imbalance in the

distribution of teachers. About 50% of the tenured teachers who ask to change region come from

1The overdemand assumption and giving higher priority to new teachers over status-quo empty seats restrict
currently employee teachers to flee away their status-quo assignments without being replaced. In the absence of such
a restriction some schools might be worse off compared to their status-quo assignment.

2Countries that use a centralized process to assign teachers to schools include Germany, Czech Republic
(Cechlárová, Fleiner, Manlove, McBride and Potpinková, 2015), Italy (Barbieri, Rossetti and Sestito, 2011), Turkey
(Dur and Kesten, 2014), Mexico (Pereyra, 2013), Peru, Uruguay (Vegas, Urquiola and Cerdàn-Infantes, 2006), and
Portugal.
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two regions (out of 25)—called Creteil and Versailles—that are particularly disadvantaged and

therefore unattractive. As a result of this imbalance in exiting request, every year, a majority of

the new teachers are assigned one of these two regions to compensate for the large exit flows. This

structural imbalance is a serious concern for policy makers. It is frequently raised as a reason for

the lack of attractiveness of the teaching profession in France and it is seen as one of the structural

determinants of the large achievement inequalities that France suffers from.3 Reducing the unequal

distribution of teachers across regions became one of the objectives of the French policy makers,

who see this as a way to both reduce achievement inequalities and to improve the attractiveness of

the teaching profession in the longer-run.

We start the empirical analysis by structurally estimating teachers’ preferences over the French

regions. A number of papers show that assuming that teachers truthfully report their preferences

is a strong assumption, even when the mechanism is strategy-proof (as in France).4 To avoid the

potential bias generated by teachers untruthful reports, we estimate teachers preferences under a

weaker “stability assumption” developed by Fack, Grenet and He (2019) and applied to the teacher

labor market by Combe, Tercieux and Terrier (2020). We estimate the preferences separately

for 5,833 teachers who have an initial assignment—referred to as “tenured teachers”— and 4,627

teachers do not have an initial assignment—referred to as “new teachers”. The estimations reveal

interesting differences in the preferences of these two groups of teachers. While tenured teachers

strongly dislike the Creteil and Versailles regions, these regions are more attractive for new teachers,

who might see a first position in a disadvantaged school as a stepping stone for better positions in

the future. This difference in preferences surely contributes to the unequal distribution of teachers

denounced by policy makers. The counterfactual analysis shows that, above and beyond these

preferences, the mechanism used also shapes the distribution of teachers in important ways.

We use the estimated preferences, along with data on regions priorities and vacant positions, to

run the two algorithms we propose: SI-CC and SI-DA. We define a teacher type as her experience

and assume that regions with relatively young teachers’ body have a preference ordering over types

that ranks teachers by decreasing levels of experience, i.e., the most experienced teachers would

always be preferred to the least experienced teachers. For regions with a relatively old teachers’

body, we assume on the contrary that they rank teachers by increasing levels of experience. Recall

that SI-CC and SI-DA are both status-quo improving, i.e., they impose that the distribution of

teachers’ experience must improve upon the initial distribution. One important goal behind this

constraint is to produce a more equal distribution of teachers across regions. Of course, imposing

status-quo improvement may have a cost in terms of teachers welfare (for instance, measured by the

mobility of tenured teachers or the distribution of ranks in their preferences of the regions teachers

obtain). To measure the effect of imposing status-quo improvement on both the distribution of

teachers’ experience as well as on teachers welfare, we run two benchmark mechanisms, TTC* and

3The PISA results show that, in OECD countries, a more socio-economically advantaged student scores 39 points
higher in math than a less-advantaged student, which is equivalent to one year of schooling. There is a large variation
between countries in how much a student social background predicts her achievement, and France is one of the worst
countries on this inequality indicator, ranking in fourth position (starting from the bottom).

4The French ministry of education uses a modified version of the deferred acceptance mechanism.
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DA*, which correspond to SI-CC and SI-DA when we do not impose status-quo improvement for

schools (we only keep the status-quo improvement for teachers). As explained below, our results

vastly differ when considering SI-CC or SI-DA.

When focusing on SI-CC we observe that, imposing status-quo improvement, improves the

distribution of teachers’ type and, relatedly, reduces the experience gap between unattractive and

attractive regions. Further, we show that mobility reduces when imposing SI. More specifically,

starting with unattractive regions, SI-CC assigns less inexperienced teachers to these regions than

its benchmark which does not require SI. To illustrate the magnitudes, SI-CC only assigns 1,371

teachers with one or two years of experience to the three youngest regions, while TTC* assigns 1,844

of them to these three regions. We find a similar pattern for attractive regions, i.e., SI-CC assigns

less experienced teachers to these regions compared to its benchmark TTC*. Finally, SI-CC reduces

the gap in teachers experience between young disadvantaged regions and older regions compared to

its benchmark mechanism which does not impose SI. We then investigate whether achieving a better

distribution is done at the cost of a lower welfare for teachers, as measured by their mobility and the

rank of the region they obtain. In line with the existence of a distribution-efficiency trade-off, fewer

tenured teachers manage to move under SI-CC than under the benchmark TTC*, but the difference

is somewhat limited (1,598 versus 2,470 teachers). The distribution of ranks that tenured teachers

obtain under the benchmark also stochastically dominates the one under SI-CC. Interestingly, the

opposite is true for new teachers who obtain better ranks under SI-CC.5 To conclude, while we are

able to quantify the trade-off between teachers’ mobility and the distribution of teachers’ experience

empirically, qualitatively, the trade-off observed is conform to our expectations.

The picture is radically different for SI-DA. Indeed, we believe that one of the most interesting

insight of our empirical exercise is the observation that imposing SI to DA-based mechanisms can

backfire. More specifically, we first show that imposing SI has a tremendous mobility cost on SI-

DA: only 7 tenured teachers move from their initial position under SI-DA, compared to 1,267 under

its benchmark DA*. In addition, in the youngest three regions, SI-DA produces a distribution of

teachers’ experience which does not dominate the distribution of DA*. In the three oldest regions,

our results are even more striking: DA* produces a distribution of teachers’ experience which

dominates the distribution under SI-DA. Put differently, under our DA-based mechanisms, status-

quo improvement fails to achieve its goal: the distribution of teachers does not improve and the

experience gap between unattractive and attractive regions does not reduce. To understand the

phenomenon, recall our previous observation that imposing both SI and stability reduces mobility

of tenured teachers almost to zero. In addition, without status-quo improvement, we show that

the mechanism only mildly violates status-quo improvement while significantly increasing mobility.

These additional mobility gains yield better distribution of teachers in many regions which helps in

reducing inequalities across regions.

Related literature. SI-CC mechanism has its roots in the top-trading cycles algorithms (see

5We explain this by the fact that, due to larger mobility under the benchmark, tenured teachers are more likely
to leave the unattractive regions of Creteil, which mechanically increases the need to assign new teachers to these
regions. This lowers the rank of the region obtained because unattractive regions are often ranked relatively low by
teachers.
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Shapley and Scarf, 1974, Abdulkadiroğlu and Sönmez, 1999, Roth et al., 2004, Dur and Ünver,

2019) and SI-DA mechanism has its roots in the teacher proposing deferred acceptance algorithm

(see Gale and Shapley, 1962, Abdulkadiroğlu and Sönmez, 2003a, Kominers and Sönmez, 2016).

Our stability-based approach using SI-DA is related to the literature on stable allocation un-

der distributional constraints. In the school choice literature, Abdulkadiroğlu and Sönmez (2003b)

introduce assignment schemes imposing type-specific ceilings at schools. Other related papers are

Abdulkadiroğlu (2005), Kojima (2012), Hafalir, Yenmez and Yildirim (2011), Ehlers, Hafalir, Yen-

mez and Yildirim (2014), Kamada and Kojima (2015), Dur, Kominers, Pathak and Sönmez (2018),

Sönmez and Yenmez (2019), and Dur, Pathak and Sönmez (2020). While the focus in these papers

is on assignment schemes to achieve diversity and other distributional objectives mostly in school

choice and government-mandated job allocation context, our work applies to a teacher assignment

problem where there is an initial matching and concern of making both sides better off. This

makes our model and analysis different from the existing ones. Our methodology for constructing

the SI-DA mechanism and the choice function is inspired by the choice function constructions in

slot-specific priorities model of Kominers and Sönmez (2016), which is also used in the latter three

aforementioned papers. In these papers, the choice functions and its inputs are preliminaries of the

problem. However, in our framework, neither school choice functions nor the inputs are given to us.

In particular, our choice function is defined in this way to satisfy desired properties under SI-DA

mechanism.

The design of efficient mechanisms in two-sided matching markets with a possible status-quo

matching constraint was previously studied by Dur and Ünver (2019) in the context of student and

worker exchange programs. The main difference between that model and the current model is that

status-quo improvement was not a constraint in this previous paper. This substantially changes

the modeling choices and mechanism design. Moreover, we have school preferences based on the

first-order stochastic dominance relation over distributions of teacher types leading to a new class of

pointing rules. Our design of efficient mechanisms in this domain gives in general higher welfare for

the schools. We additionally focus on a stability-based approach with SI-DA in addition to efficient

mechanism design and conduct a thorough empirical analysis.

It is through our notion of improvement with respect to status-quo that we achieve a better

distribution of teachers in the school system. A related approach is followed in Combe, Tercieux

and Terrier (2020) where a teacher assignment problem is also studied. In this paper, they introduce

a class of TTC like mechanism, the Teacher Optimal Block Exchange (TO-BE) mechanisms. Their

main focus is on two-sided efficiency but they show that a unique selection in this class of TO-BE

mechanisms is teacher optimal. They show that it outperforms–in terms of distribution of teachers

as well as in terms of efficiency–the assignment scheme used in France which is a variation on the DA

mechanism. First, this result is shown by focusing mainly on teachers having an initial assignment,

therefore, largely ignoring the imbalance issues that new teachers can create in terms of distribution

of teachers. The generalization they propose to account for new teachers is a combination of TO-BE

and the current French mechanism based on DA, which is further away from our SI-CC proposal.

In addition, the preferences of schools we consider, based on the first-order stochastic dominance
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relation, can be seen as a generalization of the one they introduce and the two indeed coincide in their

framework. Interestingly, even in their framework, we can show that our SI-CC mechanism is not in

the class of TO-BE mechanisms and so can be viewed as another strategy-proof and teacher optimal

mechanism (see Example 6 in Appendix B). Second, we define SI-DA which requires improvement

with respect to the status-quo matching that the current algorithm used in France does not impose.

This mechanism can be viewed as the right benchmark to which one should compare SI-CC in our

framework.

Despite these two previous studies and the current paper, the study of efficient mechanisms

under distributional constraints is still rare. Suzuki, Tamura, Hamada and Yokoo (2017) and its

generalization by Hafalir, Kojima and Yenmez (2017) provide sufficient conditions on policy goals

to get a version of TTC that take constraints into account and satisfies desirable properties. In

particular, these sufficient conditions involve a notion of discrete convexity on the policy goals,

namely, M-convexity. In our context with new teachers and vacant positions at schools, we show

that M-convexity of the policy goals is not sufficient anymore to ensure a well-behaved version of

TTC (see Example 7 in Appendix B).

Finally, our paper builds on a recent literature developing demand estimation methods in school

choice environments (Abdulkadiroğlu, Agarwal and Pathak (2017); Agarwal and Somaini (2018);

Calsamiglia, Fu and Güell (2020)). In particular, we build on techniques based on discrete choice

models with personalized choice sets which are relevant for preference estimation when reported

preferences might fail to be truthfull even under strategy-proof mechanisms (Fack, Grenet and He

(2019); Akyol and Krishna (2017); Artemov, Che and He (2019)).

2 Model

2.1 A Teacher Reassignment Market

Let T be a finite set of teachers. Each teacher t has a type. The type of a teacher captures

her all observable characteristics that matter for the schools, such as experience, education, past

performance, etc, or only a subset of these.6 Let Θ = (θ1, θ2, ..., θn) be the finite type space. Let

τ : T → Θ be the type function and τ(t) be the type of teacher t. For any T̂ ⊆ T , we denote type

θ teachers in T̂ with T̂ θ, i.e.,

T̂ θ ≡ {t ∈ T̂ : τ(t) = θ}.

Let S be a finite set of schools. Each school s has a capacity of qs. Let q = (qs)s∈S . Each teacher

t has a strict preference relation, which is a linear order and denoted by Pt, over the schools

and being unassigned option denoted by ∅. Let P = (Pt)t∈T . We denote the at least as good as

relation related with Pt by Rt for all t ∈ T : s Rt s
′ if and only if s = s′ or s Pt s

′.

A matching µ : T → S ∪ {∅} is a function such that |µ−1(s)| ≤ qs. With a slight abuse of

notation, we use µt and µs instead of µ(t) and µ−1(s), respectively.7 We refer to µt as the match

6For example, in the French application, the experience level of a teacher can be thought as the type of a teacher.
7Thus, µθs is the set of teachers of type θ that are assigned school s.
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of teacher t and µs as the match of school s in matching µ. Also for a subset of teachers T̂ , we

denote the set of their matches in µ, µ(T̂ ) as µT̂ .

Initially some teachers are already employed by some schools. This is captured by a status-quo

matching ω. If ωt = s, then teacher t is currently employed at school s. If ωt = ∅, then teacher

t is called a new teacher. She is seeking employment for the first time and she is unemployed at

the status quo. By definition, |ωs| ≤ qs for each school s. We denote the set of new teachers with

N , i.e.,

N ≡ {t ∈ T : ωt = ∅}.

The rest of the teachers are refereed to as status-quo employees.

We make one assumption on the preferences of teachers: We assume that ωt Pt ∅ for each

t ∈ T \N , i.e., each employed teacher at the status quo matching finds her current school acceptable.

Finally, we define the preferences of schools over subsets of teachers. Unlike teacher preferences,

these preferences are typically weak and allow indifferences. Typically %s denotes the preferences of

a school s over subsets of teachers. Let ∼s and �s be the associated indifference and strict preference

relation with %s, respectively, denoting symmetric and asymmetric portions of the preferences.

To this end, each school s has a type ranking, which is a linear order and denoted by ., over

the types of teachers and an individual rationality threshold type denoted by θ∅: θ .s θ′ .s

θ∅ .s θ
′′ means school s ranks type θ teachers over type θ′ teachers and finds both types of teachers

acceptable to hire but it considers type θ′′ teachers unacceptable to hire. Let θ Ds θ′ if either

θ .s θ′ or θ = θ′. We assume that if ωθs 6= ∅, then θ .s θ∅, i.e., each school finds the types of its

current teachers acceptable.

We make two assumptions on the preferences of schools.

1. We assume that when a school compares two subsets of teachers it uses first-order stochastic

dominance (FOSD)8 relation based on its type ranking. In particular, school s weakly prefers

subset of teachers T̄ to T̂ , i.e., T̄ %s T̂ , if

(i) there does not exist an unacceptable teacher in T̄ , i.e., T̄ θ = ∅ for any θ /s θ∅, and

(ii) for any θ .s θ∅ we have ∑
θ′Dsθ

|T̄ θ′ | ≥
∑
θ′Dsθ

|T̂ θ
′
|.

Moreover, the preference is strict if at least one of the inequalities is strict.

If FOSD does not hold between two sets in either direction, then the school preferences do

not compare them. Therefore, school preferences are incomplete. Thus, a school only unam-

biguously prefers groups whenever two groups of teachers can be ranked based on this FOSD

comparison.

In the rest of our analysis, we compare outcome matchings with the status-quo matching. FOSD

relation will be sufficient and we will achieve unambiguous comparisons for our purposes.

8Although FOSD relation is, in general, defined to compare statistical distribution functions, with a slight abuse
of terminology we use the same name for the analogous binary relation that compares distributions of teacher types.
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2. We assume that for any subset of teachers T ′, if θ∅ .s τ(t) for some t ∈ T ′, then ωs �s T ′. That

is, each school prefers its status-quo match to any teacher set with an unacceptable teacher in

it.

We refer to the list 〈T, S, q, ω, P,%〉 as a teacher reassignment market. Typically, T, S, q, ω,%

are commonly known in our applications. Only teacher preferences are private information. For the

rest of our analysis, we fix T, S, q, ω,% and denote a market with teacher preferences P .

We are seeking a matching outcome given a market P .

The most basic property of outcome matchings we consider is status-quo improvement. Maybe

surprisingly, this is sometimes in conflict with many other standard desiderata used in the literature

for matching market design. A matching µ is status-quo improving if µt Rt ωt for all t ∈ T and

µs %s ωs for all s ∈ S. That is, each agent should be weakly better off in a status-quo improving

matching with respect to the status-quo matching.

We inspect rules that select a matching for each market. Formally, a (direct) mechanism φ is

a function that chooses an outcome matching for any market P . Let φ(P ), φt(P ), and φs(P ) denote

the matching selected by mechanism φ under market P , the match of teacher t, and the match of

school s in that matching, respectively.

A mechanism φ is strategy-proof if truth-telling is a weakly dominant strategy for all teachers,

that is, for all markets P , for all teachers t, for all possible alternative preference reports P ′t ,

φt(Pt, P−t) Rt φt(P
′
t , P−t).

As we assume that schools’ rankings over the types of teachers, and therefore, their preferences over

the teachers are commonly known, schools do not need to report them.

In the next two sections, we provide two different mechanisms to achieve two different desiderata:

a refinement of Pareto efficiency or an appropriate stability concept for our applications together

with status-quo improvement, respectively.9

3 Efficiency, Pointing Rule Design, and

Status-quo Improving Cycles and Chains

3.1 Status-quo Improving Teacher Optimality

Consider a market P . A matching µ Pareto dominates a matching ν for teachers if

µt Rt νt for all t ∈ T, and (1)

µt′ Pt′ νt′ for some t′ ∈ T. (2)

9In Example 8 in Appendix B, we show that there does not exist a mechanism satisfying efficiency and stability.
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Matching µ Pareto dominates a matching ν for schools if

µs %s νs for all s ∈ S, and (3)

µs′ �s′ νs′ for some s′ ∈ S. (4)

Finally, matching µ Pareto dominates a matching ν if (i) Equations 1 and 3 hold, and (ii)

Equation 2 or Equation 4 holds. A matching is (two-sided) Pareto efficient if it is not Pareto

dominated by any other matching.

A matching µ is status-quo improving – teacher optimal (SI teacher optimal for short) if

it is status-quo improving and not Pareto dominated for teachers by any other status-quo improving

matching. While SI teacher optimality seems to care mostly about the welfare of teachers, any SI

teacher optimal matching is also Pareto efficient, since teacher preferences are strict.

Proposition 1 Any SI teacher optimal matching is Pareto efficient.

All proofs are provided in Appendix A.

We will introduce a strategy-proof and SI teacher optimal mechanism. Why do we implement

on SI teacher optimality rather than a dual concept such as SI-school optimality or different Pareto

efficient outcomes?10 It has two reasons: First, in most of the applications we have in mind, the side

we characterize as schools are quasi-agents rather than full agents unlike the side we characterize as

teachers. Their welfare has been the main efficiency measure both in practice and in literature (for

example, see Abdulkadiroğlu and Sönmez, 2003a, Combe, Tercieux and Terrier, 2020). Second, if

we wanted to implement other Pareto efficient outcomes that are not SI teacher optimal, we would

not be able to find a strategy-proof mechanism.11

3.2 Status-quo Improving Cycles and Chains Mechanism

Next, we will introduce a strategy-proof and SI teacher optimal mechanism. To achieve this

goal, we introduce additional tools.

Our mechanism will iteratively construct a sequence of directed graphs in which teachers, schools,

and being unassigned option are the nodes. Teachers can only point to schools or the being unas-

signed option and schools can only point to teachers in their status-quo match in each of these

graphs. When node x points to node y, then a directed arc from x to y is activated.

Our mechanism relies on executing two types of multi-lateral exchanges based on the constructed

directed graphs.

A cycle is a directed path of distinct teachers {tm} and distinct schools {sm}, possibly being

unassigned option ∅,
(s1, t1, s2, t2, . . . , sk, tk)

10Because of indifference classes in schools’ FOSD preferences regarding same-type teachers, this concept defined
as a simple dual notion of SI teacher optimality may not be Pareto efficient and has to be refined even further.

11In Appendix A, Proposition 6 shows that if a status-quo improving mechanism selects a Pareto efficient matching
other than SI teacher optimal whenever such a matching exists, then this mechanism can be manipulated by teachers.
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such that ωtm = sm for all m, each node points to the next node in the path, and tk points back to

s1.

A chain is a directed path of distinct teachers {tm} and schools {sm}

(t0, s1, t1, . . . , sk−1, tk−1, sk)

such that ωtm = sm for all m = 1, . . . k − 1, each node points to the next node in the path.12 Here,

we say the chain starts with t0 and ends with sk. In other words, sk is the head of the chain and t0

is the tail of the chain.

As certain cycles and chains are encountered in the constructed graph, we will execute the

exchanges in them by assigning each teacher to the school she is pointing to and remove her.

Our main theoretical innovation relies on designing pointing rules that designate which possible

directed arcs in a graph will be endogenously activated through the algorithm.

Pointing rule of teachers will be introduced within the definition of the mechanism below as it

uses the endogenous working of the mechanism’s algorithm. On the other hand, the pointing rule

of schools relies on their type rankings and an exogenously given tie breaker.

Formally, a tie breaker is a linear order ` over teachers.13 It can be randomly determined or

can be the mandated priority orders for a particular application, such as in the French case, or can

be exogenously fixed in some other manner.

The tie breaker for the new teachers and tie breaker regarding teachers employed at the status

quo are utilized differently in the algorithm. For each school s, using tie breaker ` and its type

ranking .s, we first construct a pointing order ms over teachers in ωs, which is a linear order as

well: For any two distinct teachers t, t′ ∈ ωs,

t ms t
′ ⇐⇒ τ(t) /s τ(t′) or

[
τ(t) = τ(t′) and t ` t′

]
.

Note that a worse-type teacher is prioritized over a better-type teacher, and only when two same-

type teachers are compared, we use the tie breaker to prioritize one over the other.

As the mechanism will iteratively assign and remove teachers, the pointing rule of schools is

“point to the highest remaining priority teacher in its priority order.”

Now, we are ready to define our mechanism through an iterative algorithm:

Definition 1 Status-quo Improving Cycles and Chains (SI-CC) Mechanism

We will construct a matching µ dynamically through the following algorithm. Initially, µ is

the empty matching, in which no teacher is assigned to any school. In each step, as teachers are

assigned in µ, they will be removed from the algorithm; similarly schools whose all seats are filled

in µ and also some other schools chosen by the algorithm will be removed.

12Notice that, we allow a school to appear more than once in a chain.
13Technically, each tie breaker induces a new mechanism in our class.
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For each school s and type θ, let bθs track the current balance of type θ teachers at school

s in current matching µ, which is the matching fixed until the beginning of the current step.

The current balance is defined as the difference between the number of type θ teachers assigned

to s in µ and the number of type θ teachers in its status-quo match assigned to any school in µ:

bθs ≡ |µθs| − |{t ∈ ωs : µt 6= ∅}θ|. Thus, we initialize bθs = 0.

A general step k is defined as follows:

Step k:

� Each remaining school s points to the highest priority remaining teacher in ωs under ms, if not

all students in ωs are already assigned in µ; let tks be the teacher pointed by school s in step k.

Otherwise, school s does not point to any teacher.

� We define the pointing rule of teachers as follows: Any remaining teacher t is allowed

to point to a remaining school s if at least one of the following two school improvement

conditions hold for school s via teacher t:

1. (Improvement for s by teacher trades) if the school points to a teacher tks and∑
θ′ Ds θ

bθ
′
s > 0 for all types θ such that τ(tks) Ds θ .s τ(t),

or14

2. (Improvement for s by only incoming teachers) τ(t) .s θ∅, school s currently has an unfilled

seat, i.e., qs − |µs| > |{t′ ∈ ωs : µt′ = ∅}|, and there are remaining new teachers.

Let Akt be the opportunity set for a remaining teacher t, i.e., the set of schools t can point in

this step together with the being unassigned option ∅.15

Each remaining teacher t points to her most preferred option in Akt .

� Being unassigned option ∅ points to all teachers pointing to it.

Due to finiteness, there exists either

(i) a cycle in which all schools in the cycle satisfy improvement Condition 1 or a cycle between a

single teacher and the being unassigned option ∅, or

(ii) a chain.

Then:

� If Case (i) holds: Each teacher can be in at most one cycle as she points at most to a single

option. We execute exchanges in each cycle encountered in case (i) by assigning the teachers

in that cycle to the school she points to, update current matching µ and current balances {bθs}
accordingly, remove assigned teachers and filled schools in µ, and go to step k + 1.

� If Case (i) does not hold: Then case (ii) holds, i.e., there exists a chain. In particular,

each remaining teacher initiates a chain. There are two subcases:

14Condition 1 is trivially satisfied if no such θ exists, i.e., if τ(t) Ds τ(tks ). An alternative condition to this one is
provided in Appendix C.

15Note that, ωt ∈ Akt for all remaining teachers t who were employed at the status quo.
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– If there exists a remaining new teacher: Then we select a chain to be executed as

follows:

* Select as the tail of the chain the new teacher with the highest priority under tie breaker

` and then include in the chain the school she points to.16 If Improvement Condition 1

does not hold for this school via this teacher, but only Improvement Condition 2 holds,

then we end the chain with this school; otherwise, we repeat the following:

* Include to the chain the teacher pointed by the last school included.17 If we include a

teacher, we also include next in the chain the school she is pointing to. We repeat this

iteratively until the Improvement Condition 1 does not hold for the next school via the

included teacher, but only Improvement Condition 2 holds.18

The last school included is the head of the selected chain.

We execute the exchanges in the selected chain by assigning each teacher in the chain to

the school she points to, update current matching µ and current balances {bθs} accordingly,

remove assigned teachers and filled schools, and go to step k + 1.

– If there does not exist a remaining new teacher: Then we remove each school s

whose all status-quo employees in ωs were already assigned in µ.19 We continue with step

k + 1.

The mechanism terminates when all teachers are removed. Its outcome is the final matching µ.

The name of the mechanism suggests that both teachers and schools become better off through

the mechanism with respect to the status quo. Indeed, this is the case. We introduced several

innovations in the mechanism that exploit different Pareto improvement possibilities for teachers

and schools over the status-quo matching.

Pareto improvement of teachers is straightforward in the algorithm. Teachers who are employed

at the status quo are eventually assigned to a school at least as good as their status-quo match.

Moreover, all teachers are assigned the best option they can point in the step they are assigned.

What is more delicate is the Pareto improvement of schools, i.e., how we make sure that they

always weakly improve with respect to their status-quo match in every step. This is ensured through

the introduction of both teacher and school pointing rules.

A school’s pointing order designates in which order the school would like to send out its status-

quo employees. By pointing, the school effectively gives permission to one of its status-quo employees

to be assigned possibly to a different school. Thus, we make sure that this priority order is in reverse

order of its preferences: Less preferred-type employees are pointed first and more preferred-type

employees are pointed later. This is the first innovation.

16Such a school exists, because if she does not point to a school, then she pointed to being unassigned option ∅ and
was removed previously.

17Such a teacher exists by Improvement Condition 1.
18This iterative procedure is guaranteed to terminate. Otherwise, we would have a cycle.
19There must exit a school which is still in the market and whose status-quo employees have already been assigned.

Otherwise, each remaining school would point to one teacher and each remaining teacher would point to a school and
so there would exist a cycle, a contradiction.
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On the other hand, the teacher pointing rule designates which teachers can be assigned to a

school. Therefore, we only allow teachers who can improve the school’s welfare with respect to its

status-quo match after the currently pointed employee of the school is sent out.

The two school improvement conditions make sure of this.

Condition 1 has two cases: If the type of the possibly incoming teacher is at least as good as

the type of the possibly outgoing teacher, the school has no danger of becoming worse off in this

trade. The second case on the other hand is more delicate: As trades that strictly improve a school’s

welfare occur over steps, schools acquire new teachers who are actually of better types than the

types of outgoing status-quo employees. Therefore, they may build up a buffer. If such a buffer

exists, a worse-type teacher than its currently outgoing employee can still be assigned to the school,

although this trade makes the school worse off with respect to the previous step. However, the school

is still weakly better off with respect to the status quo thanks to the buffer. Only the buffer gets

thinner. The existence of the buffer is tracked by checking whether the sums of the relevant type

balances, bθs’s, are positive through Condition 1. The use of this buffer ensures teacher optimality.

While the first condition is about a trade the school will make by exchanging an outgoing

teacher with an incoming teacher, Condition 2 is only relevant as long as new teachers remain

in the algorithm. When Condition 2 holds for a school via some teacher, but not Condition 1,

the school will not send out an employee as it has extra capacity: it will only hire one additional

acceptable teacher.

Before stating our main result, we illustrate how the SI-CC mechanism works using Example 1.

Example 1 Let S = {s1, s2, s3, s4}, T = {t1, t′1, t2, t′2, t3, t, t′}, the status-quo matching be

ωs1 = {t1, t′1}, ωs2 = {t2, t′2} ωs3 = {t3}, ωs4 = ∅,

qs1 = 3, qs2 = qs4 = 2, and qs3 = 1. The preferences of teachers are:

s2 Pt1 s1 Pt1 ∅ Pt1 s3 Pt1 s4

s4 Pt′1 s1 Pt′1 ∅ Pt′1 s2 Pt′1 s3

s3 Pt2 s2 Pt2 ∅ Pt2 s1 Pt2 s4

s1 Pt′2 s2 Pt′2 ∅ Pt′2 s3 Pt′2 s4

s4 Pt3 s2 Pt3 s3 Pt3 ∅ Pt3 s4

s1 Pt ∅ Pt s2 Pt s3 Pt s4

s1 Pt′ ∅ Pt′ s2 Pt′ s3 Pt′ s4

There are only two types of teachers: θ̄ and θ for respectively “High” and “Low” experience. All

schools prefer high experience teachers to low experience teachers so that θ̄ .si θ for i = 1, 2, 3, 4.

We assume that τ(t′i) = τ(t3) = θ for i = 1, 2, τ(ti) = θ̄ for i = 1, 2 and τ(t) = τ(t′) = θ. Since
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each initial teacher of a school has a different type, the pointing order can be arbitrary. For new

teachers, assume that the tie-breaker ranks t above t′ so that t ` t′. At the beginning of Step 1 of

SI-CC, using the pointing behaviors of the definition, we obtain the graph in Figure 1a.
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(a) Step 1
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(b) Step 2

Figure 1: Graph of the steps 1 and 2 of SI-CC

For each arrow going from a teacher to a school, we report the improvement conditions, i.e. 1

and/or 2 in the definition of pointing rule for teachers, which hold for that arrow. One can note

that there is no cycle in this graph. Thus there are only two possible chains: one starting at t or one

starting at t′. Since t ` t′, we pick the one starting with t and, following the procedure described,

implement the chain {t, s1, t
′
1, s4} since t′1 points to s4 only because of the improvement condition

2. At the beginning of Step 2, the graph becomes the one in Figure 1b.

In that case, one can check that the cycle {s1, t1, s2, t
′
2} is implemented and that, at Step 3, the

chain {t′, s1} is implemented. At the beginning of Step 4, the graph of SI-CC is the one in Figure

2a. Note that even though teacher t3 prefers s4 to s2, he cannot point to the former because even

though it has an empty seat left, there is no remaining new teacher.
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Figure 2: Graph of the steps 4 and 6 of SI-CC
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In that step, we implement the cycle {s2, t
′
2}. At the next step, we obtain the graph in Figure

2b. Note that even though t3 has a low experience and t2 a high experience, the former can still

point to s2 since it has accepted t1, a high experience teacher, at step 2 so that the improvement

condition 1 in the pointing rule of teachers is satisfied. So we implement the cycle {s2, t2, s3, t3}
and the algorithm stops.

Now we are ready to state our main result in this section.

Theorem 1 The SI-CC mechanism is SI teacher optimal and strategy-proof.

SI teacher optimality of the mechanism is delicate to show. Note that SI teacher optimality

implies that the outcome matching is Pareto undominated for teachers among all status-quo im-

proving matchings. However, the pointing rule of teachers has restrictions imposed by the school

improvement conditions. That is, a teacher cannot arbitrarily point to the best school she likes. We

show that the restrictions imposed by these conditions are the necessary and sufficient conditions

for keeping status-quo improvement for schools without affecting the outcome being Pareto undom-

inated for teachers. Therefore, implementing any further Pareto improvement for teachers would

make the schools worse off with respect to the status quo. Moreover, imposing further restrictions

for teacher pointing would prevent SI teacher optimality.

Strategy-proofness of the mechanism relies on several observations: First, once a teacher is

pointed by a school, she will continue to be pointed until she is assigned. We show that the

opportunity set for each teacher t, Atk, weakly shrinks across steps k. Although Improvement

Conditions 1 or 2 may stop holding for a school via a teacher t across steps, we show that teacher

t cannot affect which schools leave and stay in Atk before she is assigned by submitting different

preferences.

An immediate corollary to the theorem is that the SI-CC mechanism is also (two-sided) Pareto

efficient by Proposition 1.

Under the pointing rule of schools, in each step of SI-CC, each school points to one of its

employee who has the lowest ranked type. One can think whether Theorem 1 holds when we

consider alternative school pointing rules under SI-CC mechanism. Example 2 shows that SI-CC

can be manipulated by a teacher and it is not SI teacher optimal under an alternative pointing rule.

Example 2 Let S = {s, s′, s′′}, T = {t1, t2, t3, t4}, the status-quo matching be

ωs = {t1, t2}, ωs′ = {t3}, ωs′′ = {t4},

qs = 2, qs′ = qs′′ = 1 and τ(t1) .s τ(t2) = τ(t3) = τ(t4). The preferences of the teachers are

sPt1s
′Pt1s

′′Pt1∅,

s′Pt2sPt2s
′′Pt2∅,
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sPt3s
′Pt3s

′′Pt3∅,

s′′Pt4sPt4s
′Pt4∅.

If in the first step of SI-CC school s points to t1, the best school t3 can point is s′. Therefore,

she will be assigned to s′. In particular, under true preferences SI-CC assigns all employees to their

status-quo schools. This outcome is not SI teacher optimal because it is Pareto dominated by another

status-quo improving matching ν for teachers where ν(t1) = ν(t3) = s, ν(t2) = s′ and ν(t4) = s′′.

Moreover, if t3 swaps the rankings of s′ and s′′, then SI-CC selects ν, i.e., t3 manipulates SI-CC

when s points t1 in the first step.

We would like to emphasize one possible generalization of SI-CC through school pointing rule.

We can easily use the first school improvement condition given in the definition of SI-CC to dy-

namically update the school pointing rule such that monotonicity of opportunity set for teachers is

preserved.

4 Stability, Choice Rule Design, and

Status-quo Improving Deferred Acceptance

4.1 Status-quo Improving Stability

Although Pareto efficiency is a very appealing property of matchings, many real-life applications

use fairness or stability notions, which often conflict with SI teacher optimality and in general with

Pareto efficiency under incentive compatibility constraints. For example, in the French teacher

reassignment application, the mechanism currently used is not Pareto efficient, while it satisfies a

stability condition that is not necessarily status-quo improving.

To this end, we also introduce a stability concept that is consistent with status-quo improvement

under a mild assumption about the number of new teachers in a market. Our notion has different

requirements than Gale-Shapley stability (Gale and Shapley, 1962), which is extensively used in

the literature, because in our setting we have a non-empty status-quo matching while most of the

literature focuses on an empty matching as the status quo.

Consider a market P .

To introduce stability, we first start with blocking by an agent and a pair. A matching µ is

blocked by a teacher t if ∅ Pt µt. A matching µ is blocked by a school s if there exists t′ ∈ µs
with θ∅ .s τ(t′). Observe that a status-quo improving matching is not blocked by any agent, while

a matching that is not blocked by any agent may not be status-quo improving.

Given a teacher t and school s, a matching µ is blocked by pair (t, s) through t′ ∈ µs if (i)

s Pt µt and (ii) τ(t).s τ(t′). Similarly, a matching µ is blocked by pair (t, s) through an empty

slot if (i) s Pt µt, (ii) τ(t) .s τ(t′) and (iii) |µs| < qs.

A matching µ is Gale-Shapley stable if there is no blocking agent and no blocking pair. This

classical concept potentially conflicts with our most basic property, status-quo improvement:
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Proposition 2 A Gale-Shapley stable matching always exists, however, it may not be status-quo

improving. Thus, a Gale-Shapley stable and status-quo improving matching may not exist.

One may think that the cause of incompability of status-quo improvement with Gale-Shapley

stability is not giving employment rights to teachers at their status-quo schools. Indeed the current

system in France uses a strategy-proof mechanism that satisfies the following stability concept

implicitly.20

A matching µ is teacher-status-quo-improving (teacher-SI) stable if there is no blocking

agent and no blocking pair through an empty slot, and if there is a blocking pair (t, s) through

t′ ∈ µs, then t′ ∈ ωs. This concept ignores blocking pairs as long as assigning the teacher to the

school in the blocking pair would displace a status-quo employee of the school. This concept still

does not resolve the main problem.

Proposition 3 Even when there are no empty seats at schools at status quo and there are no new

teachers, the current French mechanism is teacher-SI stable but not status-quo improving, while the

status-quo matching is both teacher-SI stable and status-quo improving. Moreover, if there are empty

seats at some schools at status quo, then a teacher-SI stable and status-quo improving matching may

not exist.

We should strengthen no blocking by an agent to status-quo improvement. Given the above

impossibility result, however, this remedy alone does not resolve our non-existence problem when

there are empty seats at the status quo. Instead, we introduce the following concept which implicitly

gives new teachers rights over status-quo empty seats of a school.

A matching µ is status-quo improving stable (SI-stable for short) if

1. it is status-quo improving, i.e., µs �s ωs and µt Pt ωt for all s ∈ S and t ∈ T ;

2. there is no blocking pair (t, s) through an empty slot; and

3. there is no blocking pair (t, s) through t′ such that either t, t′ ∈ N or t, t′ ∈ T \ (N ∪ ωs).

SI-stability requires status-quo improvement, which implies elimination of individual blocking,

and elimanation of blocking pairs through empty slots. Moreover, it requires elimination of any

blocking pair (t, s) through t′ such that t and t′ are either new teachers or are currently employed

by another school s′.

As a result, this concept is neither weaker (because of the more stringent individual blocking

condition) nor stronger (because of the less stringent pairwise blocking conditions) than both Gale-

Shapley and teacher-SI stability concepts.

Although it may appear counter intuitive to allow certain blocking pairs, it turns out that this

is necessary to sustain status-quo improvement. The solution provided in the following subsection

eliminates further blocking pairs such as the ones including new teachers through an existing teacher.

20To make the current French setup more consistent with ours one may think that each teacher has a different type
and the type ranking of each school is given by the government-dictated strict priority order used in France.
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In Appendix B, by using examples we show that allowing the other blocking pairs not captured by

Condition 3 is needed to guarantee existence of SI-stable matching.

4.2 Auxiliary Choice Rule Design and

Status-quo Improving Deferred Acceptance Mechanism

In this section, we introduce a strategy-proof mechanism that is SI-stable under a mild assump-

tion we will introduce below. Our main contribution here is to introduce an auxiliary choice rule

for schools that will achieve SI-stability and strategy-proofness when it is used in conjunction with

the teacher proposing deferred acceptance algorithm of Gale and Shapley (1962) adopted for com-

plex matching terms by Roth and Sotomayor (1990) (which was itself adopted from more complex

versions of such processes in Kelso and Crawford (1982), Roth (1984), Blair (1988)).

Given a school s, a choice rule is a function Cs : 2T → 2T such that for any T̂ ⊆ T , (i)

Cs(T̂ ) ⊆ T̂ and |Cs(T̂ )| ≤ qs.

Using the choice rules we will design below we will employ the well-known teacher proposing

deferred acceptance algorithm. We consider the sequential version of this algorithm also known as

the cumulative offer process (Hatfield and Milgrom, 2005) for more complex contractual matching

terms:

Definition 2 Teacher Proposing Deferred Acceptance Algorithm (DA):

Step 1: Some teacher t′ proposes to her favorite acceptable school, denoted by s′, if such a

school exists. In this case, define B2
s′ ≡ {t′} and B2

s ≡ ∅ for each school s 6= s′. Otherwise, define

B2
s ≡ ∅ for each school s.

Each school s holds teachers in Cs(B
2
s ) and rejects all other teachers in B2

s .

In general,

Step k > 1: Some teacher t′′ who is not currently held by any school proposes to her most

favorite acceptable school that has not rejected her yet, denoted by s′′, if such a school exists. In

this case, define Bk+1
s′′ ≡ B

k
s′′ ∪ {t′′} and Bk+1

s ≡ Bk
s for each s 6= s′′. Otherwise, define Bk+1

s ≡ Bk
s

for each school s.

Each school s holds Cs(B
k+1
s ) and rejects all teachers in Bk+1

s \ Cs(Bk+1
s ).

The algorithm terminates when each teacher is either rejected by all of her acceptable schools or

currently held by some school. We assign each school the students it is holding.

Our main contribution in this subsection is the construction of an auxiliary choice rule for each

school. Fix a school s. First, we need some additional concepts.

A tie breaker is a linear order over teachers ` as before. We construct a new linear order over

the teachers in ωs denoted by Is as follows:

For any t, t′ ∈ ωs,

t Is t′ ⇐⇒ τ(t) .s τ(t′) or [τ(t) = τ(t′) and t ` t′].
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Observe that a better-type teacher is prioritized over a worse-type teacher, and when two same-type

teachers are compared, then we use the tie breaker to prioritize one over the other.21

The auxiliary choice rule will use a lexicographic decision structure within a school by dividing

the school into independent slots where each slot eventually represents a seat at the school. Such

a model was previously introduced by Kominers and Sönmez (2016) in one-sided priority-based

matching context for more complex contractual matching terms.

We fix a school s in this construction. Let Ss = {s1, s2, ..., sqs} be the set of slots at school s.

Without loss of generality we label the types in Θ as θ1, . . . , θ|Θ| based on the type ranking of the

school such that θk .s θk+1 for all k ∈ {1, . . . , |Θ| − 1}. We define a ranking for each slot over

T ∪{∅} where ∅ denotes keeping the slot unfilled. The ranking of slot sk, �ks , is defined separately

for the slots representing the filled seats at the status-quo matching, i.e., for k ≤ |ωs|, and slots

representing the empty seats at the status-quo matching, i.e., for |ωs| < k ≤ qs:

� For filled slots sk at the status quo, i.e., all k ≤ |ωs|:
– the teacher t ∈ ωs who is ranked k’th under Is has the highest ranking under �ks ,
– any teacher t′ with τ(t) .s τ(t′) is ranked below ∅ under �ks , and

– the rest of the ranking under �ks is determined according to .s such that ties between same

type teachers are broken according to tie breaker `.

� For empty slots sk at the status quo, i.e., all k such that |ωs| < k ≤ qs:
– a teacher t is ranked above ∅ under �ks if and only if she is acceptable, i.e., τ(t) .s θ∅,

– any acceptable new teacher t (i.e., t ∈ N and τ(t) .s θ∅) is ranked under �ks above any

teacher t′ employed at status quo by some school (i.e., t′ /∈ N), and

– the rest of the ranking under �ks is determined according to .s such that ties between same

type teachers are broken according to tie breaker `.

Thus, the set of acceptable teachers for slot sk is a superset of the set of acceptable teachers for slot

sk−1.

We will make the following mild overdemand assumption in the rest of this section involving

new teachers and schools with excess status-quo capacity:

Assumption 1 There exists a subset of new teachers N ′ ⊆ N such that (i) there are at least as

many new teachers in N ′ as empty seats at status quo, i.e., |N ′| ≥
∑

s∈S(qs − |ωs|), and (ii) each

teacher t ∈ N ′

� considers all schools with excess capacity acceptable, i.e., if qs > |ωs|, then s Pi ∅, and

� is acceptable for all schools with excess capacity, i.e., if qs > |ωs|, then τ(t) .s θ∅.

In the absence of either part of Assumption 1, we can come up with examples such that some

schools end up with fewer teachers than what they have under the status-quo matching and status-

quo improvement is violated for schools (see Appendix B).

21Thus, linear order Is effectively reverses the ordering of status-quo employees of different types in the pointing
order ms used in the SI-CC mechanism, while it respects the school’s FOSD preferences.
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Since the auxiliary choice rule is defined through filling each slot one a time, we need to determine

in which order the slots are processed. We process the slots in the natural order22

s1, s2, . . . , sqs .

Definition 3 The auxiliary choice rule Cs of school s is defined through an iterative procedure.

The auxiliary chosen set from the set of teachers T̂ by school s, denoted by Cs(T̂ ), is determined as

follows:

� Step 1: The most preferred acceptable teacher under �1
s in T̂1 = T̂ is assigned to slot s1 and she

is removed. If there is no such teacher, then s1 remains empty. Denote the remaining teachers

with T̂2.

In general,

� Step k ≥ 2: The most preferred acceptable teacher under �ks in T̂k is assigned to slot sk and she

is removed. If there is no such teacher, then sk remains empty. Denote the remaining teachers

with T̂k+1.

The process terminates when all slots are processed, i.e., step qs is the last step. Auxiliary chosen

set Cs(T̂ ) is the set of teachers assigned to the slots of school s.

We illustrate how an auxiliary chosen set is found in the following example.

Example 3 Suppose there are five teachers one of whom is new: T = {t1, t2, t3, t4, t5} and t5 ∈ N .

The status-quo match of school s, which has capacity qs = 3 is ωs = {t1, t2}. The type ranking of

school s is

τ(t1) = τ(t3) .s τ(t2) .s τ(t4) .s τ(t5) .s θ∅.

The slot set of s is Ss = {s1, s2, s3} such that s1 and s2 correspond to filled seats at status quo and

s3 corresponds to the empty seat.

Let the tie breaker ` be such that t1 ` t3.

We construct the rankings for each slot as follows:

t1 �1
s t3 �1

s ∅ �1
s t for any t /∈ {t1, t3},

t2 �2
s t1 �2

s t3 �2
s ∅ �2

s t for any t /∈ {t1, t2, t3},

t5 �3
s t1 �3

s t3 �3
s t2 �3

s t4 �3
s ∅.

Suppose T̂ = {t2, t3, t4, t5}. Then, the auxiliary set of chosen teachers Cs(T̂ ) is found as follows:

� Step 1: Teacher t3 is the most preferred for slot s1 among the teachers in T̂1 = T̂ . Hence, t3

is assigned to slot s1 and she is removed. We set T̂2 = T̂1 \ {t3}.
� Step 2: Teacher t2 is the most preferred for slot s2 among the teachers in T̂2. Hence, t2 is

assigned to slot s2 and she is removed. We set T̂3 = T̂2 \ {t2}.
22Later we will explain why this precedence order is chosen.
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� Step 3: Teacher t5 has the highest priority for slot s3 among the teachers in T̂3. Hence, t5 is

assigned to slot s3 and she is removed. We set T̂4 = T̂3 \ {t5}.

Hence, Cs(T̂ ) = {t3, t2, t5}.

We define the following notions for the choice rules that will be crucial for our mechanism to be

both strategy-proof and SI-stable.

The auxiliary choice rule Cs satisfies substitutes (Kelso and Crawford, 1982) if for all T̄ ⊆ T

and distinct teachers t, t′ ∈ T̄ ,

t ∈ Cs(T̄ ) =⇒ t ∈ Cs
(
T̄ \ {t′}

)
.

The auxiliary choice rule Cs satisfies the law of aggregate demand (Alkan and Gale, 2003,

Hatfield and Milgrom, 2005) if for all T̄ , T̂ ⊆ T ,

T̄ ⊆ T̂ =⇒
∣∣Cs(T̄ )

∣∣ ≤ ∣∣Cs(T̂ )
∣∣.

Next, we show that Cs satisfies these two properties.

Proposition 4 The auxiliary choice rule Cs satisfies the substitutes and law of aggregate demand

conditions.

We refer to the mechanism that selects the outcome of the DA algorithm using the auxiliary

choice rules (Cs)s∈S that we designed as the status-quo improving deferred acceptance (SI-

DA for short) mechanism. The logic behind naming will be clear with the following result:

Theorem 2 SI-DA mechanism is strategy-proof, and under Assumption 1, it is also SI-stable.

Notice that, when there is no new teacher, i.e., N = ∅, Theorem 2 holds without Assumption 1.

In the proof of Proposition 4 the processing of slots does not play any role. Hence, the Proposi-

tion 4 holds for any order we use in the calculation of chosen teachers. As a result, SI-DA mechanism

continues to be strategy-proof independent of the processing order of the slots. Moreover, the proof

of SI-Stability of SI-DA does not rely on the processing order. Hence, SI-DA mechanism continues

to be SI-Stable independent of the processing order of the slots. However, the processing order has

an impact on the mobility and the welfare of the teachers.

Let Is and Îs be arbitrary two processing orders of seats at school s such that Îs is obtained

from Is by swapping two adjacent slots sk and s` where k < ` ≤ |ωs|. Let Is̄= Îs̄ for any s̄ 6= s.

Let Ds′ and D̂s′ be the choice rules induced by Is′ and Îs′ by using the procedure defined in

Definition 3 for all s′ ∈ S. Let µ and µ̂ be the outcome of DA algorithm by using choice rules Ds′

and D̂s′ for all s′ ∈ S. Then, the following proposition holds.

Proposition 5 Each teacher t (weakly) prefers µt to µ̂t.
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Proposition 5 implies that the processing order that we use for the first |ωs| seats at each school s

increases the welfare of the teachers compared to the alternative processing orders. Moreover, it also

implies that the processing order that we use increases the teacher mobility. However, Proposition

5 does not say anything about the relative order the last qs − |ωs| seats at each school s. In the

following example, we illustrate that we cannot find an optimal processing order for the last qs−|ωs|
seats.

Example 4 Let S = {s, s′, s′′}, T = {t1, t2, t3, t4}, the status-quo matching be

ωs = {t4}, ωs′ = {t2}, ωs′′ = ∅,

qs = 2, qs′ = qs′′ = 1, τ(t1) .s τ(t2) .s τ(t3) .s τ(t4), τ(t1) .s′ τ(t3) .s′ τ(t4) .s′ τ(t2), and τ(t1) .s′′

τ(t2) .s′′ τ(t3) .s′′ τ(t4). The preferences of the teachers are

s Pt1 s
′ Pt1 s

′′ Pt1 ∅,

s Pt2 s
′′ Pt2 s

′ Pt2 ∅,

s Pt3 s
′′ Pt3 s

′ Pt3 ∅,

s′ Pt4 s
′′ Pt4 s Pt4 ∅.

If s1
1 is filled before s2

1, then under DA t1 and t3 are assigned to s, t2 is assigned to s′′ and t4 is

assigned to s′. If s2
1 is filled before s1

1, then under DA t1 and t2 are assigned to s, t3 is assigned to

s′′ and t4 is assigned to s′. Hence, we cannot have the same conclusion as in Proposition 5.

We use tie-breaking in the construction of the slot priorities. Inclusion of this exogenous tool

causes efficiency loss: SI-DA does not select a Pareto undominated SI-stable matching (and there-

fore, it is not Pareto efficient either). We illustrate this situation in the following example.

Example 5 Let S = {s, s′, s′′}, T = {t1, t2, t3}, the status-quo matching be

ωs = {t1}, ωs′ = {t2}, ωs′′ = {t3},

qs = qs′ = qs′′ = 1, τ(t1) = τ(t2) = τ(t3), and all teachers are acceptable for all schools. The

preferences of the teachers are

s′ Pt1 s Pt1 s
′′ Pt1 ∅,

s Pt2 s
′ Pt2 s

′′ Pt2 ∅,

s′ Pt3 s
′′ Pt3 s Pt3 ∅.

Let t2 ` t3 ` t1 be the tie breaker, then the rankings of the slots are given as:

t1 �1
s t2 �1

s t3,
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t2 �1
s′ t3 �1

s′ t1,

t3 �1
s′′ t2 �1

s′′ t1.

SI-DA assigns t1 to s, t2 to s′ and t3 to s′′. However, this outcome is Pareto dominated by another

status-quo improving stable matching in which t1, t2 and t3 are assigned to s′, s, and s′′, respectively.

5 Generalizing Lower Bound for Welfare Improvements for Schools

In this section, we relax the FOSD requirement for status-quo improvement. Let school s’s

ranking over the types be θ1.s θ2.s ....s θn.s θ∅. That is, any type θ /∈ {θ1, θ2, ..., θn} is unacceptable

for school s. Let d = (dθ1 , dθ2 , ..., dθn) ∈ Rn be threshold acceptability vector where

� dθ1 ≤ |ωθ1s |,
� dθ1 + dθ2 ≤ |ωθ1s ∪ ωθ2s |,
� ...

� dθ1 + dθ2 + ...+ dθn = |ωθ1s ∪ ωθ2s ∪ ... ∪ ωθns | = |ωs|.

Notice that threshold values are relaxation over the number of current students from best to

worst in a cumulative sense. A matching µ is d-improving for school s if all teachers in µs have

acceptable types for school s and

� dθ1 ≤ |µθ1s |,
� dθ1 + dθ2 ≤ |µθ1s ∪ µθ2s |,
� ...

� dθ1 + dθ2 + ...+ dθn ≤ |µθ1s ∪ µθ2s ∪ ... ∪ µθns | = |µs|.

A matching µ is d-improving if it is d-improving for all schools and no teacher t is assigned to

a school worse than ωt. Notice that, if matching µ status-quo improves ω, then µ is d-improving.

Under this generalization of the status-quo improvement lower bound, we can apply the SI-CC

and teacher proposing DA mechanisms after we relabel the types of current employees for each

school. In particular, for each θk with k < n we select |ωθks | − dθk teachers from ωs and treat them

as type θn when we determine the pointing rule of school s and the pointing rule of teachers under

SI-CC and priority rankings of seats under teacher proposing DA. For the rest of the steps of the

mechanisms, each teacher is treated with her own type.

These mechanisms inherit their desired properties mentioned in Sections 3 and 6.5 under these

modifications.

6 Empirical Analysis

This section provides empirical evidence on the changes that the mechanisms we suggest would

bring in a real world setting: teacher assignment to regions in France. After presenting the insti-

tutional context and the data, we structurally estimate teachers preferences over regions, and run

counterfactuals to quantify the improvements that our mechanisms may yield.
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6.1 Institutional background

Teacher recruitment and assignment. Teacher certification and recruitment is highly

centralized in France. Anyone who wishes to become a teacher has to pass a competitive examina-

tion. Those who succeed are allocated a teaching position by the ministry for a probation period

of one year, at the end of which they get tenure or not. Once they get tenure, teachers in public

schools become civil servants. The government manages both the first assignment of newly tenured

teachers to a school, and the mobility between schools of tenured teachers who previously received

an assignment but wish to change.23

Mobility request, vacant positions and newly recruited teachers. We use data on the

assignment of teachers to one of the 31 French regions in 2013 for our empirical analysis. There

were 700,000 secondary public school teachers in France that year, a number that fluctuates from

year to year due to both entries and exits from the profession. Exits are mainly due to teachers

retiring—9,793 public secondary school teachers retired in 2013—while entries correspond to newly

recruited teachers who have passed the recruitment exam and validated their probation year. As

a result, when organizing the annual mobility process, the central administration has to take into

account a large pool of tenured teachers who already have a position and wish to change, but also

some vacant positions that need to be filled, and some newly recruited teachers who ask for their

first assignment. In 2013, the year for which we have data, about 25,100 teachers took part in the

centralized regional mobility process. Among them 17,200 are tenured teachers and 7,900 are newly

recruited teachers who need a first assignment.

A two-step assignment process. The assignment procedure takes place in two successive

steps.24 During the first step, which is managed centrally by the ministry, teachers are assigned to

one of the 31 French regions using a first algorithm. In the second step, teachers newly assigned

to a region and teachers who wish to change schools within their region submit a list of ordered

schools. Since 1999, this step is managed directly by local administrations within the regions. Our

empirical analysis focuses on the first regional assignment because of potential strategic reports of

preferences during the second phase.2526 Participation to the assignment mechanism is compulsory

for all newly tenured teachers who have never been assigned a position. Participation is optional

for other tenured teachers who are never forced to change region or school.

23This centralized assignment process is used for public school teachers only. Private schools make up 16% of
teachers. For them, the recruitment process is similar but public and private school teachers face completely different
rules for their mobility—between regions and between schools. In private schools, teachers apply directly to schools—
as would be the case in usual labor markets.

24Before 1999, teachers’ assignment to schools was managed centrally by running an algorithm once, which assigned
teachers directly to schools. This highly centralized process was argued to be at odds with the regional nature of most
demands: the majority of teachers asking for a transfer ranked schools within their current regions.

25Preferences reported during the second phase of the assignment are more difficult to interpret for two reasons.
First, teachers can only rank up to 20 or 30 schools, depending on the region. Second, in addition to rank schools,
teachers can also rank larger geographic areas, such as cities for instance.

26Of course, even for teachers assignment to regions, one may wonder if preferences over regions are well-defined
objects since what matters for teachers is their assigned school within a region. Combe, Tercieux and Terrier (2020)
provide a detailed discussion of this and supportive evidence, notably on teachers lexicographic preferences.
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6.2 Data and Descriptive Statistics

We use data on the assignment of teachers to one of the 25 French regions in 2013.27 We have

information on teachers’ reported preferences and their initial assignment (if any), the priorities of

the regions, and the number of vacant positions in each region. We keep all teachers from the 8

largest subjects, such as French, math, English, and Sports. We discard couples from the sample

because they benefit from a specific treatment in the assignment process.28 Finally, in order to

keep the market structure balanced, we drop one region seat for each teacher we omit.29 Our final

sample contains 10,460 teachers: 5,833 initially assigned teachers (55.8%) and 4,627 new teachers.

Table A.1 shows the decomposition by subject.

A central motivation of our analysis is to rebalance the unequal distribution of teachers across

regions. Part of this large imbalance stems from differences in regions attractiveness. Table 1 re-

ports descriptive statistics on teachers (Panel A), their initial assignment (Panel B), and the region

they rank first (Panel C).30 Two regions surrounding Paris, called Créteil and Versailles, appear

as particularly unattractive. The imbalance is blatant when comparing the number of teachers

asking to leave the region and the number asking to enter. For instance, in math, 52.3% of the

tenured teachers who ask to change region come from Créteil or Versailles, but only 3.4% rank

one of these two regions as their first choice.31 Table A.2 provides additional evidence on attrac-

tiveness differences and its potential determinants for the three most attractive regions (Rennes,

Bordeaux, and Toulouse), the three least attractive regions (Créteil, Versailles, and Amiens), and

three intermediate regions (Paris, Aix-Marseille, and Grenoble).32

The large share of mobility requests that originate from unattractive regions has a direct con-

sequence on the annual mobility flows: Under the current assignment system, a large number of

teachers exit these regions, which results in numerous vacant positions that need to be filled. As

a mechanical result, about 50% of the newly recruited teachers get their first assignment in one of

the three least attractive regions (Créteil, Versailles, and Amiens). This structural imbalance is a

serious concern for policy makers. It is frequently raised as a reason for the lack of attractiveness

of the teaching profession in France.33 In addition, it creates large differences in the age profile of

27We discard the 6 overseas regions because of their specificities in terms of (i) teacher preferences—in contrast
to what we find in our estimates, distance from the current location often becomes an attractive feature— and (ii)
regions priorities—some of these regions, like Mayotte, give teachers who grew up in these regions a bonus of points
when they rank it first.

28Spouses in two different subjects can submit joint mobility applications (by submitting two identical lists). This
creates dependencies across markets for different fields.

29For each tenured teacher we discard, we dropped his corresponding position. For new teachers, we count the
number N of teachers discarded. Then we compute the share S of vacant positions that this number represents, and
we delete S% of the vacant positions in each region.

30Appendix E.1 provides a detailed description of each variable.
31This rate is a bit larger for new teachers. Between 10 and 15% of them rank Créteil or Versailles as their first

choice across the 8 subjects we consider in our analysis.
32Attractiveness is measured as the ratio of the number of tenured teachers asking to enter a region over the number

of teachers asking to leave the region. This ratio ranges from 15.5 in Rennes to 0.03 in Créteil.
33The most common recruitment exam in France is called the CAPES. Every year, the ministry decides on the

number of teaching positions it opens for the exam. In 2014, 24% of the CAPES positions remained vacant because
of both a lack of applicants and the poor quality of those applying. The shortage of teachers has not improved since.
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Table 1: Descriptive Statistics on Teachers and Regions

Teachers with initial assignment Teachers without initial assignment
(Tenured) (New)

French Math English French Math English
(1) (2) (3) (4) (5) (6)

Panel A. Teachers’ characteristics

% Female 76.1 47.0 85.4 80.3 41.7 80.4
% Maried 48.5 45.0 46.8 41.1 39.4 40.9
% In disadvantaged school 10.4 13.2 4.4 0.0 0.0 0.0
Experience (in years) 7.48 7.23 7.18 2.76 2.24 2.30
% Advanced teaching qualif 7.9 29.1 8.8 16.8 31.7 15.2

Panel B. Characteristics of the region teachers are initially assigned to

Is birth region 8.7 8.6 9.3 - - -
Is Créteil or Versailles 37.7 52.3 35.6 - - -
Is in South of France 5.6 9.3 12.7 - - -
% students in urban area 61.7 67.4 64.0 - - -
% disadvantaged students 52.5 54.0 53.5 - - -
% students in priority educ 26.0 24.5 22.7 - - -
% students private school 15.2 16.3 17.4 - - -
% teacher younger than 30 11.9 13.3 11.3 - - -

Panel C. Characteristics of the region teachers rank first

Distance to init region (km) 2148.7 1316.9 1521.9 - - -
Is birth region 36.5 35.8 40.0 35.8 38.4 39.3
Is in South of France 25.2 25.2 25.4 20.1 18.6 20.0
Is Créteil or Versailles (CV) 2.8 3.3 3.4 14.3 11.9 12.5
% students in urban area 60.2 56.2 51.7 61.9 58.6 59.2
% disadvantaged students 52.8 53.1 53.5 53.3 53.1 53.0
% students in priority educ 20.3 19.9 17.9 21.8 20.6 21.0
% students private school 23.7 22.9 25.8 22.2 21.8 21.7
% teacher younger than 30 6.5 6.4 6.0 8.2 8.1 8.2

Observations 859 605 628 786 958 746

Notes: This table reports descriptive statistics for teachers and regions in three subjects: French, math and
English. Statistics are reported for the sample of teachers we use for the demand estimations. Columns (1) to
(3) report statistics for teachers with an initial assignment (referred to as “tenured” in the text). Columns (4) to
(6) report statistics for teachers without an initial assignment (referred to as “new teachers” in the text). New
teachers have missing values for statistics related to the region of initial assignment. We discard teachers who
submit a joint list with their partner, teachers who are from one of the six regions that are overseas, and teachers
for whom one of the individual characteristics is missing. The last row reports the number of teachers in each
subject. Panels A, B, and C respectively present descriptive statistics on teachers, on the region in which they
are initially assigned, and on the region they rank first.
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teachers across regions. As reported in column (3) of Table A.2, the ratio of the number of teachers

aged more than 50 over the number of teachers aged less than 30 is equal to 1.1 and 1.6 in Créteil

and Versailles. In contrast, the most attractive region of Rennes had 8 times more teachers aged 50

and above than teachers aged 30 and below. In Bordeaux and Toulouse, it was 6.5 and 5.3 times

more.

Several papers have found that teachers tend to make their students progress less during the

first years of their career than when they have more experience (Chetty, Friedman and Rockoff

(2014) Rockoff (2004)). Reducing the unequal distribution of teachers across regions and reducing

the chances to be assigned a disadvantaged region in the first place became one of the objectives

of the French policy makers, who see this as a way to both reduce achivement inequalities between

students and improve the attractiveness of the teaching profession in the longer-run.

6.3 Specifications of the Empirical Analysis

Algorithms. The theoretical section shows that both the SI-CC and SI-DA algorithms can

improve the distributions of teachers in schools. Our counterfactual analysis aims to quantify the

performance of these algorithms but also to benchmark them with two algorithms:

� Benchmark for SI-CC: A version of SI-CC (called “TTC*”) that accounts for teachers types

but relaxes the mechanism features that ensure status-quo improvement. More precisely, this

mechanism differs from SI-CC in two respects: (1) we lift the restrictions on the set of schools

(noted Akt ) that a teacher can point to, and (2) tenured teachers can now start a chain (and

potentially leave their position without being replaced). This benchmark is close to the well-

known mechanism You Request My House-I Get Your Turn (YRMH-IGYT) with existing ten-

ants (Abdulkadiroğlu and Sönmez, 1999, Sönmez and Ünver, 2009) which is strategy-proof,

Pareto-efficient and individually rational for teachers but is not status-quo improving. Intu-

itively, TTC* might therefore be expected to generate more mobility than our mechanisms, but

at the cost of a potentially more unequal distribution.

� Benchmark for SI-DA: A version of SI-DA (called “DA*”) that accounts for teachers types

but relaxes the mechanism features that ensure status-quo improvement.34 More precisely, this

mechanism differs from SI-DA in two respects: (1) we lift the restrictions on schools priorities

(i.e an applicant teacher with a less-preferred type than a status-quo teacher will no longer

be considered as unacceptable by a school), and (2) vacant positions in a region no longer

prioritize new teachers over tenured teachers. In practice, this benchmark is equivalent to the

algorithm currently used by the French ministry of education—called DA*, see Appendix F for a

formal description—with one exception: we replace the schools priorities by those that account

for teachers types. Incorporating teachers types into this mechanism provides an interesting

benchmark that targets (weak) stability, potentially at the cost of efficiency and distributional

objectives.

34We borrow the notation DA* to Combe et al. (2020) who study a modified version of DA which ensures status-quo
improvement for teachers. We kept the same logic for our notation when dealing with TTC-based mechanisms using
TTC*.
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Priorities and Types. We run our different algorithms using as inputs teachers preferences,

their types, and regions priorities over teachers. To illustrate the theory, we define a teacher type as

her experience and we classify teachers into 12 experience bins, where the first bin corresponds to

teachers with 1 or 2 years of experience, the second bin to teachers with 3 to 4 years of experience,

and so on... A large number of teachers belong to the first bin. To more finely distinguish teachers

by experience, we further decompose the first bin by ordering newly tenured teachers above tenured

teachers. To define regions’ rankings over teachers’ types, we start by identifying which regions

would benefit most from receiving more experienced teachers. To do so, we compute teachers

average type in each region (see Figure A.1) and we classify regions into two groups based on

whether their average type is above or below the median of the regions types. The first group

contains all regions whose average type is strictly below the median, i.e younger regions that could

benefit from receiving more experienced teachers. We set the priorities so that these regions rank

types by decreasing levels of experience, i.e the most experienced teachers are always preferred to

the least experienced teachers. The second group contains all regions whose average type is above

the median. These regions rank types by increasing levels of experience. Our ultimate goal when

we set “schools’ preferences”is to ensure that the assignment picked by our algorithms eventually

yield a more equal distribution of teachers across regions. Of course, the way in which we set types

is tailored to one of the main objectives of the French policy makers (see, for instance, Section

6.2). Our goal is to illustrate how our mechanisms perform—and understand the implications of

imposing status-quo improvement—in such a context where the main goal is to achieve a more even

distribution of teachers in terms of experience.

We also assume that all regions find all types acceptable. This means that any teacher is always

preferred to a vacant position.35 Finally, running SI-CC (and its variants) requires an additional

ordering over teachers to determine which chain will be selected.36 For the main results presented

in the paper, we use the true point system of the French ministry and sort teachers by decreasing

level of the maximum points they obtain over all regions. However, we show in an Appendix D

that the performance of the SI-CC mechanism is sometimes sensitive to the ordering chosen. We

report robustness results in which we flip the ordering to rank the teachers by increasing level of

their maximum priority points.

6.4 Structural Estimation of Teachers’ Preferences

Teachers can rank all regions when they submit their preference list and the ministry uses a

modified version of the deferred acceptance algorithm to assign teachers to regions, which means that

it is a dominant strategy for teachers to be truthful. Yet, even under strategy-proof mechanisms, a

number of papers show that truthfulness is a strong assumption (Chen and Sönmez, 2006, Pais and

Pinter, 2008, Rees-Jones, 2018, Chen and Pereyra, 2019, Hassidim, Marciano, Romm and Shorrer,

35This is a natural assumption since, in practice, all teachers are acceptable for all regions. For tie-break, we need
an additional ordering over teachers for the SI-CC, SI-DA, and two benchmark algorithms. We use the tie-breaking
rule used by the French ministry which uses the date of birth of teachers and some extra conditions for the rare cases
with the same date of birth.

36This ordering only applies to new teachers under SI-CC. It applies to all teachers under “TTC*”.
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2017). In our context, French teachers have reasonably accurate information on their acceptance

probabilities in each region, which might encourage some teachers to discard regions where their

chances to be accepted are too low.37 These omissions could introduce a bias in any counterfactual

analysis done using teachers’ reported preferences. Combe, Tercieux and Terrier (2020) previously

rejected truth-telling among French teachers. To avoid this potential bias, instead of using the

reported preferences, we estimate teachers’ preferences using an idenfiying assumption (presented

below) that does not require teachers to be fully truthful.

Model. We estimate teachers’ preferences over regions using the following utility function:38

ut,R = δR + Z ′t,Rβ + εt,R (5)

Teacher t’s utility for region R is a function of region fixed effects δR, teacher-region-specific observ-

ables Zt,R (with coefficients β) and a random shock εt,R which is i.i.d. over t and R and follows a

type-I extreme value distribution, Gumbel(0, 1). The region fixed effect captures region characteris-

tics such as average socio-economic and academic level of students in the region, cultural activities,

housing prices, facilities, etc... We estimate preferences separately for teachers who have an initial

assignment and those who do not. This allows us to include a richer set of variables for the former

group. The vector Zt,R includes dummies specifying if the region is the birth region. For teachers

with an initial assignment, it also includes a dummy for the region in which a teacher is currently

assigned, as well as the distance between the region ranked and the current region of a teacher. Zt,R

also includes interaction terms between teachers and schools characteristics (that are presented in

Panels A and B of Table 1). We apply standard scale and position normalization, setting the scale

parameter of the Gumbel distribution to 1 and the fixed effect of the Paris region to 0.

Identifying assumptions. To avoid the potential bias generated by teachers omitting regions

they consider as unfeasible, we estimate teachers preferences under a weaker “stability assumption”

developped by Fack, Grenet and He (2019) and applied to the teacher market by Combe, Tercieux

and Terrier (2020).39 We start by defining the feasible set of each teacher as the set of regions that

have a cutoff—that is, the lowest priority of the teachers assigned to a region—smaller than his

own score. These are regions a teacher could be assigned to if he was ranking the region first in his

37Cutoffs values for entry in each region are published every year. Combe, Tercieux and Terrier (2020) show that
these cutoffs are relatively persistent over time, so they provide reasonably accurate information to teachers on their
chances to enter each region.

38In the end what teachers primarily care about is the school they obtain within a region, which questions whether
preferences over regions are well-defined objects. Combe, Tercieux and Terrier (2020) show evidence that teachers
preferences seem to be lexicographic, i.e that teachers primarily care about the region in which the school is located
and about a school within that region. The paper also shows that changes in a number of algorithms in the first phase
(the regional assignment) only marginally impact the pool of participants in the second phase (the school assignment)
so that teachers’ assessments of their school assignment probabilities (within a region) should not vary much between
mechanisms. This implies that teachers’ preferences over regions may be relatively insensitive to the mechanism used.

39Combe, Tercieux and Terrier (2020) provide an in-depth discussion of the two alternative identifying assumptions
(truthfulness versus stability), as well as statistical tests in favor of the later. For more references on estimations that
do not require truthtelling, see Akyol and Krishna (2017), Artemov, Che and He (2019), Agarwal and Somaini (2018),
Calsamiglia, Fu and Güell (2020). They mainly focuses on the estimation of the preferences of tenured teachers and
we use the same estimation in our analysis. Here, we provide an additional detailed discussion on the estimation of
the preferences of new teachers.
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rank order list. The key identifying assumption is that, for each teacher, the region obtained is his

most prefered region among all regions that are in his feasible set.40 Hence, we estimate a discrete

choice model with personalized choice sets. Choice probabilities have closed form solutions and we

estimate parameters using maximum likelihood.

Estimation results. Table 2 reports preference estimates for “tenured” teachers (i.e. those

who have an initial assignment) and new teachers who do not have an initial assignment. We run

the estimations in each of the eight subjects separately and report results for Math and French

teachers in the table. The first nine rows report coefficients for a selected set of region fixed

effects. They reveal an interesting difference between the preferences of tenured and new teachers.

While the Créteil and Versailles regions are very unattractive for tenured teachers (as indicated

by the negative coefficient of their fixed effect relative to the region of Paris), these regions are

far more attractive for new teachers, who often see a first position in a disadvantaged school as a

stepping stone for better positions in the future.41 The fact that Créteil and Versailles are more

attractive for new teachers than for tenured teachers surely contributes to the unequal distribution

of teachers denounced by policy makers. Yet, this is not the only explanation for teachers unequal

distribution. The counterfactual analysis we present in the next section shows that the mechanism

used also shapes the distribution of teachers in important ways. The fact that preferences alone

are not driving the unequal distribution is fundamental for our ability to improve both teachers

distribution and teachers welfare.

Fit measures. Our main fit measure considers the top two regions that a teacher has included

in his submitted rank order list (ROL). We then compute the probability of observing this particular

preference ordering in the ROL predicted with our estimations. This fit measure based on relative

ranking (instead of the characteristics of the school ranked first for instance) is particularly adapted

to our environment in which some teachers might not rank regions which they consider as unfeasi-

ble.42 In addition to the overall fit quality, we also compute fit measures for the teachers who come

from the two least attractive regions of Creteil and Versailles (CV). Looking at fit quality for this

sub-group of teachers is particularly important because teachers from CV represent a large share

of the teachers who submit a mobility request every year and they are more likely to stay in their

position than teachers from other regions. These two facts could affect the preference estimation

for these teachers under our stability assumption. Across the 8 subjects, our fit measures range

from 0.62 to 0.72 for tenured teachers and from 0.56 to 0.69 for new teachers, a fit quality which

compares favoraby to the one obtained by Fack, Grenet and He (2019) (between 0.553 and 0.615).

Simulations. We use our estimates of teachers preferences to draw their rank ordered list

1,000 times using Equation 5. After having drawn preferences, we keep the entire set of regions

40This assumption is theoretically founded: Artemov, Che and He (2019) show that, in a large market environment,
any (regular) equilibrium outcome of DA* must have this property.

41Teachers who stay in a disadvantaged school for at least 5 years benefit from additional priority when they ask
to change region or school.

42When teachers skip regions perceived as unfeasible, the first region they report might not be their preferred
region—and indeed, the tests we perform reject truth-telling—but conditional on ranking schools, the order in which
a teacher ranks the schools might correspond to a teacher true preferences. This is why we prefer to use a fit measure
that is based on relative ranking than on the characteristics of the school ranked first for instance.
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without imposing any truncation.43 In each of the 8 subjects and for each preference draw, we use

these simulated preferences and the priorities from our data to run the mechanisms. The results

reported in next section correspond to averages over the 1,000 preference draws, aggregated over

the 8 subjects.

43The full set of regions contains the initial assignment for tenured teachers but, obviously, not for new ones. This
implicit assumption that new teachers do not have an outside option is in line with the policy of the ministry. Teachers
are indeed not required to rank all regions when they submit their lists, but the ministry fills the incomplete lists of
new teachers to make sure that all of them get an assignment—even those who ranked few regions.
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6.5 Relative Perfomance of the SI-DA and SI-CC mechanisms

We start by discussing the relative performance of SI-CC and SI-DA. While the former is SI

teacher optimal—i.e. efficient for teachers among status-quo improving mechanisms—SI-DA is

SI-stable—i.e. stable among status-quo improving mechanisms. Comparing the performance of

these two mechanisms that target constrained-efficiency and constrained-stability is important. The

mechanism that is currently used by the French ministry of education is teacher-SI stable, i.e it is

stable if one assumes that a teacher does not feel justified envy for another teacher who is initially

matched to a school. This suggests that policy makers consider stability as an important feature of

assignments. Yet, it is well known that stability often comes at the cost of efficiency. We investigate

in this section whether a similar trade-off exists between SI-DA and SI-CC.

Validation of Assumption 1. We show in Section 4 that the SI-DA mechanism is SI-stable

under the assumption that there are at least as many new teachers as empty seats in a market.

Table A.1 shows that this assumption holds in each of the 8 subjects we consider. This means that

the matching obtained under SI-DA is status-quo improving compared to the initial matching.

Distributions of teacher experience. We start by comparing, for different regions, the cu-

mulative distribution of teachers’ experience under SI-CC and SI-DA. We classify teachers into 12

experience bins.44 Figure 1 shows the cumulative distribution of teachers’ experience in the three

youngest regions of France (Amiens, Versailles, and Créteil). These regions’ teachers represent 78%

of the disadvantaged regions teachers.45 SI-DA slightly outperforms SI-CC in these regions, i.e. it

assigns fewer inexperienced teachers. 1,040 teachers with one or two years of experience are assigned

to one of the three regions under SI-DA versus 1,371 under SI-CC. SI-DA also improves the expe-

rience distribution in the three oldest regions by assigning them a larger number of inexperienced

teachers.

Stability-efficiency trade-off. However, SI-DA’s better distributional performance comes

at a large cost in terms of teacher mobility. Table 3 shows that only 3,919 teachers obtain a

new assignment under SI-DA, compared to 5,510 under SI-CC. The lack of mobility is particularly

striking for tenured teachers. Only 7 of them move from their initial position, compared to 367 under

SI-CC. The very low level of mobility under SI-DA is due to the strength of the requirement which

jointly imposes status-quo improvement and stability. Indeed, status-quo improvement implies that

many tenured teachers from unattractive regions will be unable to leave the region given that

the strong requirement that the distribution of teachers’ experience in these regions must increase

(together with the low demand by tenured teachers for these regions). Given this, any teacher

entering a region almost automatically generates justified envy from such a tenured teacher stuck in

an unattractive region (in particular, since their relative low experience makes them high-priority for

the old regions like Bordeaux). The stability requirement prevents such assignment from happening

and, thus, blocks mobility.

44To construct the cumulative distribution of teacher experience in each region, we consider vacant positions as the
least preferred type (as shown on the right of the x-axis in Figure 1).

45See Figure A.1 for the types distribution in regions.
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This simple example and the results from our counterfactual analysis show that, under DA-based

mechanisms that require stability, imposing a status-quo improvement can have the unintended

consequence of dramatically blocking mobility. Said differently, prioritizing stability and status-quo

improvement (under SI-DA) over efficiency (under SI-CC) entails a very large efficiency cost for

teachers in our context.

Concerning stability measures, reported in Panel D of Table 3, SI-DA is, by construction SI

stable contrary to SI-CC. The latter leads to 8,138 teachers being involved in at least one blocking

pair not authorized in the definition of SI stability that we introduced in Section 4. If one considers

all the possible blocking pairs, remember that neither SI-DA nor SI-CC are GS stable. SI-CC has

8,202 teachers involved in at least one blocking pair compared to 8,436 teachers under SI-DA. This

reduction can be explained by the important efficiency gains that SI-CC has compared to SI-DA.

Since much more tenured teachers move under SI-CC, the number of blocking pairs caused by

teachers staying at their initial position decreases. The small differences between the three stability

notions under SI-CC mean that the vast majority of blocking pairs are caused by less preferred

teachers being assigned to a new region despite more preferred teachers requesting that region. For

SI-DA, only 2,070 teachers are blocking due to this last reason while the remaining 6,366 block

because of a tenured teacher staying at his initial region.

Fact 1 Despite a slightly better distributional performance and a SI stable assignment, SI-DA has

a tremendous mobility cost compared to SI-CC. Only 7 tenured teachers move from their initial

position under SI-DA, compared to 367 under SI-CC. Imposing the SI constraint to DA-based mech-

anisms comes at a large efficiency cost in terms of mobility.

6.6 Benefits and costs of distributional constraints

We now turn to a discussion of the benefits and costs of adding distributional constraints to

assignment mechanisms. To do so, we compare allocations under SI-CC and under “TTC*”, the

benchmark mechanism which uses the same priorities as SI-CC (incorporating teacher types) but

is not status-quo improving. We also compare allocations under SI-DA and under “DA*”, athough

we devote less time to this comparison due to the relatively poor performance of SI-DA identified

in the previous section.

Better distribution of teacher experience. Figure 1 shows the cumulative distribution

of teachers’ experience in the three youngest regions of France.46 Every year a very large number

of teachers with a few years of experience leave Créteil, Versailles, and Amiens. They are replaced

by an equally large number of inexperienced teachers. That structural imbalance means that the

status-quo improvement requirement is unlikely to be respected by mechanisms such as DA* or

TTC*. Figure 1 confirms this.

Fact 2 In the three youngest regions of France, the SI-CC mechanism produces a distribution of

teachers’ experience which first-order stochastically dominates the distribution under TTC*. SI-CC

46See Figure A.1 for the types distribution in regions.
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assigns only 1,371 teachers with one or two years of experience to the three youngest regions, while

TTC* assigns 1,844 of them to these three regions. On the contrary, SI-DA produces a distribution

of teachers’ experience which does not first-order stochastically dominates the distribution under

DA*.

The distributions under the benchmark mechanisms need not dominate the initial distribution

as they do not impose status-quo improvement. Indeed, the cumulative distribution of teachers

experience under DA* and TTC* do not dominate the initial distribution.4748

Interestingly, the distributional benefits of status-quo improvement we find for SI-CC do not hold

for SI-DA. In the three youngest regions of France, the SI-DA mechanism produces a distribution of

teachers’ experience which does not first-order stochastically dominates the distribution under DA*.

SI-DA also assigns more teachers with one or two years of experience (1,039) to the three youngest

regions than DA* (846). This finding confirms that imposing status-quo improvement to DA-based

mechanisms can backfire. In general, one may expect that an increase in mobility upon a status-quo

improving assignment can only be done at the expense of the distribution of teachers’ experience

(this is indeed what we observe when comparing SI-CC and TTC*). However, when mobility is

extremely low, as under SI-DA, this trade-off may disappear. In essence, SI-DA just assigns new

teachers to vacant positions and leaves all tenured teachers at their initial positions (only 7 of

them move from their initial positions). The improvement upon the initial distribution in terms

of teachers’ distributions is thus minimal among tenured teachers and further movement may help

improving these distributions in many regions. Indeed, even though DA* does not impose status-

quo improvement, the higher mobility it creates improves the distribution of teachers’ experience

in these three youngest regions in France. Finally, note that the two DA-based mecanisms assign

fewer inexperienced teachers to Créteil, Versailles, and Amiens than the SI-CC-based mechanisms

(1,039 for SI-DA and 846 for DA*). Again, this is due to the severe lack of outgoing mobility from

these regions.

To complement the results for the three youngest regions of France, we also report the results

for the three oldest regions of France. The objective is now to assign younger teachers.

Fact 3 In the three oldest regions of France, the distribution under SI-CC stochastically dominates

the one under TTC* (Figure 1). SI-CC assigns 191 teachers with one or two years of experience to

these regions, while SI-CC only assigns 96 of them. On the contrary, DA* produces a distribution

of teachers’ experience which first-order stochastically dominates the distribution under SI-DA.

Two channels, that work in opposite directions, could a priori explain SI-CC’s better performance

compared to TTC*. On one hand, for tenured teachers, SI-CC prevents more teachers from moving

47Figure A.4 shows that the distributional performance of TTC* depends on the ordering used to start chains.
When the teachers starting a chain are selected randomly or by decreasing order of their maximal priority points, the
distribution of teacher experience under the benchmark SI-CC mechanism does not dominates the initial distribution.
It does when the teachers are selected by increasing order of their maximal priority points.

48Appendix Figures A.2 and A.3 show that these results persist for TTC* when we consider the entire group of
regions whose average experience is below the median.
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away from Créteil, which limits the possibility of assigning these (relatively inexperienced) teachers

to attractive regions. On the other hand, we might expect SI-CC to prevent new teachers from

replacing tenured teachers in Créteil (due to new teachers’ low experience) which would mechanically

redirect these new teachers to attractive regions. Our results confirm that the second channel

dominates the first one in terms of magnitude. Indeed, by preventing tenured teachers to move

away from Créteil to attractive regions, SI-CC lowers competition for vacant seats in these attractive

regions. New teachers, who prefer these regions to Créteil, are able to get assigned to these vacant

seats. (As we discuss below, the distribution of ranks of new teachers is more favorable under SI-CC

rather than under TTC*.)

A salient fact emerges when comparing distributional performances in the youngest and oldest

regions: In the old regions, all mechanisms easily produce a distribution of teacher experience that

dominates the initial distribution, while in young regions only mechanisms that respect status-quo

improvement do. This finding reflects the very different levels of attractiveness of these regions. Old

regions receive numerous applications from teachers, which makes it easier to improve the experi-

ence distribution. This is much more difficult in young regions that receive very few applications,

especially from experienced teachers. Recall that the ratio of incoming over exiting requests is equal

to 15 in Rennes but 0.03 in Créteil. This large difference in number of applications also explains

why the cumulative distributions of teachers experience are very compressed in young regions, but

not in old ones. Due to the limited room for improvement in disadvantaged regions, most mech-

anisms have a similar capped performance. Last, the performance of DA* is very good for the

oldest regions since it produces a distribution of teachers’ experience which dominates those of all

the other mechanisms. For these regions, the mechanism gives priority to youngest teachers among

those applying. Since these regions are over-demanded, the regions accepts the youngest teachers

and status-quo improvement for these regions is fulfilled. Note that, under SI-DA, many young

(tenured) teachers cannot apply to these regions since they are stuck in the youngest regions such

as Créteil and so real demand for these oldest regions under SI-DA is lower. This high performance

of DA* in the oldest regions is achieved by accepting tenured teachers from other regions at the

expense of these other regions. As we can see in Figure 1, DA* violates status-quo improvement in

the three youngest regions.

Lower inequalities between regions. By ensuring stochastic dominance of teachers types,

the status-quo improvement condition makes sure that regions are not harmed by the reallocation of

teachers. Old regions become younger, and young regions become older, hence reducing the initial

differences in teachers experience between regions. While the previous paragraph discussed the

distributional performance of the mechanisms for the three least and most experienced regions, we

now consider performance across all regions. Figure 2 plots, for each region, the change in tenured

teacher experience (proxied by the average type) between SI-CC and the initial allocation (top left

figure) and between SI-DA and the initial allocation (bottom left figure). Regions are ordered, along

the x-axis, by average experience of their teachers at the initial allocation, so that all regions on

the left are inexperienced regions that need to receive more experienced teachers.
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Figure 1: Cumulative Distribution of Teacher Experience

Three Youngest Regions Three Oldest Regions

Notes: This Figure shows the cumulative distribution of teachers experience. The left panel reports the distribution
in the three youngest regions of France (Amiens, Versailles, and Créteil), and the right panel the distribution in the
three oldest regions of France (Bordeaux, Rennes, and Lyon). The vertical axis reports the 12 experience bins of
teachers, ordered from most experienced to least experienced (left panel) and from least experienced to most
experienced (right panel). The thirteenth bin corresponds to the vacant positions (the empty type). The
mechanisms that are status-quo improving are plotted in red. Those that do not are in grey. The thick black line
corresponds to the cumulative distribution of teachers’ types at the initial assignment.

The left panel of Figure 2 shows that, compared to the initial allocation, SI-CC increases the

average experience of tenured teachers in the young regions and reduces the average experience of

tenured teachers in the relatively older regions. By reducing the experience gap between young

and old regions, SI-CC effectively lowers existing inequalities between regions. The right panel of

Figure 2 shows that SI-CC does not only reduce inequalities compared to the initial allocation, it

also reduces the experience gap compared to TTC*.49 As discussed when comparing SI-DA and

its benchmark DA*, the same may not hold for DA-based mechanisms. Indeed, the extra mobility

created by relaxing the status-quo constraints may generate improvements in the distributions of

teachers’ experience. In Figure A.5 we observe that SI-DA does not reduce the experience gap

between young and old regions compared to DA*.

In contrast, the bottom right panel of Figure 2 brings additional evidence on the relatively poor

distributional performance of SI-DA, compared to its benchmark mechanism that is not status-quo

improving. SI-DA fails to reduce the average experience of teachers in the old regions compared to

DA*.

Fact 4 SI-CC reduces the large gap in teachers experience that exists at the initial allocation be-

49We reach similar (if not better) conclusions regarding SI-CC’s better performance than its benchmark TTC*
when considering not only tenured teachers but also new ones (See Figure A.5). Note, however, that including new
teachers in the experience distribution complicates slightly the comparison between the initial allocation and any
other allocation. This is because, in each region, the initial experience distribution can only be computed on tenured
teachers– as new teachers are not assigned any region before the matching starts. The difference in the sample of
teachers considered–tenured only for the initial allocation versus tenured plus new teachers for any other allocation–
yields a mechanical drop in teachers average experience when comparing the final allocation under SI-CC (for instance)
to the initial allocation.
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tween young disadvantaged regions and older regions. SI-CC also reduces the gap compared to its

benchmark mechanism TTC*. In contrast, SI-DA slightly reduces the gap that exists at the initial

allocation, DA* further reduces the gap.
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Limited trade-off between teacher distribution and teacher welfare. Next, we investi-

gate whether the better distributional performance of SI-CC comes at the cost of a poorer welfare

for teachers, as measured by the number of teachers who obtain a new region and the rank of the

region teachers obtain. Table 3 shows that the number of teachers who obtain a new assignment is

larger under the benchmark mechanisms that are not status-quo improving their counterparts (SI-

CC and SI-DA). Under SI-CC 1,598 tenured teachers move again 2,470 under TTC*, a difference

of 872 teachers. For DA-based mechanisms, the difference is much higher since 1,260 additional

tenured teachers move under DA* compared to SI-DA.

The cost in terms of teacher mobility is larger in the three youngest region (Créteil, Versailles,

and Amiens, CVA for short) than in the three oldest regions (Rennes, Bordeaux, and Lyon). In

CVA, satisfied mobility requests are significantly larger under TTC* (1,018) than under SI-CC (367).

A low mobility for teachers in young and unattractive regions is not surprising as the status-quo

improvement condition is imposing relatively more constraints for these regions—that receive very

few applications to enter—than for older attractive regions. In the former, fewer teachers manage

to leave with status-quo improving mechanisms as there are very few candidates that have a large

enough experience to replace them.

Differences between tenured and new teachers. The differences we observe between

attractive and unattractive regions might explain an interesting finding: despite a larger movement

under TTC*, the rank distribution of the region that new teachers obtain under this mechanism

is dominated by the distribution under SI-CC (see Panel C of Table 3). It confirms our prior

explanations when comparing the mechanisms with their respective benchmarks.

Fact 5 The distribution of ranks that tenured teachers obtain under the benchmark mechanisms that

are not status-quo improving dominate the ones under SI-CC. The opposite holds for new teachers.

On average, new teachers are assigned their 8.4th rank under SI-CC and their 10.2th rank under

TTC*. This is because a much larger number of tenured teachers leave the young regions of Amiens,

Créteil and Versailles under TTC* (1,018) than under SI-CC (367). These exiting teachers have

to be replaced, and new teachers are the most likely substitutes. This is because very few tenured

teachers ask to enter young regions and because, under TTC*, new teachers can replace tenured

teachers in young regions, even if they have a lower experience. In practice, we see that 1,415 new

teachers are assigned to Amiens, Créteil, or Versailles under TTC* versus 970 under SI-CC. The

large share of new teachers being assigned unattractive regions under TTC* explains why these

teachers are assigned lower ranked regions than under SI-CC.50

Effects on stability measures. Last, we investigate whether imposing the status-quo im-

provement requirement has an impact on the number of blocking pairs. For DA-typed mechanisms,

50Our preference estimates reveal that new teachers dislike unattractive regions less than tenured teachers. Yet,
only 11.9% of the math teachers rank Créteil or Versailles as their first choice (and 14.3% of French teachers). That
mild preference for unattractive regions is not large enough to justify that assigning a large share of the new teachers
to these two regions will improve the ranking of the school they obtain.
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imposing the status-quo improvement requirement can only create more blocking pairs since it for-

bids certain teachers to move from their initial position and gives a top priority to new teachers

over empty slots. This is indeed what we observe since SI-DA has 442 more teachers involved in

at least one blocking pair (in the sense of GS stability) compared to its benchmark. The latter

being teacher-SI stable, the only blocking pairs it has are caused by teachers staying at their initial

position. In addition, SI-DA has 2,070 teachers blocking because of an empty slot.

For SI-CC, the opposite happens. Indeed, since the latter and its benchmark do not impose

any stability condition, the additional mobility created by relaxing the status-quo improvement

constraint is done at the further expense of stability. However, this increase is limited since TTC*

has only 251 additional teachers involved in a blocking pair compared to SI-CC. The small differences

between the three stability notions show that both mechanisms blocking pairs are mainly driven by

their high mobility rates which imply that less preferred teachers are assigned to a new region at

the expense of more preferred ones who also requested that region.
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We end this empirical section by discussing the efficiency-equity trade-off and the respective

role played by teachers preferences and mechanisms in it. Our estimations of teachers preferences

reveal that, unlike tenured teachers who dislike unattractive regions a lot, new teachers tend to

have a preference for these regions. This raises a central question: Is the unbalanced distribution

of teachers between regions primarily driven by teachers preferences or by the mechanism used? If

preferences explain the distribution, would there still be room for 2-sided improvements by changing

mechanism? For instance, in the extreme situation where all new teachers prefer Créteil and all

tenured teachers prefer the attractive regions of Toulouse and Bordeaux, any equity-improving

reassignment would hurt some teachers, bringing back the traditional trade-off between efficiency

and equality. Our results show a different picture: our mechanisms can simultaneously improve

on three dimensions: the distribution of teachers between regions, the welfare of teachers and the

welfare of regions.
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Cechlárová, Kataŕına, Tamás Fleiner, David F. Manlove, Iain McBride, and Eva Potpinková,
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Appendix A Omitted Result and Proofs

Proposition 6 Let ψ be a status-quo improving and Pareto efficient mechanism which selects a

Pareto efficient matching other than SI teacher optimal whenever such a matching exists. Then, ψ

is not strategy-proof.

Proof: On the contrary suppose ψ is strategy-proof. Let S = {s1, s2, s3}, T = {t1, t2, t3}, ωs1 =

{t1}, ωs2 = {t2}, ωs3 = {t3} and qs1 = qs2 = qs3 = 1. Let τ(t3) .s1 τ(t2) .s1 τ(t1) .s1 θ∅, τ(t1) .s2

τ(t3) .s2 τ(t2) .s2 θ∅ and τ(t2) .s3 τ(t1) .s2 τ(t3) .s3 θ∅, s3 Pt1 s2Pt1 s1Pt1 ∅, s1 Pt2 s3Pt2 s2Pt2 ∅, and

s2 Pt3 s1Pt3 s3Pt3 ∅.

There exists a unique SI teacher optimal matching, denoted by ν, in which each teacher is

assigned to her top choice. In any other status-quo improving Pareto efficient matching at most

one teacher is assigned to her top choice and at least one teacher is assigned to her second choice.

Suppose ψ selects Pareto efficient and status-quo improving matching µ in which t1 is assigned to

her second choice s2. If t1 reports only s3 and s1 acceptable, then ν is the unique SI teacher optimal

matching and ψ assigns t1 to s1, t2 to s3 and t3 to s2. In this updated market, if t2 reports only

s1 and s2 acceptable, then ν is the unique SI teacher optimal matching and ψ assigns t1 to s3, t2

to s2 and t3 to s1. Finally, in this updated market, if t3 reports only s2 and s3 acceptable, then ν

is the Pareto efficient and status-quo improving matching and ψ needs to select it. However, this

contradicts with strategy-proofness of ψ, i.e., it is manipulated by t3.

We can show the same result for any Pareto efficient and status-quo improving matching in

which at least one teacher is assigned to her second choice under the original market. �

Proof of Proposition 1: On the contrary, suppose µ is SI teacher optimal and it is Pareto

dominated by ν. Since µ status-quo improves ω so does ν. Hence, ν is status-quo improving. In

addition, since ν Pareto-dominates µ, all teachers weakly prefer ν to µ. Because, ν 6= µ and teach-

ers’ preferences are strict, some teachers strictly prefers ν to µ. However, this violates SI teacher

optimality of µ. This is a contradiction. �

Proof of Theorem 1: SI teacher optimality: Recall that the requirement of status-quo

improvement is embedded in the definition of SI teacher optimality. Consider an arbitrary market

P . Let µ̂ be the outcome of SI-CC under this market. We proceed in two parts.

1. We first show that µ̂ is status-quo improving.

First, consider teachers. Under SI-CC, each school s points to all teachers in ωs one by one.

When a teacher t ∈ ωs is pointed by s in some Step k, then s ∈ Akt and she can always form a

one-school cycle (s, t) whenever she points to s. Similarly, any new teacher t ∈ N can form a

cycle with ∅ in any step of SI-CC. Hence, µ̂t Rt ωt for all t ∈ T .

Next, consider schools. The tail of any executed chain is a new teacher. Hence, if in some

step of SI-CC, a school s is sending out a teacher then it is simultaneously acquiring another
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teacher; as a result |µ̂s| ≥ |ωs|. In any step k of SI-CC, when we consider the set of remaining

status-quo employees and teachers assigned in the first k − 1 steps, because of the positive

balance requirement in Improvement Condition 1, the previous observation and the fact that

a teacher cannot be assigned a school if he is unacceptable, each school s is weakly better off

compared to ωs. Hence, µ̂s %s ωs for all s ∈ S.

We showed that µ̂ is status-quo improving.

2. Before proving µ̂ cannot be Pareto dominated by another status-quo improving matching for

teachers, we first state a claim that will be used in the proof.

Claim 1 : For a school s, suppose step K is the final step in which school s is assigned a teacher

in an executed chain such that s is the head of this chain. Let the set of remaining status-quo

employees of s at the end of step K be denoted as ωKs and all assigned teachers to s from

the beginning of step 1 until the end of step K as µKs . Let ν be a matching such that all

teachers assigned in the first K steps of SI-CC are assigned to their match under SI-CC and

|νs| < |ωKs ∪ µKs |. Then, ν is not a status-quo improving matching.

Proof of Claim 1 : Suppose teacher t is assigned to s in this chain in step K and t is pointing

s under Condition 2. First observe that µKs ⊆ νs. Also notice that, if ωKs = ∅, then |νs| =

|ωKs ∪ µKs |. Hence, ωKs 6= ∅. Since Condition 1 does not hold for school s via teacher t, there

exists some type θ such that τ(tKs ) Ds θ .s τ(t) and∑
θ′ Ds θ

bθ
′
s ≤ 0

where bθ
′
s is the current balance of type θ′ at step K of SI-CC.51 That is, the number of teachers

with weakly better type than θ in µKs ∪ ωKs cannot be more than what it is in ωs. Moreover,

all teachers in ωKs have weakly better type than θ. Hence, |νs| < |ωKs ∪ µKs | and µKs ⊆ νs

imply that the number of teachers with weakly better type than θ in νs is strictly less than this

number in ωs. Therefore, νs is not preferred to ωs by school s. �

Next, we show that µ̂ cannot be Pareto dominated by another status-quo improving matching

for teachers.

On the contrary, suppose there exists a status-quo improving matching ν that Pareto dominates

µ̂ for teachers. By considering the teachers assigned in each step of SI-CC inductively, we show

that such a matching cannot exist, in particular we should have ν = µ̂.

We denote the set of teachers assigned in step k of SI-CC under market P with Tk and union

of these sets up to step k as T̄k ≡ ∪kk′=1Tk′ .

Step 1: Each teacher t ∈ T1 is assigned in µ̂t to the best school in A1
t . If νtPtµ̂t for some t ∈ T1,

then νt 6∈ A1
t . Thus, for school s ≡ νt both improvement conditions are violated via teacher

t. Since this is Step 1, the current matching satisfies µ = ∅, and hence, the current balances

51Actually, sum of balances
∑
θ′ Ds θ

bθ
′
s never becomes negative in the mechanism for any type θ, as the sum starts

at zero at the beginning of Step 1, and whenever it is zero, we do not admit a teacher with a type worse than θ by
sending out a teacher with a type better than θ by Improvement Condition 1.
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bθs = 0 for all schools s and types θ. The violation of Condition 1 implies that

� if there exists a teacher t1s ∈ ωs that s is pointing, then it has type τ(t1s) .s τ(t): thus, t has

a worse type than the worst type status-quo employees of this school; and

� if such a teacher does not exist, then ωs = ∅.
Thus, in either case, νs \ {t} %s ωs and |νs| > |ωs| as otherwise ν is not status-quo improving

for s by FOSD preferences. The violation of Condition 2 for s via t, on the other hand, implies

one of the following conditions to hold:

� t is not acceptable for s: in this case status-quo improvement for s under ν would be

violated; or

� there are no new teachers: in this case, as we showed |νs| > |ωs| implies that there exists

some schools s′ such that |ωs′ | > |νs′ |; as a result in this case status-quo improvement for

s under ν would be violated by FOSD preferences; or

� qs = |ωs|: in this case, as we showed |νs| > |ωs|, |νs| > qs contradicting the feasibility of ν

as matching.

Then, Condition 2 cannot be violated as none of these conditions hold, which is a contradiction.

Hence, such a teacher t cannot exist with νtPtµ̂t. Since νtRtµ̂t for all t then for all t ∈ T1, νt = µ̂t.

Inductive assumption: For any k > 1, Assume that for all k′ < k and t ∈ Tk′ , νt = µ̂t. We show

that the same holds for teachers in Tk:

Step k: Each teacher t ∈ Tk is assigned in µ̂t to the best school in Akt . If νtPtµ̂t for some t ∈ Tk,
then νt 6∈ Akt . Thus, for school s ≡ νt both improvement conditions are violated via teacher

t. Noting µ is the current matching determined until the end of step k − 1, the violation of

Condition 1 implies that

� if there exists a teacher tks ∈ ωs that s is pointing, then it has type τ(tks) .s τ(t) and there

exists an intermediate type θ such that τ(tks) Ds θ .s τ(t) with∑
θ′ Ds θ

|µθ′s | − |{t′ ∈ ωs : µt′ 6= ∅}θ
′ | ≤ 0.

By the inductive assumption for the current matching µt′ = νt′ for all t′ assigned until this

step (i.e., those in T̄k−1), and hence we also have∑
θ′ Ds θ

∣∣∣(νs ∩ T̄k−1

)θ′∣∣∣− ∣∣∣(ωs ∩ T̄k−1

)θ′∣∣∣ ≤ 0.

Teacher t has a worse type than the remaining worst-type status-quo employee of this school

i.e., those in ωs \ T̄k−1. Thus, in ν replacing any of these employees with t would violate

status-quo improvement for s in ν, as this would have led to an FOSD violation for type θ:∑
θ′ Ds θ

∣∣∣νθ′s ∣∣∣− ∣∣∣ωθ′s ∣∣∣ < 0.

Then t does not replace any of the remaining status-quo employees, but she is an additional
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teacher acquired: |νs \ T̄k−1| > |ωs \ T̄k−1|.
� if such a teacher does not exist, then ωs \ T̄k−1 = ∅, and hence, as t ∈ νs \ T̄k−1 we have

|νs \ T̄k−1| > |ωs \ T̄k−1|.
Observe that in the algorithm at each step we make sure that each school acquires at least as

many teachers as it sends out and hence, for the current matching |µs| ≥ |ωs ∩ T̄k−1|. Since

µs = νs ∩ T̄k−1 by the inductive assumption, we have |νs ∩ T̄k−1| ≥ |ωs ∩ T̄k−1|. Therefore, as

we also showed that |νs \ T̄k−1| > |ωs \ T̄k−1| above, we obtain |νs| > |ωs|.
The violation of Condition 2 for s via t, on the other hand, implies one of the following conditions

to hold:

� t is not acceptable for s: in this case status-quo improvement for s under ν would be

violated; or

� there are no remaining new teachers: Claim 1 implies that there exists at least one school

s′ such that νs′ does not status-quo improve upon ωs′ ; or

� qs = |ωs|: in this case, as we showed |νs| > |ωs|, |νs| > qs contradicting the feasibility of ν

as matching.

Then, Condition 2 cannot be violated as none of these conditions hold, which is a contradiction.

Hence, such a teacher t ∈ Tk with νtPtµ̂t cannot exist.

Since νtRtµ̂t for all t then for all t ∈ Tk, νt = µ̂t, completing the induction and showing that

ν = µ̂.

Strategy-proofness: We state two claims that we will use in the proof.

Claim 2 : Suppose teacher t is assigned in step K of SI-CC. For any k < K, then Ak+1
t ⊆ Akt .

Proof of Claim 2 : Let s 6∈ Akt . We will show that s 6∈ Ak+1
t . We consider two possible cases.

Case 1: s does not have an unfilled seat at step k: First notice that, if there is no remaining

status-quo employee of s in step k, then it should have been removed in an earlier step of SI-CC.

Then, there exists some type θ such that τ(tks) Ds θ .s τ(t) with∑
θ′ Ds θ

bθ
′
s ≤ 0

where bθ
′
s is the current balance of type θ′ at step k of SI-CC. If school s is part of the executed

cycle or chain in step k, then the teacher assigned to s has a type weakly better than type θ under

.s and similarly, the teacher leaving school s, namely, tks also has a type weakly better than type θ.

Hence, after executing the cycle in step k relation above still holds. Moreover, s cannot send out a

status-quo employee without getting a new one by the definition of SI-CC. Similarly, s cannot get

a teacher without sending a status-quo employee. If school s is not part of the executed cycle or

chain in step k, equation above still holds. In either case, s /∈ Ak+1
t .

Case 2: s has an unfilled seat at step k: Either t is unacceptable for s or t is acceptable for s

but there does not exist a remaining new teacher in step k. If the former case holds, then s /∈ Ak+1
t

by definition.
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If the latter case holds, then either s does not have remaining status-quo employee or there

exists some type θ such that τ(tks) Ds θ .s τ(t) and∑
θ′ Ds θ

bθ
′
s ≤ 0

where bθ
′
s is the current balance of type θ′ at step k of SI-CC. If the former subcase holds, then

neither Condition 1 nor Condition 2 holds for t in step k + 1. For the later condition, we refer to

Case 1 above. Hence, s /∈ Ak+1
t . �

Claim 3 : Consider a step k of SI-CC mechanism such that there exists a path of schools and

teachers (s1, t1, s2, t2, . . . , s`, t`) in which school s`′ points to teacher t`′ and teacher t`′−1 points to

school s`′ for each `′ < ` and s1 ∈ Akt` . If none of the schools in this path are assigned a teacher in

this step, the same path forms in step k + 1 and s1 ∈ Ak+1
t`

.

Proof of Claim 3 : As no teacher is assigned to the schools of the path in step k, the teachers

in the path remain in the step k + 1. Since t`′ ≡ tks`′ is the highest priority remaining status-quo

employee in step k of school s`′ , she continues to be so in step k + 1, thus, school s`′ points to t`′

in step k+ 1. No other status quo employee of these schools is assigned to any other school in step

k, either, because the assignment of status-quo employees requires the school pointing to them and

each school points to at most one teacher in this step. Thus, as Condition 1 or Condition 2 holds for

each school s`′ via teacher t`′−1 (in modulo `, thus t0 ≡ t`) in step k, the same condition continues

to hold in step k + 1 via the same teacher. Hence, s`′ ∈ Ak+1
t`′−1

for each `′. Since Ak+1
t`′−1

⊆ Akt`′−1

by Claim 2, and s`′ is the favorite school of teacher t`′−1 in the opportunity set in step k, we still

have s`′ as the favorite school of teacher t`′−1 in step k+ 1 and she continues to point to s`′ in Step

k + 1. �

We are ready to finish the proof for the strategy-proofness of SI-CC. Recall that we denote the

set of teachers assigned in step k of SI-CC with Tk. First, notice that a teacher t′ cannot change

the schools in A1
t′ by misreporting her preferences since A1

t′ does not depend on the submitted

preferences. Moreover, by Claim 2, {Akt }, the opportunity sets for teacher t, weakly shrink in

through out SI-CC. Hence, a teacher t cannot be assigned to a school s /∈ A1
t under SI-CC. We first

consider the teachers in T1. Each t ∈ T1 is assigned to her best choice in A1
t . Hence, any teacher

t ∈ T1 cannot benefit from misreporting her preferences.

Next, we consider a teacher t ∈ T2. As explained above, teacher t cannot be assigned to school

s /∈ A1
t under SI-CC. Teacher t ∈ T2 is assigned to best school in A2

t when she submits her true

preferences. We denote the best school in A2
t according to Pt with s′. By Claim 2, A2

t ⊆ A1
t .

Hence, if t ∈ T2 can benefit from misreporting her preferences, then she is assigned to some school

s ∈ A1
t \ A2

t . If A1
t ≡ A2

t , then t cannot benefit from misreporting her preferences. Suppose

A1
t \ A2

t 6= ∅. We will show that t cannot be assigned to a school s ∈ A1
t \ A2

t such that s Pts
′ by

misreporting. Particularly, we show t cannot prevent the cycle or chain executed in step 1 without

hurting herself.
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First notice that, if t forms a cycle in step 1 by misreporting and pointing to some school s′′ ∈ A1
t ,

then by Claim 3, s′′ ∈ A2
t and the path leading to t in this cycle starting with school s′′ forms again

when she submits Pt, which does not match her in step 1. Hence, any such school s′′ cannot be

preferred to s′, i.e., t’s assignment under truthtelling.

If a chain is executed in step 1, teacher t cannot be a part of that chain by misreporting and

pointing some other school in A1
t . This follows from the fact that the executed chain starts with a

specific new teacher and a teacher t̄, who is pointed by her status-quo school s̄, can only be added

to the executed chain if a previously included teacher points to s̄, independent of t̄’s preference.

Teacher t can prevent the executed chain by only forming a cycle by misreporting. However, as

explained above, under such a cycle t will be assigned to a school weakly worse than s′.

Moreover, with a similar reasoning to a chain, teacher t cannot affect the executed cycles in

step 1 by submitting a different preference without being matched in step 1 in a new cycle (and

therefore, making her weakly worse off as we showed above).

By using similar arguments, we can show that any teacher in Tk where k > 2 cannot benefit

from misreporting her preferences. �

Proof of Proposition 2: We first show the existence of Gale-Shapley stable matching.

Consider a market P . We construct a strict rank order list, �̂s, for each school s over the teachers

as follows: for any t, t′ ∈ T

� if τ(t) .s τ(t′) then t�̂st′;
� if τ(t) = τ(t′), then the relative order between t and t′ is determined arbitrarily;

� τ(t) .s θ∅ if and only if t�̂s∅.

It is easy to verify that the outcome of teacher-proposing DA mechanism (Abdulkadiroğlu and

Sönmez, 2003b) under (P, �̂) is Gale-Shapley stable.

Next, we show that for some market there does not exist a Gale-Shapley stable and status-quo

improving matching. Let S = {s, s′}, T = {t1, t2}, the status-quo matching be

ωs = {t1}, ωs′ = {t2},

with quotas qs = qs′ = 1, type rankings τ(t1) .s τ(t2) .s θ∅, and τ(t1) .s′ τ(t2) .s′ θ∅. The

preferences of the teachers are

s′ Pt1 s Pt1 ∅,

s′ Pt2 s Pt2 ∅,

Under this market, unique status-quo improving matching is ω. However, ω is blocked by (t1, s
′). �

Proof of Proposition 3: Under the current French mechanism, when there are no empty

seats, each school fills its capacity and only the status-quo employees are assigned to the schools.
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This follows from the fact that teachers in ωs have the qs highest priority at school s and they

are considering their status-quo school acceptable. Hence, if there is a blocking pair (t, s) and

τ(t) .s τ(t′) and t′ is assigned to s, then t′ ∈ ωs. Teacher-SI stability and status-quo improving

property of ω directly follows from the definition.

Next, by slightly modifying the example in the proof of Proposition 2, we show that when there

are no empty seats at schools the current French mechanism is not status-quo improving. Consider

the example in the proof of Proposition 2 such that teacher t2 prefers school s most. Then, the

French mechanism assigns t1 and t2 to s′ and s, respectively. This matching is not status-quo

improving for school s.

Finally, via an example, we show that when there are empty seats at some school, then there

does not exist a teacher-SI stable and status-quo improving matching. Let S = {s, s′}, T = {t1},
ωs = {t1}, ωs′ = ∅. Each school has one available seat and t1 prefers s′ to s. The unique status-quo

improving matching is ω but it is blocked by (t1, s
′). Hence, it is not teacher-SI stable. �

Proof of Proposition 4: Substitutes: On the contrary, we suppose there exist T̄ ⊆ T and

distinct t, t′ ∈ T̄ such that t ∈ Cs(T̄ ) and t /∈ Cs(T̄ \ {t′}). There exists some other teacher t′′ who

was assigned to sk under Cs(T̄ \ {t′}), where sk is t’s slot under Cs(T̄ ). Consider the execution of

the algorithm to determine Cs(T̄ \ {t′}) in step k when t′′ is assigned to sk: as t is not assigned in

Cs(T̄ \{t′}), she is still available and is not picked by slot sk; thus, t′′ �ks t. As a consequence, when

the algorithm was executed to determine Cs(T̄ ), teacher t′′ was already assigned to a slot sk
′′

such

that k′′ < k so that she was not available when t was assigned sk.

We will show that such a teacher t′′ cannot exist, leading to a contradiction and completing the

proof for the substitutes condition.

Claim: There is no teacher t̄ such that she is assigned to a slot sk̂ in Cs(T̄ \ {t′}) and to a slot

sk̄ in Cs(T̄ ) such that k̄ < k̂.

Proof of Claim: Suppose to the contrary such a teacher t̄ exists. Let t̄ be chosen such that k̄ is

the smallest such index among the indexes of slots filled by such teachers in Cs(T̄ ).

If slot sk̄ is unfilled in Cs(T̄ \{t′}), then as t̄ is still available when slot sk̄ is filled in determining

Cs(T̄ ) by the supposition, we should have ∅ �k̄s t̄. But then teacher t̄ cannot be assigned to sk̄ in

Cs(T̄ ).

If a teacher t̂ is assigned to sk̄ in Cs(T̄ \ {t′}), then as t̄ is still available when slot sk̄ is filled

in determining Cs(T̄ ) by the supposition. Therefore, by the choice of k̄, teacher t̂ is not assigned

a slot preceding sk̄ in Cs(T̄ ). Therefore, she is available when sk̄ is filled in Cs(T̄ ). Yet she is not

picked even though t̂ �k̄s t̄ �k̄s ∅, a contradiction. Thus, such a teacher t̄ cannot exist. �

Law of Aggregate Demand: On the contrary, we suppose there exists T̄ ⊆ T , t /∈ T̄ and

|Cs(T̄ )| > |Cs(T̄ ∪ {t})|. Then, there exists a slot sk which is filled under Cs(T̄ ) but not under

Cs(T̄ ∪{t}). However, due to the above Claim in the proof for the substitutes condition, the teacher

who was assigned sk in Cs(T̄ ) is available when sk is being filled in Cs(T̄ ∪ {t}). Then this slot
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cannot be empty in Cs(T̄ ∪ {t}) as this teacher is acceptable for the slot, which is a contradiction.

We showed that |Cs(T̄ )| ≤ |Cs(T̄ ∪ {t})|.

By the repeated application of this argument, we conclude that whenever T̄ ⊆ T̂ , |Cs(T̄ )| ≤
|Cs(T̂ )|. �

Proof of Theorem 2: Strategy-proofness: It was shown by Hatfield and Milgrom (2005)

that whenever the choice rules of schools satisfy the substitutes and law of aggregate demand

conditions, the resulting mechanism through DA is strategy-proof for teachers. Since for each

school s, auxiliary choice rule Cs satisfies these conditions and only incomplete information is about

the preferences of teachers, SI-DA is strategy-proof.

SI-Stability: Suppose Assumption 1 holds. Let SI-DA outcome be µ. We will show that it is

status-quo improving first. By our construction of the slot priorities, a teacher t will be accepted by

ωt whenever she applies and she will never be rejected in the further steps. Hence, it is status-quo

improving for teachers. Consider the schools. First, we prove the following claim.

Claim: Each school fills all its seats in µ.

Proof of Claim: To see this, notice that no teacher t is assigned to a school s that is less preferred

to ωt in µ. Therefore, all teachers who were employed at the status quo are assigned to some school

in µ. Moreover, we claim that exactly
∑

s∈S(qs − |ωs|) new teachers are assigned in µ. On the

contrary, suppose this claim does not hold. Then, at least one seat of a school s is unfilled in µ

and this matching leaves at least one new teacher t ∈ N unmatched such that she considers all

schools with empty seat acceptable and is acceptable at all schools with empty seats at status quo.

In determining Cs(B
K+1
s ), where K is the final step of the DA algorithm, if the slot corresponding

to this empty seat is one of slots sk that was unfilled at the status quo, then an unassigned new

teacher would have applied to that school and have been assigned to that slot by Assumption 1.

Thus, this slot is filled at the status quo.

Then as all employed teachers at status quo are assigned to some school in µ, there exists a

teacher t̂ /∈ N assigned in µ to a slot ŝk̂ that was unfilled at the status quo at some school ŝ.

Since new teacher t is unassigned in µ, she should have applied to all schools with empty seats

at status quo (which she considers acceptable by Assumption 1) including ŝ. Since ŝ has an unfilled

seat at status quo, by Assumption 1, it considers t acceptable. Moreover, at the slots that are

unfilled at the status quo, acceptable new teachers have higher ranking than employed teachers at

the status quo by construction of the slot rankings: t �k̂ŝ t̂. Thus, slot ŝk̂ should have held t instead

of t̂, a contradiction.

Hence, all seats are filled in µ. �

Since all seats are filled in µ, by our construction of the rankings of the slots, the assignment

FOSD the status-quo matching ω. Hence, µ is also status-quo improving for schools.

Next, we will show that there is no blocking pair of µ that is not allowed. By construction of
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slot rankings for a school s, for teachers neither in ωs nor in N , the type ranking of the school is

respected in rankings of its slots.

Suppose there exists a blocking teacher-school pair (t, s) of µ, i.e., t prefers s to µt and there

exists a teacher t̂ ∈ µ(s) such that τ(t) .s τ(t̂) .s θ∅ for some t̂ ∈ µ(s), as all seats of s are filled in µ.

Then t should have made an offer to s that was rejected in the DA algorithm. Then all teachers

assigned to all slots of s have higher ranking in that slot than t. If t̂ was assigned in µ to a filled

slot at status quo then t̂ ∈ ωs and t 6∈ ωs as τ(t) .s τ(t̂). If t̂ was assigned in µ to an unfilled slot at

status quo then t̂ ∈ N and t 6∈ N as τ(t).s τ(t̂). By definition of SI-stability, then (t, s) is an allowed

blocking pair of µ. As such a blocking pair (t, s) and such a teacher t̂ is arbitrary, µ is SI-stable.

�

Proof of Proposition 5: We use the following lemma in our proof.

Lemma 1 For any T̄ ⊆ T , D̂s(T̄ ) ⊆ Ds(T̄ ).

Proof: Let sk and s` (s` and sk) be mth and (m+ 1)th seats under Is (Îs), respectively. Since

the relative positions of the first (m−1) seats are the same under Is and Îs, the same teachers are

assigned to the first (m − 1) seats by Ds and D̂s. Therefore, we consider the same set of teachers

for the mth seat under both Is and Îs. Let T̃ be the set of teachers considered for the mth seat

under both Is and Îs.

Recall that, by our construction, the set of teachers acceptable for seat s` is a (weak) superset of

the teachers acceptable for seat sk. Hence, if there does not exist an acceptable teacher in T̃ for seat

s`, then there does not exist an acceptable teacher in T̃ for seat sk. If there is no acceptable teacher

in T̃ for seat sk but there is some acceptable teacher for seat s`, then that teacher is assigned to s`

under both choice functions. Since the relative positions of the remaining seats are the same under

Is and Îs, we have Ds(T̄ ) = D̂s(T̄ ) whenever the set of acceptable teachers in T̃ for either sk or

s` is empty.

Now suppose there exist acceptable teachers in T̃ for seats sk and s`. Let tk and t` be the highest

ranked teachers for seats sk and s` among the ones in T̃ , respectively.

If tk 6= t`, then under both choice rules Ds and D̂s t
k and t` are assigned to seats sk and s`,

respectively. Since the relative positions of the remaining seats are the same under Is and Îs, we

have Ds(T̄ ) = D̂s(T̄ ).

If tk = t` = t′, then t′ is assigned to seats sk and s` under choice rules Ds and D̂s, respectively.

Next, we consider the teachers in T̃ \ t′. First notice that, the status-quo employee teachers who

are having the highest priority among all teachers in T for sk and s` cannot be in T̃ \ t′. This would

conflict with the fact that t′ has the highest priority for both seats among the teachers in T̃ . Then,

there is one teacher in T̃ \ t′ who has highest priority for both sk and s`. We denote such teacher

with t′′. If t′′ is acceptable for both sk and s`, then t′′ is assigned to s` and sk under both choice

rules Ds and D̂s, respectively. If t′′ is unacceptable for both sk and s`, then no teacher is assigned
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to s` and sk under both choice rules Ds and D̂s, respectively. Under both cases, since the relative

positions of the remaining seats are the same under Is and Îs, we have Ds(T̄ ) = D̂s(T̄ ). We are

left with one remaining case: t′′ is acceptable for s` but not for sk. Then, t′′ is assigned to s` under

Ds but sk is not filled under D̂s. Then, when we consider the remaining seats under both choice

rules and the remaining teachers, we can treat the assignment is done via DA mechanism where

each teacher ranks the seats according to their positions under Is and Îs. Since DA is population

monotonic and individually rational, any teacher assigned under D̂s is assigned under Ds. But the

other way is not always true. �

Now, consider a sequential application of DA algorithm in which we allow teachers one by one

as long as they do not apply to school s (see Dur, Kominers, Pathak and Sönmez (2018) for details).

Then, eventually, we will have a set of teachers T̄ who have been rejected from their all choices

better than s. Once all teachers apply to s, Lemma 1 implies that the rejected teachers under D is a

subset of the rejected teachers under D̂. Then, we allow only the rejected teachers under both choice

rules from s and all other teachers who have not applied to s to apply one by one. Following this

procedure will give us matching µ assignment for all schools except s under both choice rules. More-

over, DA algorithm terminates under choice rule D. However, by Lemma 1, there might be teachers

rejected from s and have not applied to their next best choice under D̂. That is, we may observe

some teachers to be rejected from their assignment under µ. Hence, no teacher t prefers µ̂t to µt. �

Appendix B Examples

In Example 6, we show that, in the same setting as Combe et al. (2020), SI-CC is not equivalent

to the teacher optimal selection of TO-BE they propose.52

Example 6 Let S = {s1, s2}, T = {t1, t2, t′2}, ωs1 = {t1}, ωs2 = {t2, t′2}, qs1 = 1 and qs2 = 2.

Let τ(t1) = θ1, τ(t2) = θ2, τ(t′2) = θ′2. Finally, the preferences of the schools over types are:

θ2 .s1 θ
′
2 .s1 θ1 and θ1 .s2 θ2 .s2 θ

′
2. One can check that the matching returned by the teacher optimal

selection of TO-BE matches53 t1 to s1 and t2 to s1 while SI-CC matches t1 to s1 but t′2 to s1.

In Example 7, we show that M-convexity of the policy goals is not sufficient anymore to ensure

existence of SI teacher optimal and strategy-proof mechanism.

Example 7 Let S = {s1, s2}, T = N = {t1, t2}, ωs1 = ωs2 = ∅, qs1 = qs2 = 1 and τ(s1) =

τ(s2) = θ. Suppose the constraint over the distribution of teachers require that a teacher of type θ

is assigned to s1. This is a constraint fixing a floor which is known to be M-convex. Suppose both

52Combe et al. (2020) already noted that their class of TO-BE mechanisms did not entirely defined the class of
statu-quo improving, strategy-proof and two-sided efficient mechanisms. However, they did not investigate it further.
Our example suggests that other non-trivial mechanisms, such as SI-CC, exist outside their class.

53One can easily check that this example is well defined in their setting. Just set the preferences of the schools over
the teachers being equivalent to the schools’ ranking over their corresponding types.
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teachers rank s2 ahead of s1 and s1 ahead of ∅. If teachers report their true preferences, then there

will be a teacher assigned to s1 under any SI teacher optimal (or Pareto efficient) matching. Then,

the teacher assigned to s1, say t1, has an incentive to claim that s1 is unacceptable to her. Indeed,

any SI teacher optimal mechanism must then assign t2 to s1 and t1 to s2.

In Example 8, we show that in some market there does not exist a SI teacher optimal and

SI-stable matching.

Example 8 Let S = {s1, s2, s3}, T = {t1, t2, t3}, ωs1 = {t1}, ωs2 = {t2}, ωs3 = {t3} and qs1 =

qs2 = qs3 = 1. Let τ(t3) .s1 τ(t2) .s1 τ(t1) .s1 θ∅, τ(t3) .s2 τ(t1) .s2 τ(t2) .s2 θ∅ and τ(t1) .s3 τ(t2) .s2

τ(t3) .s3 θ∅, s2 Pt1 s1Pt1 s3Pt1 ∅, s1 Pt2 s2Pt2 s3Pt2 ∅, and s1 Pt3 s2Pt3 s3Pt3 ∅.

Let µs1 = t2, µs2 = t1 and µs3 = t3. Notice that, µ is SI teacher optimal. Under this market, ω

is the unique SI-stable matching and µ Pareto dominates ω for teachers.

In Examples 9 - 11, we show that if we exclude the first condition from the definition of SI-

stability, then for some market there does not exist a SI-stable matching.

Example 9 Let S = {s1, s2}, T = {t1, t2}, ωs1 = {t1}, ωs2 = {t2} and qs1 = qs2 = 1. Let

τ(t2) .s τ(t1) .s θ∅ for both s ∈ S and s1 Pt s2 Pt ∅ for all t ∈ T .

In this market, the unique status-quo improving matching is ω. However, it is blocked by (t2, s1).

Hence, SI-stable matching does not exist in this market when the first condition is excluded.

Next, via example we show that if we exclude the second condition from the definition of SI-

stability, then for some market there does not exist a SI-stable matching.

Example 10 Let S = {s1, s2}, T = {t1, t2}, ωs1 = {t1}, ωs2 = ∅ and qs1 = qs2 = 1. Let

τ(t1) .s τ(t2) .s θ∅ for both s ∈ S, s2 Pt1 s1 Pt1 ∅ and s2 Pt2 ∅ Pt2 s1.

Under this market, in any status-quo improving matching t1 is assigned to s1. However, any

such matching is blocked by (t1, s2). Hence, SI-stable matching does not exist in this market when

the second condition is excluded.

One can wonder if there exists a strategy-proof mechanism which selects a matching which

is stable when one of the conditions is excluded whenever such a matching exists and selects a

stable matching under both conditions, otherwise. In the following example, we show that such a

mechanism does not exist.

Example 11 Let S = {s1, s2}, T = {t1, t2}, ωs1 = {t1}, ωs2 = ∅ and qs1 = qs2 = 1. Let

τ(t2) .s1 τ(t1) .s1 θ∅, τ(t1) .s2 τ(t2) .s2 θ∅ for both s ∈ S, s2 Pt1 s1 Pt1 ∅ and s2 Pt2 s1 Pt2 ∅.

Under this market, there exists a unique stable matching when condition 2 is excluded: t1 is

assigned to s2 and t2 is assigned to s1. Hence, it will be selected.
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Suppose teacher t2 reports s2P
′
t2∅P

′
t2s1. Then, we have the same problem as in Example 10. Since

there does not exists a stable matching where condition 2 is excluded, we consider stable matchings

when condition 2 is included. There exists a unique stable matching in which t1 is assigned to s1

and t2 is assigned to s2. Hence, t2 is better off by manipulating.

In Examples 12 -14, we relax the conditions of Assumption 1 one by one and show that existence

of SI-stable outcome may not be guaranteed.

Example 12 We consider a market in which there does not exist N ′ ⊆ N such that |N ′| ≥∑
s∈S(qs − |ωs|).

Let S = {s, s′}, T = {t1}, the status-quo matching be

ωs = {t1}, ωs′ = ∅,

qs = qs′ = 1, and teacher t1 is acceptable for both schools. The preferences of the teacher t1 is

s′ Pt1 s Pt1 ∅.

In this market, ωs is the unique status-quo improving matching but it is blocked by (t1, s
′).

Example 13 We consider a market in which there exists N ′ ⊆ N such that |N ′| ≥
∑

s∈S(qs−|ωs|)
and each teacher in N ′ is acceptable for all schools with excess capacity but not all teacher in N ′

consider all schools with excess capacity acceptable.

Let S = {s, s′}, T = {t1, t2}, the status-quo matching be

ωs = {t1}, ωs′ = ∅,

qs = qs′ = 1, τ(t1) .s τ(t2) .s θ∅ and τ(t1) .s′ τ(t2) .s′ θ∅. The preferences of the teachers are

s′ Pt1 s Pt1 ∅,

s Pt2 ∅ Pt2 s′.

In this market, ω is the unique status-quo improving matching but it is blocked by (t1, s
′).

Example 14 We consider a market in which there exists N ′ ⊆ N such that |N ′| ≥
∑

s∈S(qs−|ωs|)
and all teacher in N ′ consider all schools with excess capacity acceptable but some teacher in N ′ is

not acceptable for some school with excess capacity.

Let S = {s, s′}, T = {t1, t2}, the status-quo matching be

ωs = {t1}, ωs′ = ∅,
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qs = qs′ = 1, τ(t1) .s τ(t2) .s θ∅ and τ(t1) .s′ θ∅ .s′ τ(t2). The preferences of the teachers are

s′ Pt1 s Pt1 ∅,

s Pt2 s
′ Pt2 ∅.

In this market, ωs is the unique status-quo improving matching but it is blocked by (t1, s
′).

Appendix C Extensions

C.1 Responsive preferences and Impossibility

In this section, we extend the school rankings. Instead of FOSD relation, we assume schools

ranking over the types of teachers are responsive.

Each school s has strict ranking over the types and no type option denoted by θ∅ denoted with

.s. For school s, type θ teachers are acceptable if and only if θ .s ∅. Given .s, the preference order

of school s over T ∪ {∅} is given as:

� τ(t) .s τ(t′) if and only if t �s t′;
� τ(t) = τ(t′) if and only if t ∼s t′;
� τ(t) .s θ∅ if and only if t �s ∅.

For any |T̄ | < qs responsiveness implies that for any t, t′ ∈ T \ T̄

� T̄ ∪ {t} �s T̄ if and only if t �s ∅;
� T̄ ∪ {t} �s T̄ ∪ {t′} if and only if t �s t′.

Note that, responsive preferences is more general than FOSD. In particular, if µs first-order stochas-

tically dominates matching ωs, then µs %s ωs. However, the other way may not be true. We

illustrate this in the following example.

Example 15 Let ωs = {t1, t2, t3, t4} such that τ(t1).s τ(t2) = τ(t3).s τ(t4). Consider the following

matching µs = {t1, t′1, t4, t′4} such that τ(t1) = τ(t′1).sτ(t4) = τ(t′4). Matching µs does not first-order

stochastically dominate ωs. However, it is possible that µs �s ωs.

The following example shows that, with responsive preferences, there is no mechanism that is

SI teacher optimal and strategy-proof.

Example 16 There are 6 teachers, T = {t1, t′1, t2, t′2, t, t′}, and 4 schools, S = {s1, s2, s, s
′}. Let

ωs1 = {t1, t′1}, ωs2 = {t2, t′2}, ωs = {t} and ωs′ = {t′}. Schools s1 and s2’s ranking over teacher

types are:

τ(t) .s1 τ(t1) .s1 τ(t′1) .s1 τ(t′)

τ(t′) .s2 τ(t2) .s2 τ(t′2) .s2 τ(t).
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Moreover, we assume that {t, t′} �sk {tk, t′k} for k = 1, 2. Notice that, this relation is consistent

with responsive orders. Preferences of the teachers are:

s2Pts1PtsPt∅

s1Pt′s2Pt′s
′Pt′∅

sPt1s1Pt1∅

s′Pt′1s1Pt′1∅

sPt2s2Pt1∅

s′Pt′2s2Pt′2∅

First note that under any status-quo improving matching, if t is assigned to her first ranked

school s2, then t′ must also be assigned to s2. Indeed, let µ be a status-quo improving matching

such that µt = s2. Since {t, t′} �s2 {t2, t′2} �s2 {t2, t}, {t′2, t}, status-quo improvement implies that

µt′ = s2. With a similar argument, if µt′ = s1, then µt = s1. So it implies that there are only three

possible SI teacher optimal matchings:

µ1 :=

(
t t′ t1 t′1 t2 t′2
s1 s1 s s′ s2 s2

)

µ2 :=

(
t t′ t1 t′1 t2 t′2
s2 s2 s1 s1 s s′

)

µ3 :=

(
t t′ t1 t′1 t2 t′2
s1 s2 s s1 s2 s′

)

Let ϕ be a SI teacher optimal mechanism. Assume that ϕ(P ) = µ1. In that case, let P ′t :

s2P
′
tsP

′
t∅. Under (P ′t , P−t), the only SI teacher optimal matching is µ2 so that ϕ(P ′t , P−t) = µ2 and

the manipulation of t is successful. If ϕ(P ) = µ2, then t′ can report P ′t′ : s1P
′
t′s
′P ′t′∅ so that the only

SI teacher optimal matching under (Pt′ , P−t′) is µ1 and ϕ(Pt′ , P−t′) = µ1, a successful manipulation

for t′. If ϕ(P ) = µ3 then t or t′ can manipulate in reporting the same profile as before. We conclude

that ϕ cannot be strategy-proof.

C.2 Immunity to Type Ranking Manipulation

In this section, we investigate whether there exists a status-quo improving, strategy-proof and

efficient mechanism which is immune to possible type ranking manipulations. As we explained in

our model, we assume schools’ preferences, and therefore their type rankings, are commonly known,

specifically by policy makers. However, policy makers may choose to report some school s’s type

ranking differently to the mechanism in order to improve its match. We say a mechanism φ is

immune to type ranking manipulation if for any P and . there does not exist a school s and

a type ranking .′s such that

φs(%
′, P ) �s φs(%, P )
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where % and %′ are preferences induced by type ranking profiles . and (.′s, .−s), respectively. If

a mechanism is not immune to type ranking manipulation, then we say it is vulnerable to type

ranking manipulation.

We first show that there does not exist an SI teacher optimal and strategy-proof mechanism

which is immune to type ranking manipulation.

Proposition 7 Any SI teacher optimal and strategy-proof mechanism is vulnerable to type ranking

manipulation.

Proof: We prove this result by means of an example. On the contrary, suppose there exists a SI

teacher optimal and strategy-proof mechanism which is immune to type ranking manipulation. Let

φ be that mechanism. Let S = {s, s′, s′′}, T = {t1, t2, t3}, the status-quo matching be

ωs = {t1}, ωs′ = {t2}, ωs′′ = {t3},

and qs = q′s = q′′s = 1. Let τ(t2) .s τ(t3) .s τ(t1), τ(t1) .s′ τ(t2), and τ(t1) .s′′ τ(t3). Let % be the

school proference profile which is induced by .. The preferences of the teachers are

s′′ Pt1 s
′ Pt1 s

s Pt2 s
′ Pt2 s

′′

s Pt3 s
′′ Pt3 s

′.

In this market, there exist two SI teacher optimal matchings:

µt = s′, µt′ = s, µt′′ = s′′

νt = s′′, νt′ = s′, νt′′ = s.

Suppose φ(%, P ) = µ. Let τ(t2) .′s τ(t1) .′s τ(t3) and %′ be the school preference profile induced

by (.′s, .−s). Then, under market (%′, P ) ν is the unique SI teacher optimal matching.

Suppose φ(%, P ) = ν. Let s′′ P ′t1 s P
′
t1 s
′. Then, under market (%, P ′t1 , P−t1) µ is the unique SI

teacher optimal matching. �

Notice that, we prove Proposition 7 by using a market in which there are at least three types.

In many applications, agents are characterized based on two types based on race or gender. In

the following proposition, we show that when there are only two types, SI-CC is immune to type

ranking manipulation.54

54If there are at least two new teachers and a school with empty seat, then by ranking one type as unacceptable a
school’s match can be improved under any SI teacher optimal mechanism.
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Proposition 8 When |Θ| = 2 and |ωs| = qs for all s ∈ S, SI-CC is immune to type ranking

manipulation.

Proof: On the contrary, suppose there exists a problem (%, P ) such that school s can be better off

when its type ranking is changed. Let . induce % and .′s be type ranking resulting into improvement

for school s. Let Θ = {θ1, θ2}. Without loss of generality, suppose θ1 .s θ2. Since teachers in ωs

are with acceptable types, θ1 .s θ∅. We consider the following cases.

Case 1: θ2 .s θ∅. Then, SI-CC weakly increases the number of θ1 teachers compared to the one

under ωs. Moreover, all seats will be filled. Under any other type ranking, the number of assigned

θ1 type teachers is at most |ωθ1s |.

Case 2: θ∅ .s θ2. Then, under SI-CC all assigned teachers to s are with type θ1.

In either case, we cannot improve school s by changing its type ranking. �

Appendix D Additional tables and figures

Figure A.1: Average Teacher Types
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Figure A.2: Cumulative Distribution of Teacher Experience in the Group of Young Regions

Notes: This Figure shows the cumulative distribution of teachers experience in the youngest regions of France.
These are the regions whose average teacher type is strictly lover than the median of teachers types across regions.
The vertical axis reports the 12 experience bins of teachers, ordered from most exprienced to least experienced. The
thirteenth bin corresponds to the vacant positions (the empty type). The mechanisms that respect the FOSD
condition are plotted in red. Those that do not are in grey. The thick black line corresponds to the cumulative
distribution of teachers’ types at the initial assignment.

Figure A.3: Cumulative Distribution of Teacher Experience in the Group of Old Regions

Notes: This Figure shows the cumulative distribution of teachers experience in the oldest regions of France. These
are the regions whose average teacher type is larger than the median of teachers types across regions. The vertical
axis reports the 12 experience bins of teachers, ordered from least exprienced to most experienced. The thirteenth
bin corresponds to the vacant positions (the empty type). The mechanisms that respect the FOSD condition are
plotted in red. Those that do not are in grey. The thick black line corresponds to the cumulative distribution of
teachers’ types at the initial assignment.
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Table A.1: Number of teachers and vacant positions

New Tenured Vacant

All teachers teachers teachers positions

(1) (2) (3) (4)

All subjects 10460 4627 5833 3912

Sport 2066 568 1498 475
French 1645 786 859 663
English 1374 746 628 640
Mathematics 1563 958 605 824
Spanish 999 316 683 248
History-Geography 1230 657 573 562
Biology 746 286 460 246
Physics-Chemistry 837 310 527 254

Notes: This table reports, for each of the 8 subjects we use for our em-
pirical analysis, the total number of teachers (column 1), the number of
teachers who do not have an initial assignment (column 2)—referred to as
“new teachers” in the paper— the number of teachers who have an initial
assignment (column 3)—referred to as “tenured” in the paper—and the
number of vacant positions.

Table A.2: Statistics on regions

Nb tenured % of teachers Ratio of nb % students % students % students
teachers asking asking for a new teachers aged enrolled in whose reference obtaining their
to enter / leave assignment more than 50 / ”priority parent has baccalaureate

the region coming from less than 30 education” no diploma
each region

Region (1) (2) (3) (4) (5) (6)

Rennes 15.55 0.5 8.10 7.9 14.18 91.54
Bordeaux 8.95 0.8 6.56 14.6 19.22 86.25
Toulouse 6.56 1.5 5.29 8.9 17.38 88.57

Paris 3.02 2.8 6.90 25.5 21.54 85.48
Aix-Marseille 2.54 1.9 5.08 30.1 27.20 81.77
Grenoble 1.74 2.3 3.91 16.5 19.80 88.17

Amiens 0.08 6.2 1.89 23.9 27.71 82.41
Créteil 0.03 22.7 1.14 35.5 31.62 83.94
Versailles 0.05 25.7 1.62 24.9 21.88 87.92

This table reports descriptive statistics for the three most attractive regions (Rennes, Bordeaux, and Toulouse), the
three least attractive regions (Créteil, Versailles, and Amiens), and three intermediate regions (Paris, Aix-Marseille, and
Grenoble). Attractiveness is measured by the ratio of the number of tenured teachers asking to enter a region over the
number of teachers asking to leave the region (reported in column 2). All statistics reported in this table come from the
following reference: Direction de l’Evaluation de la Prospective et de la Performance (2014).

Appendix E Teacher preference estimations

E.1 Variables used for teacher preference estimations

This Appendix describes the variables we use for teacher preference estimations.

We use the following regions’ characteristics:
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Figure A.4: Cumulative Distribution of Teacher Experience

Three Youngest Regions Three Oldest Regions

Notes: This Figure shows the cumulative distribution of teachers experience. The left panel reports the distribution
in the three youngest regions of France (Amiens, Versailles, and Créteil), and the right panel the distribution in the
three oldest regions of France (Bordeaux, Rennes, and Lyon). The vertical axis reports the 12 experience bins of
teachers, ordered from most exprienced to least experienced (left panel) and from least exprienced to most
experienced (right panel). The thirteenth bin corresponds to the vacant positions (the empty type). The
mechanisms that respect the FOSD condition are plotted in red. Those that do not are in grey. The thick black line
corresponds to the cumulative distribution of teachers’ types at the initial assignment.

� Share of students classified as disadvantaged (labeled as “% disadv stud”).

� Share of students living in an urban area (labeled as “% stud urban”).

� Share of students who attend a school classified as “priority education” (labeled as “% stud in

priority educ”). Priority education is a label given to the most disadvantaged schools in France.

� Share of students who attend a private school (labeled as “% stud in private school”).

� Share of teachers who are younger than 30 (labeled as “% teachers younger than 30”)

� Region is in South of France (labeled as “Region in South of France”). The following 5 regions

are classified as being in the South of France: Aix-Marseille, Bordeaux, Montpellier, Toulouse,

and Nice.

We use the following teachers characteristics:

� Current region of the teacher (labeled as “Current region”). This is the region a teacher is

initially assigned to.

� Region where a teacher was born (labeled as “Birth region”).

� Distance between the region ranked and the current region of a teacher (labeled as “Distance

current region”).

� Number of years of teaching experience (labeled as “Teach exp”).

� Squared number of years of teaching experience (labeled as “Teach exp sq”).

� Teacher’s current region is Créteil or Versailles, which are the two least attractive regions

(labeled as “Teach from CV”). The attractiveness of a region is measured by the ratio of the

number of teachers who rank the region divided by the number of teachers who ask to leave
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the region.

� Teacher is married (labeled as “Married”).

� Teacher has spent at least 5 years in a school labelled as priority education (labeled as “Teach

in disadv sch”).

� Teacher has an advanced teaching qualification (labeled as “Advanced qualif”).
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Appendix F Description of the French mechanism

The current French mechanism (called DA* in the paper) is a version of the Deferred Acceptance

mechanism modified to ensure individual rationality for teachers. Schools preferences are modified

such that each teacher t, with an initial assignment s, is ranked in the (modified) ranking of his

initial school s := µ0(t), above any teacher t′ /∈ µ0(s). Other than this modification, the schools’

preference relations remain unchanged. The ministry then runs the (regular) DA mechanism using

these modified preferences. See Combe, Tercieux and Terrier (2020) for a more detailed presentation

of this mechanism and its properties.55

By construction, this mechanism is individually rational for teachers. It does not fulfill FOSD

and is not stable under the standard stability notion used in the college admission literature. How-

ever, DA∗ is stable under a weaker stability concept used in Guillen and Kesten (2012), Pereyra,

2013, and Compte and Jehiel, 2008.56

55Formally, for each school s, a new preference relation �′s is defined such that t �′s t′ for each t ∈ µ0(s) and
t′ /∈ µ0(s), and for each t, t′ not in the school’s initial assignment µ0(s), we have t �′s t′ if and only if t �s t′. If
t, t′ ∈ µ0(s), we assume similarly that these teachers are ranked according to �s.

56The intuition behind this notion is that a teacher t would not feel justified envy for a teacher who is initially
matched to a school.
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