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Abstract

Motivated by the consideration of fairly sharing the cost of exploration between multiple
groups in learning problems, we develop the Nash bargaining solution in the context of multi-
armed bandits. Specifically, the ‘grouped’ bandit associated with any multi-armed bandit problem
associates, with each time step, a single group from some finite set of groups. The utility gained
by a given group under some learning policy is naturally viewed as the reduction in that group’s
regret relative to the regret that group would have incurred ‘on its own’. We derive policies that
yield the Nash bargaining solution relative to the set of incremental utilities possible under any
policy. We show that on the one hand, the ‘price of fairness’ under such policies is limited, while
on the other hand, regret optimal policies are arbitrarily unfair under generic conditions. Our
theoretical development is complemented by a case study on contextual bandits for warfarin
dosing where we are concerned with the cost of exploration across multiple races and age groups.
Keywords: bandits; fairness; Nash bargaining; exploration; proportional fairness

1. Introduction

Exploration is the act of taking actions whose rewards are highly uncertain in the hopes of discovering

one with a large reward. It is well-known that exploration is a key, and often necessary component

in online learning problems. Exploration has an implicit cost, insomuch that exploring actions

that are eventually revealed to be sub-optimal incurs ‘regret’. This paper studies how this cost of

exploration is shared in a system with multiple stakeholders. At the outset, we present two practical

examples that motivate our study of this issue.

Personalized Medicine and Adaptive Trials: Multi-stage, adaptive designs (Kim et al.

2011, Berry 2012, 2015, Rugo et al. 2016), are widely viewed as the frontier of clinical trial design.

More generally, the ability to collect detailed patient level data, combined with real time monitoring

(such as glucose monitoring for diabetes (Bergenstal et al. 2019, Nimri et al. 2020)) has raised the

specter of learning personalized treatments. As a concrete example, consider the problem of finding

the optimal dosage of warfarin, a blood thinner that is commonly used to treat blood clots. The

optimal dosage varies widely between patients (up to a factor of 10), and an incorrect dose can have
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severe adverse effects (Wysowski et al. 2007). Learning the appropriate personalized dosage is then

naturally viewed as a contextual bandit problem (Bastani and Bayati 2020) where the context at

each time step corresponds to a patient’s covariates, arms correspond to different dosages, and the

reward is the observed efficacy of the assigned dose. In examining such a study in retrospect, it is

natural to measure the ‘regret’ incurred by distinct groups of patients (say, their race), measured by

comparing the overall treatment efficacy for that group and the optimal treatment efficacy that

could have been achieved for that group in hindsight. This quantifies the cost of exploration borne

by that group. Now since covariates that impact dose efficacy may be highly correlated with race

(e.g. genomic features), it is a priori unclear how a generic learning policy would distribute the cost

of exploration across groups. More generally, we must have a way of understanding whether a given

profile of exploration costs across groups is, in an appropriate sense, ‘fair’.

Revenue Management for Search Advertising: Ad platforms enjoy a tremendous amount

of flexibility in the the choice of ads served against search queries. Specifically, this flexibility exists

both in selecting a slate of advertisers to compete for a specific search, and then in picking a winner

from this slate. Now a key goal for the platform is learning the affinity of any given ad for a

given search. In solving such a learning problem – for which many variants have been proposed

(Graepel et al. 2010, Agarwal et al. 2014) – we may again ask the question of who bears the cost of

exploration, and whether the profile of such costs across various groups of advertisers is fair.

1.1. Bandits, Groups and Axiomatic Bargaining

Delaying a formal development to later, a generic bandit problem is described by an uncertain

parameter that must be learned, a set of feasible actions, and a reward function that depends on the

unknown parameter and the action chosen. The set of actions available to the learner may change at

each time, and the learner must choose which action to pick over time in a manner that minimizes

‘regret’ relative to a strategy that, in each time step, picked an optimal action with knowledge of

the unknown parameter. To this model, we add the notion of a ‘group’; in the warfarin example, a

group might correspond to a specific race. Each group is associated with an arrival probability and

a distribution over action sets. At each time step, a group and an action set is drawn from this

distribution. We refer to this problem as a ‘grouped’ bandit. Now in addition to measuring overall

regret in the above problem, we also care about the regret incurred by specific groups, which we

can view as the cost of exploration borne by that group. As such, any notion of fairness is naturally

a function of the profile of regret incurred across groups.
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In reasoning about what constitutes a ‘fair’ regret profile in a principled fashion, we turn to the

theory of axiomatic bargaining. There, a central decision maker is concerned with the incremental

utility earned by each group from collaborating, relative to the utility the group would have earned

on its own. In our bandit setting this incremental utility is precisely the reduction in regret for any

given group relative to the optimal regret that group would have incurred should it have been ‘on

its own’. A bargaining solution is simply a solution to maximizing some (axiomatically justified)

objective function over the set of achievable incremental utilities. The utilitarian solution, for

instance, simply maximizes the sum of incremental utilities. Applied to the bandit problem, the

utilitarian solution would simply minimize total regret, in effect yielding the usual regret optimal

solution and ignoring the relevance of groups. The Nash bargaining solution maximizes an alternative

objective, the Nash Social Welfare (SW) function. This latter solution is the unique solution to

satisfy a set of axioms any ‘fair’ solution would reasonably satisfy. This paper develops the Nash

bargaining solution to the (grouped) bandit problem.

1.2. Contributions

In developing the Nash bargaining solution in the context of bandits, we focus primarily on what is

arguably the simplest non-trivial grouped bandit problem. Specifically, we consider the ‘grouped’

variant of the vanilla K-armed bandit problem, wherein groups correspond to subsets of the K

arms, and the decision maker must choose an arm from among the arms corresponding to the group

arriving at each time step. We make the following contributions relative to this problem:

• Regret Optimal Policies are Unfair (Theorem 3.1): We show that all regret optimal policies for

the grouped K-armed bandit share a structural property that make them ‘arbitrarily unfair’ –

in the sense that the Nash SW is −∞ for these solutions – under a broad set of conditions on

the problem instance. We show that a canonical UCB policy is regret optimal, hence UCB is

also arbitrarily unfair.

• Achievable Fairness (Theorem 3.3): We derive an instance-dependent upper bound on the

Nash SW for the grouped K-armed bandit. This can be viewed as a ‘fair’ analogue to a regret

lower bound (e.g. Lai and Robbins (1985)) for the problem, since a lower bound on achievable

regret (forgoing any fairness concerns) would in effect correspond to an upper bound on the

utilitarian SW for the problem.
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• Nash Solution (Theorem 4.1): We produce a policy, PF-UCB, that achieves the Nash solution.

Specifically, the Nash SW under PF-UCB achieves the upper bound we derive on the Nash

SW for all instances of the grouped K-armed bandit. The policy is simple to describe and is

computationally efficient to run. At a high level, PF-UCB ‘copies’ a UCB policy in determining

which arms to pull, but alters which group pulls the arm.

• Price of Fairness for the Nash Solution (Theorem 4.5): We show that the ‘price of fairness’

for the Nash solution is small: if G is the number of groups, the Nash solution achieves at

least O(1/
√
G) of the reduction in regret achieved under a regret optimal solution relative to

the regret incurred when groups operate separately.

Taken together, these results establish a rigorous framework for the design of bandit algorithms

that yield fair outcomes across groups at a low cost to total regret. As a final contribution, we

extend our framework beyond the grouped K-armed bandit and undertake an empirical study:

• Linear Contextual Bandits and Warfarin Dosing: We extend the framework to grouped linear

contextual bandits, yielding a candidate Nash solution to that problem. Applied to a real-world

dataset on warfarin dosing using race and age groups, we show (a) a regret optimal solution

that ignores groups is dramatically unfair, and (b) the Nash solution balances out reductions

in regret across groups at the cost of a small increase in total regret.

1.3. Simple Instance

Before diving into the full model, we describe the simplest non-trivial instance of the grouped bandit

model that captures the essence of the problem we study.

Example 1.1 (2-group, 3-arm bandit). Suppose there are two groups A and B, and there are three

arms with mean rewards satisfying θ1 < θ2 < θ3. Suppose group A has access to arms 1 and 2,

while group B has access to arms 1 and 3. One of the two groups arrive at each time step, where

each group arrives with probability 50%. Suppose θ2 and θ3 are known a priori.

In this example, the only unknown is θ1, and this arm is shared between the two groups. A

reasonable bandit policy must pull arm 1 enough times (i.e. explore enough) to distinguish that it

is worse than the other two arms. Note that the regret incurred when group A pulls arm 1, θ2 − θ1,

is smaller than the regret when group B pulls arm 1, θ3 − θ1. Then, it is intuitive that to minimize

total regret, it is more efficient for group A to do the exploration and pull arm 1 rather than for
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group B to do so. We show that indeed, the policy of exploring only with group A is optimal in

terms of minimizing total regret. However, such a policy results in group A incurring all of the

regret, while group B incurs none — that is, group B ‘free-rides’ off of the learnings earned by group

A. It can be argued this outcome is ‘unfair’; yet, prior to this work, there was no framework to

establish what would be a fairer solution for this instance. The framework introduced in this paper

formalizes what a fair division of exploration between groups A and B should be.

1.4. Related Literature

Two pieces of prior work have a motivation similar to our own. Jung et al. (2020) study a setting

with multiple agents with a common bandit problem, where each agent can decide which action to

take at each time. They show that ‘free-riding’ is possible — an agent that can access information

from other agents can incur only O(1) regret in several classes of problems. This result is consistent

with the motivation for our work. Raghavan et al. (2018) study a very similar grouped bandit

model to ours, and provides a ‘counterexample’ in which a group can have a negative externality on

another group (i.e. the existence of group B increases group A’s regret). This example is somewhat

pathological and stems from considering an instance-specific fixed time horizon; instead, if T →∞,

all externalities become non-negative (details in Appendix A.1). Our grouped bandit model is also

similar to sleeping bandits (Kleinberg et al. 2010), in which the set of available arms is adversarially

chosen in each round. The known, fixed group structure in our model allows us to achieve tighter

regret bounds compared to sleeping bandits.

There have also been a handful of papers (Joseph et al. 2016, Liu et al. 2017, Gillen et al. 2018,

Patil et al. 2020) that study ‘fairness in bandits’ in a completely different context. These works

enforce a fairness criterion between arms, which is relevant in settings where a ‘pull’ represents

some resource that is allocated to that arm, and these pulls should be distributed between arms in

a fair manner. In these models, the decision maker’s objective (maximize reward) is distinct from

that of a group (obtain ‘pulls’), unlike our setting (and motivating examples) where the groups and

decision maker are aligned in their eventual objective.

Our upper bound on Nash SW borrows classic techniques from the regret lower bound results of

Lai and Robbins (1985) and Graves and Lai (1997). Our policy follows a similar pattern to recent

work on regret-optimal, optimization-based policies for structured bandits (e.g. Lattimore and

Szepesvari (2017), Combes et al. (2017), Van Parys and Golrezaei (2020), Hao et al. (2020)). Unlike

those policies, our policy has no forced exploration. Further, the optimization problem defining the
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Nash solution can generically have multiple solutions whereas the aforementioned approaches would

require this solution to be unique; our approach does not require a unique solution. Nonetheless, we

believe that the framework in the aforementioned works can be fruitfully leveraged to construct Nash

solutions for general grouped bandits, and we provide such a candidate solution as an extension.

Our fairness framework is inspired by the literature on fairness in welfare economics — see

Young (1995), Sen and Foster (1997). Specifically, we study fairness in exploration through the lens

of the axiomatic bargaining framework, first studied by Nash (1950), who showed that enforcing four

desirable axioms induces a unique fair solution. Mas-Colell et al. (1995) is an excellent textbook

reference for this topic. This fairness notion is often referred to as proportional fairness, which has

been studied extensively especially in the area of telecommunications (Kelly et al. 1998, Jiang and

Liew 2005).

Lastly, the burden of exploration in learning problems has been studied in the decentralized

setting, where each time step represents a self-interested agent that decides on their own which

action to take. One line of work in this setting aims to identify classes of bandit problems in

which the greedy algorithm performs well (Bastani et al. 2020, Kannan et al. 2018, Raghavan et al.

2018). Another stream of literature re-designs how the agents interact with the system to induce

exploration, either by modifying the information structure (e.g. Kremer et al. (2014), Mansour et al.

(2015), Papanastasiou et al. (2018), Immorlica et al. (2018)), or providing payments to incentivize

exploration (e.g. Frazier et al. (2014), Kannan et al. (2017)). The difference of our work compared

to these aforementioned papers is the presence of a centralized decision maker.

2. The Axiomatic Bargaining Framework for Bandits

We first describe the generic ‘grouped’ bandit model. We then provide a background of the axiomatic

bargaining framework of Nash (1950), and describe how we apply this framework to the grouped

bandit setting. Lastly, we introduce the grouped K-armed bandit model, which is the concern of

most of the theoretical results of this paper.

2.1. Grouped Bandit Model

Let θ ∈ Θ be an unknown parameter and let A be the action set. For every arm a ∈ A, (Yn(a))n≥1

is an i.i.d. sequence of rewards drawn from a distribution F (θ, a) parameterized by θ and a. We let

µ(a) = E[Y1(a)] be the expected reward of arm a. In defining a grouped bandit problem, we let G be
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a set of G groups. Each group g ∈ G is associated with a probability distribution P g over 2A, and

a probability of arrival pg;
∑
g pg = 1. The group arriving at time t, gt, is chosen independently

according to this latter distribution; At is then drawn according to P gt . An instance of the grouped

bandit problem is specified by I = (A,G, p, P, F, θ), where all quantities except for θ are known.

At each time t, a central decision maker observes gt and At, chooses an arm At ∈ At to pull and

observes the reward YNt(At)+1(At), where Nt(a) is the total number of times arm a was pulled up

to but not including time t. Let A∗t ∈ argmaxa∈At
µ(a) be an optimal arm at time t. Given an

instance I and a policy π, the total regret, and the group regret for group g ∈ G are respectively

RT (π, I) = E
[
T∑
t=1

(µ(A∗t )− µ(At))
]

and RgT (π, I) = E
[
T∑
t=1

1(gt = g)(µ(A∗t )− µ(At))
]
,

where the expectation is over randomness in arrivals (gt,At), rewards Yn(a), and the policy π.

Finally, so that the notion of an optimal policy for some class of instances, I, is well defined, we

restrict attention to consistent policies which yield sub-polynomial regret for any instance in that

class: Ψ = {π : RT (π, I) = o(T b) ∀I ∈ I,∀b > 0}.

2.2. Background: Axiomatic Bargaining

The axiomatic bargaining problem is specified by the number of agents n, a set of feasible utility

profiles U ⊆ Rn, and a disagreement point d ∈ Rn, that represents the utility profile when agents

cannot come to an agreement. A solution f(·, ·) to the bargaining problem selects an agreement

u∗ = f(U, d) ∈ U , in which agent i receives utility u∗i . It is assumed that there is at least one point

u ∈ U such that u > d, and we assume U is compact and convex.

The bargaining framework proposes a set of axioms a fair solution u∗ should ideally satisfy:

1. Pareto optimality: There does not exist a feasible solution u ∈ U such that u ≥ u∗ and u 6= u∗.

2. Symmetry: If all entries of d are equal and the space U is symmetric (if u, u′ only differ in the

permutation of its entries, then u ∈ U if and only if u′ ∈ U), then all entries of u∗ are equal.

3. Invariant to affine transformations: Let a ∈ Rn+, b ∈ Rn. If U ′ = {a>u + b : u ∈ U} and

d′ = a>d+ b, then f(U ′, d′)i = aiu
∗
i + bi

4. Independence of irrelevant alternatives: If V ⊆ U where u∗ ∈ V , then f(V, d) = u∗.

Now invariant to affine transformations implies that f(U, d) = f({u − d : u ∈ U}, 0) + d. It is

therefore customary to normalize the origin to the disagreement point, i.e. assume d = 0, and
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implicitly that U has been appropriately translated. So translated, U is interpreted as a set of

feasible utility gains relative to the disagreement point. The seminal work of Nash (1950) showed

that there is a unique bargaining solution that satisfies the above four axioms, and it is the outcome

that maximizes the Nash social welfare (SW) function (Kaneko and Nakamura 1979):

W (u) =


∑n
i=1 log(ui) ui > 0 ∀i ∈ [n]

−∞ otherwise.

The unique solution u∗ = argmaxu∈U W (u) is often referred to as the proportionally fair solution,

as it applies the following standard of comparison between feasible outcomes: a transfer of utilities

between two agents is favorable if the percentage increase in the utility gain of one agent is larger

than the percentage decrease in utility gain of the other agent. Mathematically, u∗ satisfies:

n∑
i=1

ui − u∗i
u∗i

≤ 0 ∀u ∈ U, u ≥ 0.

That is, from u∗, the aggregate proportional change in utility gains to any other feasible solution is

non-positive. We will interchangeably refer to u∗ = argmaxu∈U W (u) as the Nash solution or as

proportionally fair. If u ∈ U such that W (u) = −∞, we say that u is unfair. An unfair outcome

corresponds to an outcome where there exists an agent who receives a non-positive utility gain.

2.3. Fairness Framework for Grouped Bandits

We now consider the Nash bargaining solution in the context of the grouped bandit problem. To do

so, we need to appropriately define the utility gain under any policy. We begin by formalizing the

rewards to a single group under a policy where no information was shared across groups, which

represents the disagreement point. Specifically, let Ig be the ‘single-group’ bandit instance obtained

by considering the instance I restricted to arrivals of group g so that in any period t in which gt 6= g,

we receive no reward under any action. Let us denote by π∗g an optimal policy for instances of type

Ig (i.e. π∗g is optimal in the non-grouped bandit setting) so that for any instance of type Ig, and

any other consistent policy π′g for instances of that type,

lim sup
T→∞

RT (π∗g , Ig)
log T ≤ lim inf

T→∞

RT (π′g, Ig)
log T .(1)
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Letting R̃gT (I) , RT (π∗g , Ig), we define, with a slight abuse of notation, the T -period utility earned

by group g under π∗g , and any other consistent policy π for instances of type I respectively, as:

E
[
T∑
t=1

1(gt = g)µ(A∗t )
]
− R̃gT (I) , ugT (π∗g) and E

[
T∑
t=1

1(gt = g)µ(A∗t )
]
−RgT (π, I) , ugT (π).

The T -period utility gain under a policy π is then ugT (π)− ugT (π∗g) = R̃gT (I)−RgT (π, I). Since our

goal is to understand long-run system behavior, we define asymptotic utility gain for any group g:

UtilGaing(π, I) = lim inf
T→∞

R̃gT (I)−RgT (π, I)
log T .

In words, UtilGaing(π, I) is the decrease in regret for group g under policy π, compared to the

best that group g could have done on its own. Equipped with this definition, we may now identify

the set of incremental utilities for an instance I, as U(I) = {(UtilGaing(π, I))g∈G : π ∈ Ψ}. It is

worth noting that while U(I) is not necessarily convex, we can readily show that the Nash solution

remains the unique solution satisfying the fairness axioms presented in Section 2.2 relative to U(I)

(details in Appendix G.1). We finish up by finally defining the Nash solution to the grouped bandit

problem. Since we find it convenient to associate a SW function with a policy (as opposed to a

vector of incremental utilities), the Nash SW function for grouped bandits is equivalently defined as:

W (π, I) =


∑
g∈G log (UtilGaing(π, I)) UtilGaing(π, I) > 0 ∀g ∈ G

−∞ otherwise.
(2)

So equipped, we finish by defining the Nash solution to the grouped bandit problem.

Definition 2.1. Suppose a policy π∗ satisfies W (π∗, I) = supπ∈ΨW (π, I) for every instance I ∈ I.

Then, we say that π∗ is the Nash solution for I and that it is proportionally fair.

2.4. Grouped K-armed Bandit Model

The grouped K-armed bandit is arguably the simplest non-trivial class of grouped bandits. Let

A = [K]. There is a fixed bipartite graph between the groups G and the arms A; denote by Ag ⊆ A

the arms connected to group g and by Ga ⊆ G the groups connected to arm a. For each g, P g

places unit mass on Ag so that the set of arms available at time t is At = Agt . Assume θ ∈ (0, 1)K ,

and the single period reward Y1(a) ∼ Bernoulli(θ(a)). We assume that θ(a) 6= θ(a′) for all a 6= a′.
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Since the set of arms available at each time step only depends on the arriving group, we denote by

OPT(g) = maxa∈Ag θ(a) the optimal mean reward for group g. We can write the T -period regret as

RT (π, I) =
∑
g∈G

∑
a∈Ag

∆g(a)E[Ng
T (a)],(3)

where Ng
T (a) is the number of times that group g has pulled arm a after T time steps, and

∆g(a) = OPT(g)− θ(a). We take π∗g to be the KL-UCB policy of Garivier and Cappé (2011) since

KL-UCB is optimal (in the sense of (1)) for vanilla K-armed bandits. KL-UCB chooses the arm

with the highest UCB at each time step, where the UCB is defined as

UCBt(a) = max{q : Nt(a)KL(θ̂t(a), q) ≤ log t+ 3 log log t},(4)

where θ̂t(a) is the empirical mean of arm a at time t. Lastly, we state a condition guaranteeing U(I)

contains a point u > 0 (i.e SW can be improved beyond the disagreement point); Proposition G.1

in Appendix G proves the following assumption is necessary and sufficient:

Assumption 2.2. Every group g has at least one suboptimal arm that is shared with another group.

That is, for every g, ∃a ∈ Ag such that µ(a) < OPT(g) and |Ga| ≥ 2.

3. Fairness-Regret Trade-off

In this section, we prove that a regret-optimal policy for a generic grouped K-armed bandit must

necessarily be unfair. We then turn to deriving an upper bound on achievable Nash SW.

3.1. Unfairness of Regret Optimal Policies

We first state the main result, which states that policies that minimize regret are arbitrarily unfair.

In fact, we show that perversely the most ‘disadvantaged’ group (in a sense we make precise shortly)

bears the brunt of exploration in that it sees no utility gain relative to if it were on its own.

Theorem 3.1. Let π be a regret optimal policy. Let I be an instance of the grouped K-armed bandit

where gmin , argming∈G OPT(g) is unique. Then, WI(π) = −∞ and UtilGaingmin(π, I) = 0.

To prove this result, we first define regret optimality by proving a regret lower bound for grouped

K-armed bandits, along with a matching upper bound by a UCB policy. We then show that these

bounds imply necessary properties of all regret optimal policies that yield the desired result.
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Proof of Theorem 3.1. We first lower bound the total number of pulls, E [NT (a)], of a suboptimal

arm. Denote by Agsub = {a ∈ Ag : θ(a) < OPT(g)} the suboptimal actions for group g, and denote

by Asub = {a ∈ A : a ∈ Agsub ∀g ∈ Ga} the set of arms that are not optimal for any group. Now

since a consistent policy for the grouped K-armed bandit is automatically consistent for the vanilla

K-armed bandit obtained by restricting to any of its component groups g, the standard lower bound

of Lai and Robbins (1985) implies that for any a ∈ Agsub, lim infT→∞ E [NT (a)]/log T (g) ≥ Jg(a)

where Jg(a) , 1/KL(θ(a),OPT(g)) and T (g) is the number of arrivals of group g up to and including

time T . Since this must hold for any group, and since limT→∞ log T/ log T (g) = 1 a.s.,

lim inf
T→∞

E [NT (a)]
log T ≥ J(a)(5)

for all a ∈ Asub where J(a) = maxg∈Ga J
g(a). Now, denote by Γ(a) = argming∈Ga

OPT(g) the set of

groups that have the smallest optimal reward out of all groups that have access to a. Then the

smallest regret incurred in pulling arm a is simply ∆g(a) for any g ∈ Γ(a). With a slight abuse,

we denote this quantity by ∆Γ(a)(a). Then, the lower bound (5) immediately implies the following

lower bound on total regret for any consistent policy π:

lim inf
T→∞

RT (π, I)
log T ≥

∑
a∈Asub

∆Γ(a)(a)J(a).(6)

In fact, we show that the KL-UCB policy (surprisingly) achieves this lower bound; the intuition for

this result is discussed in Remark 3.2. Consequently, any regret optimal policy must achieve the

limit infimum in (6). In turn, this implies that a policy π ∈ Ψ is regret optimal if and only if, the

number of pulls of arms a ∈ Asub achieve the lower bound (5), i.e.

lim
T→∞

E [NT (a)]
log T = J(a) ∀a ∈ Asub(7)

and further that any pulls of arm a from a group g /∈ Γ(a) must be negligible, i.e.

lim
T→∞

E[Ng
T (a)]

log T = 0 ∀a ∈ A, g /∈ Γ(a).(8)

Now, turning our attention to gmin, we have by assumption that gmin is the only group in Γ(a) for all

a ∈ Agmin . Consequently, by (8), we must have that for any optimal policy, limT→∞ E[Ngmin
T (a)]/log T =

limT→∞ E [NT (a)]/log T for all a ∈ Agmin . And since J(a) = Jgmin(a) for all a ∈ Agmin ∩ Asub, (7)
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then implies that the regret for group gmin is precisely

lim
T→∞

Rgmin
T (π, I)
log T =

∑
a∈Agmin

sub

∆gmin(a)Jgmin(a).

But this is precisely limT R̃
gmin
T (I)/log T . Thus, UtilGaingmin(π, I) = 0, and WI(π) = −∞. �

The proof also illustrates that if gmax , argmaxg∈G OPT(g) is unique, then gmax incurs no regret

from any shared arm in a regret optimal policy. If all suboptimal arms for gmax are shared with

another group, then gmax incurs zero (log-scaled) regret in an optimal policy. In summary, regret

optimal policies are unfair, and achieve perverse outcomes with the most disadvantaged groups

gaining nothing and the most advantaged groups gaining the most from sharing the burden of

exploration.

Remark 3.2 (Regret Optimality of KL-UCB). The fact that KL-UCB is regret optimal is somewhat

surprising, as the required property (8) seems quite restrictive at first glance. The intuition for this

result can be explained through the 2-group, 3-arm instance of Example 1.1, where θ1 < θ2 < θ3 and

only θ1 is unknown. In this instance, proving (8) corresponds to showing that group B never pulls

arm 1. Under KL-UCB, Group A or B pulls arm 1 at time t if and only if UCBt(1) is larger than

θ2 or θ3 respectively. UCBt(1) can be shown to be equal to θ̂t(1) plus a term of order
√

log t
Nt(1) ; we

refer to the latter term as the ‘radius’ of the UCB. The radius increases logarithmically over time,

but decreases as there are more pulls. Anytime UCBt(1) increases past θ2, group A will pull arm 1,

which causes the radius to shrink. Since the radius grows very slowly, it is unlikely that it ever gets

to a point where UCBt(1) is larger than θ3; and hence group B ends up essentially never pulling

arm 1. The full proof of this result can be found in Appendix C, where the stated argument is used

to prove Lemma C.4. We note that this result, along with the matching lower bound (6), provides a

complete regret characterization of the grouped K-armed bandit model (without fairness concerns).

3.2. Upper Bound on Nash Social Welfare

The preceding question motivates asking what is in fact possible with respect to fair outcomes. To

that end, we derive an instance-dependent upper bound on the Nash SW. We may view this as a

‘fair’ analogue to instance-dependent lower bounds on regret.

Recall the definition of W (π, I) in (2), and let W ∗(I) = supπ∈ΨW (π, I). Fix an instance I with

unknown parameter vector θ. We first upper bound W (π, I). Recall that KL-UCB is the policy π∗g
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used to define R̃gT (I). The fact that KL-UCB is optimal in the vanilla K-armed bandit implies:

lim
T→∞

R̃gT (I)
log T =

∑
a∈Ag

sub

∆g(a)Jg(a).(9)

Next, we re-write RgT (π, I)/log T . Given a policy π, for any action a and group g, let qgT (a, π) ∈ [0, 1]

be the percentage of times that group g pulls arm a, out of the total number of times arm a is

pulled. That is, E[Ng
T (a)] = qgT (a, π)E[NT (a)], where

∑
g∈G q

g
T (a, π) = 1 for all a. Then,

RgT (π, I)
log T =

∑
a∈Ag

sub

∆g(a)qgT (a, π)E[NT (a)]
log T ≥

∑
a∈Ag

sub∩Asub

∆g(a)qgT (a, π)E[NT (a)]
log T .(10)

Recalling UtilGaing(π, I) = lim infT→∞
R̃g

T (I)−Rg
T (π,I)

log T , combining (9), (10), and (5) yields:

UtilGaing(π, I) ≤ lim inf
T→∞

∑
a∈Ag

sub

∆g(a) (Jg(a)− qgT (a, π)J(a)1{a ∈ Asub}) .

Using the definition of W (π, I) and taking the lim inf outside of the sum gives

W (π, I) ≤ lim inf
T→∞

∑
g∈G

log
( ∑
a∈Ag

sub

∆g(a) (Jg(a)− qgT (a, π)J(a)1{a ∈ Asub})
)+

.

But since
∑
g∈G q

g
T (a, π) = 1 for every T, a, it must be that the limit infimum above is achieved for

some vector (qg(a)) satisfying
∑
g∈G q

g(a) = 1 for all a. This immediately yields an upper bound on

W ∗(I): Let Y ∗(I) be the optimal value to the following program P (θ).

(P (θ))

max
q≥0

∑
g∈G

log
( ∑
a∈Ag

sub

∆g(a) (Jg(a)− qg(a)J(a))
)+

s.t.
∑
g∈G

qg(a) = 1 ∀a ∈ Asub

qg(a) = 0 ∀g ∈ G, a /∈ Asub ∩ Ag.

Then, we have shown that the above program yields an upper bound to the Nash SW (some of the

omitted details can be found in Appendix G.3):

Theorem 3.3. For every instance I of the grouped K-armed bandit, W ∗(I) ≤ Y ∗(I).
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4. Nash Solution for Grouped K-armed Bandits

We turn our attention in this section to constructive issues: we first develop an algorithm that

achieves the Nash SW upper bound of Theorem 3.3 and thus establish that this is the Nash solution

for the grouped K-armed bandit. In analogy to the unfairness of a regret optimal policy, it is then

natural to ask whether the regret under this Nash solution is large relative to optimal regret; we

show thankfully that this ‘price of fairness’ is relatively small.

4.1. The Nash Solution: PF-UCB

The algorithm we present here ‘Proportionally Fair’ UCB (or PF-UCB) works as follows: at each

time step it computes the set of arms that optimize the (KL) UCB for some group. Then, when a

group arrives, it asks whether any arm from this set has been ‘under-explored’, where the notion of

under-exploration is measured relative to an estimated optimal solution to P (θ). Such an arm, if

available, is pulled. Absent the availability of such an arm, a greedy selection is made.

Specifically, let θ̂t be the empirical mean estimate of θ at time t. P (θ̂t) is then our approximation

to P (θ) at time t and we denote by q̂t the optimal solution to this program with smallest euclidean

norm. Note that finding such a solution constitutes a tractable convex optimization problem. Finally,

we denote by AUCB
t (g) ∈ argmaxa∈Ag UCBt(a) the arm with the highest UCB for group g at time

t, and by AUCB
t = {AUCB

t (g) : g ∈ G} the set of arms that have the highest UCB for some group.

PF-UCB then proceeds as follows. At time t:

1. If there is an available arm a ∈ Agt ∩ AUCB
t such that Ngt

t (a) ≤ q̂gt (a)Nt(a), pull a. If there

are multiple arms matching this criteria, pull one of them uniformly at random.

2. Otherwise, pull the greedy arm Agreedy
t (gt) ∈ argmaxa∈Agt θ̂t(a).

PF-UCB explores at time t by pulling an arm if it is the arm with the highest UCB for some group

(not necessarily group gt), and the current group gt has not pulled it as many times as it should

have according to the solution q̂t. PF-UCB constitutes a Nash solution for the grouped K-armed

bandit. Specifically, we show the following theorem:

Theorem 4.1. Let I be an instance of the grouped K-armed bandit. Let q∗ be the optimal solution

to (P (θ)) with the smallest euclidean norm. For all groups g ∈ G,

lim
T→∞

RgT (πPF-UCB, I)
log T =

∑
a∈Ag

∆g(a)qg∗(a)J(a).
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It is worth noting that relative to the existing optimization-based algorithms for structured

bandits (e.g. Lattimore and Szepesvari (2017), Combes et al. (2017), Van Parys and Golrezaei

(2020), Hao et al. (2020)), PF-UCB does no forced sampling. In addition, we make no requirement

that the solution to the optimization problem P (θ) is unique as these existing policies require.

In fact, optimal solutions to P (θ) are not unique, and the choice of a solution that has smallest

euclidean norm is carefully shown to provide the necessary ‘stability’ while being computationally

tractable. That said, Section 5 shows how we can fruitfully leverage an existing algorithm from Hao

et al. (2020) to construct a candidate Nash solution for a setting beyond K-armed bandits.

We provide a sketch of the proof of Theorem 4.1; the full proof can be found in Appendix E.

Proof Sketch of Theorem 4.1. Let Pullgt (a) = 1(gt = g,At = a) be the indicator for group g

pulling arm a at time t. There are two reasons why Pullgt (a) would occur: (i) a = AUCB
t (g′) for

some group g′, or (ii) a = Agreedy
t (g). We first show that the regret from (ii) is negligible:

Proposition 4.2. For any group g and arm a ∈ Agsub suboptimal for g,

T∑
t=1

Pr(Pullgt (a), Agreedy
t (g) = a) = O(log log T ).

Sketch of Proposition 4.2: Let Rt = {Pullgt (a), Agreedy
t (g) = a} be the event of interest. Since Rt

involves pulling arm a, the estimator θ̂(a) improves every time Rt occurs. Therefore, it is sufficient

to assume that θ̂t(a) is close θ(a); i.e. bound
∑T
t=1 Pr(R′t), where R′t = {Pullgt (a), Agreedy

t (g) =

a, θ̂t(a) ∈ [θ(a) − δ, θ(a) + δ]} for a small δ > 0. Let a′ = argmaxa∈Ag θ(a) be the optimal arm

for group g. For R′t to occur, since a is the greedy arm, it must be that θ̂t(a′) ≤ θ(a) + δ. Since

UCBt(a′) ≥ θ(a′) (w.h.p.), the definition of the UCB (12) implies that Nt(a′) ≤ c log t for some

c > 0; i.e. a′ has not been pulled often. Lastly, we show a probabilistic version of the lower bound

of Lai and Robbins (1985), proving that Nt(a′) > c log t with high probability. We combine the

above arguments by using an epoch structure on the time steps to prove the result.

Therefore, all of the regret stems from pulls of type (i), pulls of arms that have the highest UCB

for some group. The fact that KL-UCB is a regret-optimal algorithm implies that the number of

times each arm is pulled is optimal; i.e. (7) holds. Therefore, we need to show that the pulls of arm

a are ‘split’ between the groups according to (qg∗(a))g∈G . The next result pertains to the program

(P (θ)), which states that if the empirical estimate θ̂t is close to the true parameter θ, the approximate

solution q̂t is also close to the true solution q∗. Let Ht(δ) = 1(θ̂t(a) ∈ [θ(a)− δ, θ(a) + δ] ∀a ∈ A) be
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the event that the estimates for all arms are within δ.

Proposition 4.3. For any ε > 0, there exists δ > 0 such that if Ht(δ), then q̂gt (a) ∈ [qg∗(a) −

ε, qg∗(a) + ε] for all a ∈ A and g ∈ G.

Since both (P (θ)) and (P (θ̂t)) may have multiple optimal solutions, Proposition 4.3 follows from

an intricate analysis of the program to show that the two corresponding optimal solutions that

minimize the euclidean norm are close when θ and θ̂t are close. This result implies that when we

have good empirical estimates of θ (i.e. Ht(δ) is true), the policy of ‘following’ the solution q̂gt (a) will

give us the desired ‘split’ of pulls between groups. The final proposition shows that we do indeed

have good empirical estimates of θ, and Theorem 4.1 follows from combining these propositions.

Proposition 4.4. Fix any δ > 0. For any group g and arm a ∈ Agsub suboptimal for g,

T∑
t=1

Pr(Pullgt (a), Agreedy
t (g) 6= a, H̄t(δ)) = O(log log T ).

Sketch of Proposition 4.4: Let Et = {Pullgt (a), Agreedy
t (g) 6= a, H̄t(δ)}. Divide the time interval

into epochs, where epoch k starts at time sk = 22k . First, we bound the number of times that Et
can occur during epoch k to be at most O(log sk+1). Next, we define Fk = {Hsk

(δ/2), Nsk
(a) >

ca log sk ∀a ∈ A} to be the event that at the start of epoch k, all arm estimates are accurate, and that

all arms have been pulled an ‘expected’ number of times (ca > 0 is an arm-specific constant). We

show Pr(Fk) ≥ 1−O
(

1
log sk

)
using the probabilistic lower bound from the proof of Proposition 4.2.

Lastly, we show that conditioned on Fk, the probability that H̄t(δ) occurs at any time t during

epoch k is O
(

1
log sk

)
. Combining, using log sk+1

log sk
= 2, the expected number of times that Et occurs

during one epoch is O(1), and the result follows since there are O(log log T ) epochs. �

4.2. Price of Fairness

Whereas PF-UCB is proportionally fair, what price do we pay with respect to regret? To answer

this question we compute an upper bound on the ‘price of fairness’. Specifically, define

SYSTEM(I) =
∑
g∈GUtilGaing(πKL-UCB, I) and FAIR(I) =

∑
g∈GUtilGaing(πPF-UCB, I).

UtilGaing(πKL-UCB, I) is the reduction in group g’s regret under a regret optimal policy in the grouped

setting relative to the optimal regret it would have endured on its own; SYSTEM(I) aggregates this
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reduction in regret across all groups. Similarly, UtilGaing(πPF-UCB, I) is the reduction in group g’s

regret under a proportionally fair policy, and FAIR(I) aggregates this across groups. The price of

fairness (PoF) asks what fraction of the optimal reduction in regret is lost to fairness:

PoF(I) , SYSTEM(I)− FAIR(I)
SYSTEM(I) .

Of course, PoF(I) is a quantity between 0 and 1, where smaller values are preferable.

Now for an instance I, let sg(I) = supπ∈Ψ+(I) UtilGaing(π, I) be the maximum achievable

utility gain (or equivalent, the largest reduction in regret possible) for group g, where Ψ+(I) =

{π ∈ Ψ : UtilGaing(π, I) ≥ 0 ∀g ∈ G}. Then, R(I) = ming∈G sg(I)/maxg∈G sg(I) is a measure of

the inherent asymmetry of the instance I with respect to utility gain across groups. We show:

Theorem 4.5. For an instance I of the grouped K-armed bandit, PoF(I) ≤ 1−R(I)2
√
G−1
G .

The proof relies on an analysis of the price of fairness for general convex allocation problems

in Bertsimas et al. (2011) and may be found in Appendix F. The key takeaway from this result is

that, treating the inherent asymmetry R(I) as a constant, the price of fairness grows sub-linearly in

the number of groups G. It is unclear we can expect this with other fairness solution concepts: for

instance, we would expect the price of fairness under a max-min solution to grown linearly with

the number of groups (Bertsimas et al. 2011). Further, whereas the bound above depends on the

topology of the instance only through R(I), a topology specific analysis may well yield stronger

results. For instance:

Proposition 4.6. Let I be an instance such that for every arm a ∈ A, either Ga = G or |Ga| = 1.

Then PoF(I) ≤ 1
2 .

This result shows that for a specific class of topologies, the price of fairness is a constant

independent of any parameters including the number of groups or the mean rewards. In Section 6

we study the price of fairness computationally in the context of random families of instances.

5. Extension to Grouped Linear Contextual Bandits

In this section, we introduce the grouped linear contextual bandit model and propose a candidate

Nash solution by extending the regret optimal policy of Hao et al. (2020) (without theory). We

apply this model and the policies for an empirical case study in Section 6.
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Grouped Linear Contextual Bandit Model: Let θ ∈ Rd and A ⊆ Rd. The reward for

pulling arm a for the n’th time is Yn(a) = 〈a, θ〉+ εa,n, where εa,n is distributed i.i.d. N(0, 1). Let

M ⊆ Rd be the set of contexts, where |M| = M < ∞, and each m ∈ M is associated with an

action set A(m) ⊆ A. Each group g ∈ G has a probability of arrival, pg, and a distribution P g over

contexts [M ]. At each time t, a group gt is drawn independently from (pg)g, then a random context

mt ∼ P gt is drawn. The action set at time t is At = A(mt). LetMg be the contexts in the support

of P g. Let OPT(m) = maxa∈A(m)〈a, θ〉 and ∆(m, a) = OPT(m)− 〈a, θ〉. If one ignores the group

identities, this is equivalent to a canonical linear contextual bandit problem where the distributions

of contexts are known. Unlike the grouped K-armed bandit model, the set of arms available is not

a deterministic function of the group gt — each group corresponds to a different distribution of

contexts, and the context mt determines the set of available arms.

Regret Optimal Policy: Hao et al. (2020) provides an instance-dependent lower bound for

linear contextual bandits as the optimal value of the following optimization problem:

(L(θ))

Y (M) = min
Q≥0

∑
m∈M

∑
a∈A(m)Q(m, a)∆(m, a)

s.t. Q(a) =
∑
m:a∈A(m)Q(m, a) ∀a ∈ A

(Q(a))a∈A ∈ Q,

where Q is the following polytope ensuring the consistency of the policy:

Q =
{
(Q(a))a∈A : ||a||2

H−1
Q
≤ ∆(m, a)2/2 ∀m ∈ [M ], a ∈ A(m), HQ =

∑
a∈AQ(a)aa>

}
.

The variable Q(m, a) represents how often context m pulls arm a. Hao et al. (2020) provides a policy

called OAM whose regret matches this lower bound. At a high level, like PF-UCB, OAM solves

L(θ̂t) at each time step and ‘follows’ the solution; but it does not make use of a UCB and rather

uses forced exploration. There are many omitted details in the OAM policy; the full description can

be found in Appendix A.2 or in Hao et al. (2020).

Candidate Nash Solution: We propose a policy which runs exactly OAM, except that the
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optimization problem solved at every time step is changed to the following:

(Lfair(θ))

max
Q≥0

∑
g∈G log

(
Y (Mg)−

∑
m∈Mg

∑
a∈A(m)Q

g(m, a)∆(m, a)
)+

s.t. Q(a) =
∑
g∈G

∑
m∈Mg :a∈A(m)Q

g(m, a) ∀a ∈ A

(Q(a))a∈A ∈ Q.

Y (Mg) is the regret for group g at the disagreement point, and the new variable Qg(m, a) represents

how often group g with context m should pull arm a. The objective is to maximize the Nash SW.

We do not have a theoretical guarantee that this extension of OAM is indeed the Nash solution.

This is not implied by Hao et al. (2020) since there is an added group structure on the bandit model

and OAM requires that the optimization problem has a unique solution, which (Lfair(θ)) does not.

Proving such a guarantee is a natural direction for future work.

6. Experiments

We consider two sets of experiments. The first seeks to understand the PoF for the grouped K-armed

bandit in synthetic instances to shed further light on the impact of topology. The second is a

real-world case study that returns to the warfarin dosing example discussed in motivating the paper

where we seek to understand unfairness under a regret optimal policy and the extent to which the

Nash solution can mitigate this problem.

6.1. Synthetic Grouped K-Armed Bandits

We generate random instances of the grouped K-armed bandit model and compute the PoF for

each instance. We consider two generative models that differ in how the bipartite graph matching

groups to available arms is generated:

• i.i.d.: Each edge appears independently with probability 0.5, and K = 10 is fixed. The mean

reward of each arm is i.i.d. U(0, 1).

• Skewed: K = G+ 1, and a group g ∈ {1, . . . , G− 1} has access to arms {g,G}, while the last

group g = G has access to all arms. The arm rewards satisfy θ(1) = · · · = θ(G− 1) < θ(G) <

θ(G+ 1), which are generated randomly by sorting three i.i.d. U(0, 1) random variables.

For each of the two methods, we vary G ∈ {3, 5, 10, 50}, and generate 500 random instances

for each parameter setting. The results in Table 1 shows that the PoF is very small in the ‘i.i.d.’
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setting, and contrary to Theorem 4.5, the PoF actually decreases as G gets large. This suggests an

interesting conjecture for future research: the PoF may actually grow negligible in large random

bandit instances. The ‘Skewed’ structure is motivated by our PoF analysis where we see that the

PoF increases – albeit slowly – with G.

Table 1: The median and 95th percentile of the PoF for synthetic instances of the grouped K-armed
bandit over 500 runs for each parameter setting.

i.i.d. Skewed
G 3 5 10 50 3 5 10 50

Median 0.073 0.054 0.040 0.015 0.327 0.407 0.454 0.521
95th percentile 0.289 0.177 0.142 0.063 0.632 0.764 0.845 0.924

6.2. Case Study: Warfarin Dosing

Warfarin is a common blood thinner whose optimal dosage vastly varies across patients. We perform

an empirical case study on learning the optimal personalized dose of warfarin, modeled as a linear

contextual bandit (as was done in Bastani and Bayati (2020)). We use the race and age of patients as

groups, and we evaluate the effect of incorporating fairness to the regret across groups by considering

the regret optimal and fair policies described in Section 5.

Data: We use a publicly available dataset collected by PharmGKB (Whirl-Carrillo et al. 2012)

containing data on 5700 patients who were treated with warfarin from 21 research groups over 9

countries. The data contains demographical, clinical, and genetic covariates for each patient, as well

as the optimal personalized dose of warfarin that was found by doctors through trial and error.

Groups: We group the patients either by race or age. There are three distinct races in the

dataset, which we label as A, B ,and C. For age, we split the patients into two age groups, where

the threshold age was 70.

Contexts: The optimization problems (L(θ)) and (Lfair(θ)) assume a finite number of possible

feature vectors, and computation scales with this number. Therefore, for tractability, we use five

features for the contexts of the patients, where we discretize each feature into two bins. We use the

five features that are most correlated with the optimal warfarin dosage, and we use the empirical

median of each feature to discretize them. The five features that we use are: age, weight, whether

the patient was taking another drug (amiodarone), and two binary features capturing whether the

patient has a particular genetic variant of genes Cyp2C9 and VKORC1, two genes that are known
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to affect warfarin dosage (Takeuchi et al. 2009). Out of 25 = 32 different possible feature vectors,

there were 21 that were present in the data.

Rewards: We bin the optimal dosage levels into three arms as was done in Bastani and Bayati

(2020): Low (under 3 mg/day), Medium (3-7 mg/day), and High (over 7 mg/day). To ensure that

the model is correctly specified, for each arm, we train a linear regression model using the entire

dataset from the five contexts to the binary reward on whether the optimal dosage for that patient

belongs in that bin.1 Let θa ∈ R6 be the learned linear regression parameter for each arm (the last

element represents the intercept). To model this as grouped linear contextual bandits as described

in Section 5, we let d = 18 and let θ = (θ1, θ2, θ3) ∈ Rd. When a patient with covariates X ∈ R6

arrives, the actions available are {(X,0,0), (0, X,0), (0,0, X)}, and their expected reward from arm

a is 〈X, θa〉 for a ∈ {1, 2, 3}.

Algorithms: We assume a patient is drawn i.i.d. from the dataset at each time step, and we

compute the asymptotic group regret of the OAM policy (‘Regret optimal’) and the fair extension

(‘Fair’) as described in Section 5:

• Regret optimal: Using the true values θ, we solve (L(θ)) and obtain solution (Q(m, a))m∈[M ],a∈A.

Then, the total (log-scaled) regret incurred by context m is
∑
a∈A∆(m, a)Q(m, a). Since

we assume the group arrivals are i.i.d., for each context, we allocate the regret to groups in

proportion to the group’s frequency. That is, for each m, let (wg(m))g∈G ,
∑
g∈G w

g(m) = 1 be

the empirical distribution of groups among patients with context m. Then, the total regret

assigned to group g is
∑
m∈[M ]w

g(m)
∑
a∈A∆(m, a)Q(m, a).

• Fair: Using the true values θ, we solve (Lfair(θ)) and obtain solution (Qg(m, a))g∈G,m∈[M ],a∈A.

The total regret assigned to group g is
∑
m∈[M ]

∑
a∈A∆(m, a)Qg(m, a).

Discussion: The results in Table 2 show that for either groups based on race and age, the fair

solution effectively ‘balances out’ the utility gains across groups with a small increase in regret. For

race, examining the distribution of groups per context, displayed in Table 3, help illuminate some of

the findings. Recall that the optimization problems (L(θ)) and (Lfair(θ)) use only the support of

the context distributions. Because group A spans the fewest number of contexts (7 out of 21), its

regret at the disagreement point is the smallest, as it does not need to learn as many ‘directions’ of

the true parameter as the other groups. Group B and C span similar contexts, so the regret at the
1This linear regression step is done to remove model misspecification errors. The purpose of this study is not to

show that the linear contextual bandit model is a good fit for this dataset (this was demonstrated in Bastani and
Bayati (2020)), but rather to present the impact of fairness on an instance derived from the warfarin dataset.
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Table 2: Asymptotic disagreement point, regret, and utility gains for each group under the regret
optimal and fair policies, where groups are either based on race or age. As regret scales logarithmically
as T →∞, these numbers represent the coefficient of log T term.

Race Age
A B C Total < 70 ≥ 70 Total

Regret
Disagreement point 25.6 74.8 78.6 179.1 164.7 78.0 242.8

Regret optimal 1.9 5.6 71.1 78.6 151.6 23.2 174.8
Fair 0.0 25.4 54.0 79.4 149.3 29.3 178.7

Utility Gain Regret optimal 23.7 69.2 7.6 100.4 13.1 54.9 68.0
Fair 25.6 49.4 24.6 99.6 15.4 48.7 64.1

disagreement point for these two groups are similar. However, because a larger fraction of patients

for each context comes from group C, ‘Regret optimal’ assigns the majority of the regret from each

context to group C. The fair solution effectively ‘transfers’ regret from C to B by assigning more

pulls incurring regret to group B.

Table 3: The empirical distribution of groups based on race, (wg(m))g∈[A,B,C], for each of the 21 different
contexts.

1 2 3 4 5 6 7 8 9 10 11
A 79.6 69.4 43.6 28.2 27.7 13.8 9.4 0.0 0.0 0.0 0.0
B 2.5 3.0 4.5 0.0 14.0 8.7 5.2 100.0 52.9 49.2 25.1
C 17.9 27.6 51.8 71.8 58.3 77.5 85.3 0.0 47.1 50.8 74.9

12 13 14 15 16 17 18 19 20 21 Total
A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9
B 22.2 17.0 13.6 12.0 9.0 3.6 0.0 0.0 0.0 0.0 9.3
C 77.8 83.0 86.4 88.0 91.0 96.4 100.0 100.0 100.0 100.0 58.8

For age, the impact of fairness is smaller than with race. Unlike race, age was included as one of

the five covariates in the context vector, and therefore the context distributions for the two age

groups do not overlap at all. There is still opportunity for the groups to learn from each other

(as total regret decreases from the disagreement point); however, the fact that there is no context

overlap makes it harder for the fair solution to easily ‘balance out’ regret across the two groups.
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7. Conclusion

This paper provides the first framework in evaluating fairness for allocating the burden of exploration

in a group learning setting. Though the phenomenon motivating this problem has been previously

observed (Jung et al. 2020, Raghavan et al. 2018), this work contains the first positive results to the

best of our knowledge. Our work establishes a rigorous, axiomatic framework that can be readily

applied to a plethora of different learning models.

With that said, a broad direction for future work is to apply this framework to other bandit

settings where fairness is relevant. We proposed a fair algorithm for grouped linear contextual

bandits, but proving a theoretical guarantee, analyzing the price of fairness, or studying the

unfairness of canonical algorithms (e.g. LinUCB) in this setting (or others) are just few of the many

possible questions in this direction.

Another direction for future work is further analysis on the grouped K-armed bandit model. One

immediate question is whether tighter bounds for the price of fairness can be proven by exploiting

the special topology of the grouped bandit problem. Another direction is to analyze the framework

using an alternative fairness definition, such as max-min fairness. It is known that max-min fairness

has a higher price of fairness in general allocation problems (Bertsimas et al. 2011), and it would be

interesting to examine whether the same holds in grouped bandits.
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A. Deferred Descriptions

A.1. Negative Externality Example from Raghavan et al. (2018)

Raghavan et al. (2018) provide an example of an instance where there exists a sub-population that
is better off when UCB is run on that sub-population alone, compared to running UCB on the entire
population. The example they provide depends on the total time horizon T . We claim that this
does not occur when you fix an instance and consider asymptotic log-scaled regret, limT→∞

RT
log T .

Fix any time T0, and consider the two-armed instance according to T = T0 from Definition 1
of Raghavan et al. (2018). The population consists of three buckets that depend on their starting
location: A, B, and C. The sub-population consisting of B and C is dubbed the “minority”, while A
is the “majority”. Note that only B has access to both arms and hence it is the only bucket that
can ever incur regret. Group B pulls the arm that has a higher UCB, defined as θ̂t(a) +

√
α log T0
Nt(a)

for some tuning parameter α > 0.
We first summarize informally how the negative externality arises. Because arms 1 and 2 are so

close together, even after O(T0) time steps, which arm has a higher UCB is not dominated by the
difference between their empirical means, but it is dominated the second term of the UCB:

√
α log T0
Nt(a) ,

which is just a function of the number of pulls Nt(a). That is, group B essentially ends up pulling
the arm that has fewer pulls. Therefore, when only the minority exists, since C only pulls arm 2,
arm 1 ends up having a higher UCB, and hence B ends up always pulling arm 1. However, if the
majority group exists, arm 1 always has more pulls than arm 2 since there are more people from A
then C. Then, B ends up essentially always pulling arm 2. If arm 2 is the arm that has a lower true
reward than arm 1, then regret is higher when the majority group exists — therefore, the existence
of the majority can have a “negative externality” on the minority.

However, if we fix this instance and let T → ∞, then no matter which arms is better, from
Theorem C.1, the total log-scaled regret is 0 from running KL-UCB. Moreover, when the majority
does not exist, then the minority incurs non-zero log-scaled regret when θ1 < θ2. Therefore, the
presence of the majority can only help the minority.

This example from Raghavan et al. (2018) shows that the presence of the majority can negatively
affect the minority in the early time steps (i.e. t < T0). In the asymptotic regime, such a negative
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externality corresponds to adding o(log T ) regret, which is deemed insignificant in our setting.

A.2. Optimal Allocation Matching (OAM) Policy

We describe the OAM algorithm from Hao et al. (2020).
Preliminaries: Let Gt =

∑t−1
s=1AsA

>
s and let θ̂t = G−1

t

∑t−1
s=1AsYs be the least squares

estimate of θ at time t. Let ∆̂m
t (a) = maxa′∈A(m)〈a′−a, θ̂t〉 be the corresponding estimate of ∆m(a).

Let ∆̂min
t = minm∈[M ] min

a∈A(m),∆̂t(m,a)>0 ∆̂t(m, a) be the smallest nonzero instantaneous regret.
Let

fT,δ = 2
(

1 + 1
log T

)
log

(1
δ

)
+ cd log(d log T ),

where c is an absolute constant. Let fT = fT,1/T .
Define the following optimization problem that takes ∆̃(m, a) as input:

(K)

min
∑
m∈M

∑
a∈A(m)

Q(m, a)∆̃(m, a)

s.t. ||a||2
H−1

T
≤ ∆̃(m, a)2

fT
∀m ∈M, a ∈ A(m)

Q(m, a) ≥ 0 ∀m ∈M, a ∈ A,

where HT =
∑
m∈M

∑
a∈A(m)Q(m, a)aa> is invertible. Let (Q̂t(m, a))m∈M,a∈A be the solution to

(K) using ∆̃ = ∆̂t.
Algorithm: We are now ready to state the algorithm. At each time step t, observe context

mt and do the following. First, check whether

||a||2
G−1

t
≤ ∆̂t(m, a)2

fT
∀a ∈ A(mt).(11)

If (11) is satisfied, we exploit; otherwise, we explore.
Exploit: Pull the greedy arm: argmaxa∈A(mt)〈a, θ̂t〉.
Explore: Let s(t) be the total number of exploration rounds so far. Solve the empirical optimization
problem (K) to get solution Q̂t(m, a).

1. Check whether Nmt
t (a) ≥ min(Q̂t(mt, a), fT /(∆̂min

t )2) holds for all available arms a ∈ A(mt).
If so, pull the UCB arm At = argmaxa∈A(mt)〈a, θ̂t〉+

√
fT,1/s(t)2 ||a||G−1

t
.

2. Check whether there exists an available arm a ∈ A(mt) such that Nt(a) ≤ εts(t), where
εt = 1/ log log t. If there is, then pull At = argmina∈cAmt Nt(a).

3. If the above two criteria are not true, then pull At = argmina∈Amt
Nt(a)

min(Q̂t(mt,a),fT /(∆̂min
t )2)

.
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B. Proof Preliminaries

B.1. Notation

For all of the subsequent proofs, we assume that an instance I is fixed. We often use big-O notation,
which is with respect to T →∞, unless otherwise specified. The big-O hides constants that may
depend on any other parameter other than T , including the instance I. In general, when we
introduce a constant, it may depend on any other parameters other than T . We are usually not
concerned with the values of the constants as we are concerned with asymptotic results (though
we do concern ourselves with constants in front of the leading term, usually log T ). We sometimes
re-use letters like c for constants but they do not refer to the same value.

The UCB of an arm is defined as:

UCBt(a) = max{q : Nt(a)KL(θ̂t(a), q) ≤ log t+ 3 log log t}.(12)

Let Pullt(a) be the indicator for arm a being pulled at time t, and let Pullgt (a) be the indicator
for when arm a is pulled by group g. We define the class of log-consistent policies:

Definition B.1. A policy π for the grouped bandit problem is log-consistent for if for any instance
(θ,G, (pg)g∈G, (Ag)g∈G), for any group g,

E

 ∑
a∈Asub(g)

Ng
T (a)

 = O(log T ).(13)

That is, the expected number of times that group g pulled a suboptimal arm by time t is
logarithmic in the number of arrivals of g.

B.2. Commonly Used Lemmas

We state a few lemmas that are used several times for both Theorem C.1 and Theorem 4.1. These
lemmas do not depend on the policy that is used. The first result shows that the number of times
that an arm’s UCB is smaller than its true mean is small.

Lemma B.2. Let Λt = {UCBt(a) ≥ θ(a) ∀a ∈ A} be the event that the UCB for every arm is valid
at time t.

T∑
t=1

Pr(Λ̄t) = O(log log T ).

Proof. For a fix arm a,
∑T
t=1 Pr(UCBt(a) < θ(a)) = O(log log T ) follows from Theorem 10 of

Garivier and Cappé (2011), plugging in δ = log t+ 3 log log t as is done in the proof of Theorem 2 of
Garivier and Cappé (2011). The result follows from a union bound over all actions a ∈ A. �

The second lemma states a relationship between the radius of the UCB of an arm and the
number of pulls of the arm.

Lemma B.3. Let 0 < α < β < 1. There exists a constant c > 0 such that if θ̂t(a) ≤ α and
UCBt(a) ≥ β, then Nt(a) < c log t.
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Proof. Suppose θ̂t(a) ≤ α and UCBt(a) ≥ β. Then, KL(θ̂t(a),UCBt(a)) ≥ KL(α, β). Let
c = 4

KL(α,β) . By definition of the UCB (12), Nt(a) ≤ log t+3 log log t
KL(θ̂t(a),UCBt(a)) ≤ c log t. �

This result essentially states that if the radius of the UCB of an arm is larger than a constant,
then the number of pulls of the arm is at most O(log t); this result follows simply from the definition
of the UCB (12). The next result states that if an arm a is pulled, then its empirical mean will be
close to its true mean.

Lemma B.4. For any group g and arm a ∈ Ag, if L < θ(a) < U ,

T∑
t=1

Pr(Pullt(a), θ̂t(a) /∈ [L,U ]) = O(1).

where big-O hides constants that may depend on the instance and L,U .

Proof. Let θ̂n(a) be the empirical mean after n pulls of arm a. Let Et,n be the event that the
number of times arm 1 has been pulled before time t is exactly n.

T∑
t=1

Pr(Pullt(a), θ̂t(a) /∈ [L,U ])

=
T∑
t=1

T∑
n=1

Pr(Pullt(a), θ̂n(a) /∈ [L,U ], Et,n)

=
T∑
n=1

T∑
t=1

Pr(θ̂n(a) /∈ [L,U ]
∣∣ Pullt(a), Et,n) Pr(Pullt(a), Et,n)

If Ft,n = {Pullt(a), Et,n}, then for any n, the events F1,n, . . . , FT,n are disjoint. Then, by the law of
total probability, Pr(θ̂n(a) /∈ [L,U ]) ≥

∑T
t=1 Pr(θ̂n /∈ [L,U ]|Ft,n) Pr(Ft,n). Therefore,

T∑
t=1

Pr(Pullt(a), θ̂t(a) /∈ [L,U ]) ≤
T∑
n=1

Pr(θ̂n(a) /∈ [L,U ]) ≤
T∑
n=1

exp(−αn).

for some α > 0 since the rewards of arm a are Bernoulli. Therefore,
∑T
t=1 Pr(Pullt(a), θ̂t(a) /∈

[L,U ]) = O(1). �

C. Proof that KL-UCB is Regret Optimal

In this section, we prove that the KL-UCB policy is regret-optimal. At each time step, πKL-UCB

chooses the arm with the highest UCB, defined as (12), out of all arms available.

Theorem C.1. For all instances I of the grouped K-armed bandit,

lim inf
T→∞

RT (πKL-UCB, I)
log T ≤

∑
a∈Asub

∆Γ(a)(a)J(a).(14)

The first step of the proof is to show that the number of pulls of a suboptimal arm is optimal:
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Proposition C.2. Let a ∈ Asub be a suboptimal arm. KL-UCB satisfies

lim sup
T→∞

E [NT (a)]
log T ≤ J(a).

This result can be shown using the existing analysis of KL-UCB from Garivier and Cappé (2011).
The next step is to analyze how these pulls are distributed across groups. In particular, we need
to show that a group never pulls a suboptimal arm a if g /∈ Γ(a). This is the result of the next
theorem:

Proposition C.3. Let a ∈ A. Let g ∈ Ga, g /∈ Γ(a) be a group that has access to the arm but is
not the group that has the smallest optimal out of Ga. Then, KL-UCB satisfies

E [Ng
T (a)] = O(log log T ),

where the big-O hides constants that depend on the instance.

This result implies that for any arm a, the regret incurred by group g /∈ Γ(a) pulling the arm
is o(log T ), and is equal to 0 when scaled by log T . Theorem C.1 then follows from combining
Proposition C.2 and Proposition C.3.

In this section, we prove Proposition C.3. Let a ∈ A and let A ∈ Γ(a) be a group that has access
to that arm with the smallest OPT. Let group B /∈ Γ(a) be another group that has access to arm a.
Let θA, θB be the optimal arms for group A and B respectively. We use θA, θB to refer to both the
arm and the arm means. Our goal is to show E

[
NB
T (a)

]
= O(log log T ).

E
[
NB
T (a)

]
=

T∑
t=1

Pr(PullBt (a))

=
T∑
t=1

Pr(PullBt (a),UCBt(θB) ≥ θB) +
T∑
t=1

Pr(PullBt (a),UCBt(θB) < θB).

The second sum can be bounded by Lemma B.2, since
∑T
t=1 Pr(PullBt (a),UCBt(θB) < θB) ≤∑T

t=1 Pr(Λ̄t) = O(log log T ). Therefore, our goal is to show

T∑
t=1

Pr(PullBt (a),UCBt(θB) ≥ θB) = O(log log T ).(15)

We state a slightly more general result that implies (15).

Lemma C.4. Suppose we run any log-consistent policy π. Let r > 0 be fixed. For any a ∈ A,

T∑
t=1

Pr(Pullt(a),UCBt(a) ≥ OPT(Γ(a)) + r) = O(log log T ),

where the constant in the big-O may depend on the instance and r.

The rest of this section proves Lemma C.4.
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C.1. Probabilistic Lower Bound of Nt(a) for Grouped Bandit

One of the main tools used in the proof of Lemma C.4 is a high probability lower bound on the
number of pulls of a suboptimal arm. Let Wt(g) be the number of arrivals of group g by time t.
Let Rgt = {Wt(g) ≥ pgt

2 } be the event that the number of arrivals of group g is at least half of the
expected value. We condition on the event Rgt to ensure that a group has arrived a sufficient number
of times.

Proposition C.5. Let g be a group, and let a ∈ Agsub be a suboptimal arm for group g. Fix
ε ∈ (0, 1). Suppose we run a log-consistent policy as defined in Definition B.1. Then,

Pr
(
Nt(a) ≤ (1− ε) log t

KL(θ(a),OPT(g))

∣∣∣∣ Rgt) = O

( 1
log t

)
,

where the big-O notation is with respect to t→∞.

The proof of this result can be found in Appendix D.3. For an arm a /∈ Asub, we have the
following stronger result:

Proposition C.6. Let a be an arm that is optimal for some group g. Suppose we run a log-consistent
policy. Then, for any b > 0,

Pr
(
Nt(a) ≤ b log t

∣∣ Rgt ) = O

( 1
log t

)
,

where the big-O notation is with respect to t→∞ and hide constants that depend on both b and the
instance.

C.2. Proof of Lemma C.4

Outline: Let A ∈ Γ(a) be a group that has the smallest optimal out of all arms with access to a.
The main idea of this lemma is that group A does not “allow” the UCB of arm a to grow as large
as OPT(A) + r, as group A would pull arm a once the UCB is above OPT(A). Proposition C.5
implies that UCBt(a) is not larger than OPT(A) with high probability. If this occurs at time t,
since the radius of the UCB grows slowly (logarithmically), the earliest time that the UCB can grow
to OPT(A) + r is tγ , for some γ > 1. We divide the time steps into epochs, where if epoch k starts
at time sk, it ends at sγk . This exponential structure gives us O(log log T ) epochs in total, and we
show that the expected number of times that UCBt(a) > OPT(A) + r during one epoch is O(1).
Proof: We denote by θa the true mean reward of arm a and by θ̂t the empirical mean reward
of a at the start of time t. Let U = OPT(Γ(a)) + r. Let A ∈ Γ(a), and let θA = OPT(A). If
a /∈ Asub, then let θA = OPT(A) + r/2. Let b > 0 such that KL(θa,U)

KL(θa,θA) = 1 + b. Define θu ∈ [θa, θA]
such that KL(θu,U)

KL(θa,θA) = 1 + b
2 . We have θa < θu < θA < U . Define γ , 1 + b

4 . Let ε > 0 such that
1−ε
1+ε ·

KL(θu,U)
KL(θa,θA) = γ.

By Lemma B.4,
∑T
t=1 Pr(Pullt(a), θ̂t(a) > θu) = O(1). Therefore, we can assume θ̂t(a) ≤ θu.

Denote the event of interest by Et = {Pullt(a),UCBt(a) ≥ θA + r, θ̂t(a) ≤ θu}. Our goal is to show∑T
t=1 Pr(Et) = O(log log T ).
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Divide the time interval T into K = O(log log T ) epochs. Let epoch k start at sk ,
⌈
2γk
⌉

for
k ≥ 0. Let Tk = {sk, sk + 1, . . . , sk+1 − 1} be the time steps in epoch k. This epoch structure
satisfies the following properties:

1. The total number of epochs is O(log log T ).

2. log sk+1
log sk

= γ for all k ≥ 0.

We will treat each epoch separately. Fix an epoch k. Our goal is to bound E
[∑

t∈Tk
1(Et)

]
.

Lemma B.3 implies that there exists a constant c > 0 such that if Et occurs, it must be that
Nt(a) < c log t. Hence, ∑

t∈Tk

1(Et) ≤ c log sk+1.

Define the event Gt =
{
Nt(a) ≥ (1− ε) log t

KL(µ,θA)

}
. The following claim says that if Gsk

is true,
then Et never happens during that epoch.

Claim C.7. Suppose Gsk
is true. Let t0 be such that if t ≥ t0, log log t ≤ ε log t. Then, if

sk ≥ t0,
∑sk+1
t=sk

1(Et) = 0.

This result follows from the fact that the event Gsk
implies that the radius of the UCB is “small”

at time sk, and the epoch is defined so that the radius will not grow large enough that Et can occur
during epoch k. Therefore, we have the following:

E

∑
t∈Tk

1(Et)

 = E

∑
t∈Tk

1(Et)
∣∣∣∣Ḡsk

Pr
(
Ḡsk

)
≤ c log sk+1 Pr

(
Ḡsk

)
.

We can bound Pr
(
Ḡsk

)
using the probabilistic lower bound of Proposition C.5.

Claim C.8. Pr
(
Ḡsk

)
≤ O

(
1

log sk

)
.

Then, property 2 of the epoch structure implies E
[∑

t∈Tk
1(Et)

]
= O(1). Since the number of

epochs is O(log log T ),

E
[
T∑
t=1

1(Et)
]
≤

K∑
k=1

E

∑
t∈Tk

1(Et)

 = O(log log T ),

as desired.

C.3. Proof of Claims

Proof of Claim C.7. Let t = sk > t0 and let t′ ≥ t such that Et′ is true. By definition of KL-UCB,

Nt′(a) ≤ log t′ + 3 log t′

KL(θ̂t′ ,UCBt′(θ))
.
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Since Et′ implies UCBt′(a) > θB and θ̂t′ ≤ θu, we have Nt′(a) ≤ log t′+3 log t′
KL(θu,θB) . Since Gsk

is true,
Nt′(a) ≥ (1− ε) log sk

KL(θa,θA) . Therefore, it must be that

(1− ε) log sk
KL(θa, θA) ≤

log t′ + 3 log log t′

KL(θu, θB) ≤ (1 + ε) log t′

KL(θu, θB)

⇒ 1− ε
1 + ε

· KL(θu, θB)
KL(θa, θA) log sk ≤ log t′

⇒ t′ ≥ sγk .

This implies that t′ is not in epoch k. �

Proof of Claim C.8. For group g = A, Proposition C.5 (or Proposition C.6 if a /∈ Asub) states
that

Pr
(
Ḡsk

∣∣ Rgsk

)
= O

( 1
log sk

)
.

(We show in Appendix D.1 that KL-UCB is log-consistent.)
Now we need to bound Pr(R̄gsk

) = Pr
(
Msk

(A) ≤ pAsk
2
)
. Note that Ms(A) =

∑s
t=1 Z

A
i , where

ZAt
iid∼ Bern(pA). By Hoeffding’s inequality,

Pr
(
Msk

(A) ≤ pAsk
2

)
< exp

(
−1

2p
2
Ask

)
.

Combining, we have

Pr(Ḡk) ≤ Pr(R̄k) + Pr(Ḡk | Rk) ≤ O
( 1

log sk

)
.

�

D. Deferred Proofs for Theorem C.1

For any ε > 0, let

Kg
ε (x) =

⌈ 1 + ε

KL(θa,OPT(g)) (log x+ 3 log log x)
⌉
.

To show both Proposition C.2 and the fact that KL-UCB is log-consistent, we make use of the
following lemma.

Lemma D.1. Let a ∈ A. Let g ∈ Ga be a group in which a is suboptimal. For any ε > 0,

E
[
T∑
t=1

1(Pullgt (a), Nt(a) ≥ Kg
ε (T ))

]
= O(log log T ).(16)
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Proof. Let ε > 0. Recall that A∗g is the optimal arm for group g, and OPT(g) is the mean reward
of A∗g.

E
[
T∑
t=1

1(Pullgt (a), Nt(a) ≥ Kg
ε (T ))

]

= E
[
T∑
t=1

1(Pullgt (a), Nt(a) ≥ Kg
ε (T ),UCBt(A∗g) ≥ OPT(g))

]
+ E

[
T∑
t=1

1(Pullgt (a),UCBt(A∗g) < OPT(g))
]

The second term is O(log log T ) from Lemma B.2. We will show that the first term is O(1).
Let θ̂s(a) be the empirical mean of a after s pulls. Consider the event {At = a, gt = g,Nt(a) =
s,UCBt(A∗g) ≥ OPT(g)}, where s ≥ Kn. Suppose this is true at time t. Then, it must be that
UCBt(a) ≥ OPT(g). For this to happen, by definition of KL-UCB, it must be that

sKL(θ̂s(a),OPT(g)) ≤ log t+ 3 log log t.(17)

Since s ≥ Kg
ε (T ) and t ≤ T , we must have

KL(θ̂s(a),OPT(g)) ≤ log T + 3 log log T
Kg
ε (T ) = KL(θa,OPT(g))

1 + ε
.(18)

Let r > θa such that KL(r,OPT(g)) = KL(θa,OPT(g))
1+ε . Then, for (18) to occur, it must be that

θ̂s(a) ≥ r. Then, we have

E
[
T∑
t=1

1(Pullgt (a), Nt(a) ≥ Kg
ε (n),UCBt(A∗g) ≥ OPT(g))

]

=E

 T∑
t=1

∞∑
s=Kn

1(Pullgt (a), Nt(a) = s,UCBt(A∗g) ≥ OPT(g))


≤E

 T∑
t=1

∞∑
s=Kn

1(Pullgt (a), Nt(a) = s, θ̂s(a) ≥ r)


=E

 ∞∑
s=Kn

1(θ̂s(a) ≥ r)
T∑
t=1

1(Pullgt (a), Nt(a) = s)


≤

∞∑
s=Kn

Pr(θ̂s(a) ≥ r).

Since r > µ(a), there exists a constant C3 > 0 that depends on ε and r such that Pr(µs(a) ≥
r) ≤ exp(−sC3). Therefore,

∑∞
s=Kn

Pr(θ̂s(a) ≥ r) = O(1) and we are done.
�
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D.1. Proof that KL-UCB is log-consistent

This basically follows from Lemma D.1. Let ε = 1/2. Fix a group g, and let a be a suboptimal arm
for g.

E[Ng
T (a)] = E

[
T∑
t=1

1(Pullgt (a))
]

≤ Kg
ε (T ) + E

tg(n)∑
t=1

1(Pullgt (a), Nt(a) ≥ Kg
ε (T ))


= Kg

ε (T ) + log log(T ).

We are done since Kg
ε (T ) = O(log T ).

D.2. Proof of Proposition C.2

Let a ∈ Asub be a suboptimal arm. Let ε > 0. Let

KT = max
g∈Ga

Kg
ε (T ).

Clearly, the maximum is attained in the group g with the smallest OPT(g), so.

KT =
⌈ 1 + ε

KL(θa,OPT(Γ(a))) (log T + 3 log log T )
⌉
.

E[NT (a)] = E
[
T∑
t=1

1(At = a)
]

≤ KT + E
[
T∑
t=1

1(At = a,Nt(a) ≥ KT )
]

≤ KT +
∑
g∈Ga

E
[
T∑
t=1

1(Pullgt (a), Nt(a) ≥ KT )
]

≤ KT +
∑
g∈Ga

O(log log T ).

where the last inequality follows from Eq. (16) of Lemma D.1. Since this holds for any ε > 0, the
desired result holds.

D.3. Proof of Proposition C.5 and Proposition C.6

Let g be a group, and let j be a suboptimal arm for group g; i.e. θj < OPT(g). Fix ε > 0. We
assume that the event Rgt = {Wt(g) ≥ pgt

2 } holds. Fix δ > 0 such that 1−δ
1+δ = 1− ε. Let a = δ/2.

We construct another instance γ where arm j is replace with λ so that arm j is the optimal arm for
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g in the same manner as the Lai-Robbins proof. Specifically, λ > θj such that

KL(θj , λ) = (1 + δ)KL(θj ,OPT(g)).

Our goal is to bound the probability of event
{
Nt(j) ≤ (1−δ) log t

KL(θj ,λ)

}
, which we split into two events:

Ct =
{
Nt(j) ≤

(1− δ) log t
KL(θj , λ) , LNt(j) ≤ (1− a) log t

}
,

Et =
{
Nt(j) ≤

(1− δ) log t
KL(θj , λ) , LNt(j) > (1− a) log t

}
,

where Lm =
∑m
i=1 log

(
f(Yi;θj)
f(Yi;λ)

)
.

Assumption (13), there exists a constant c such that if t is large enough that Pr(Rgt ) ≥ 1/2,

Eγ

 ∑
a∈Asub

Ng
t (a)

∣∣∣∣ Rgt
 ≤ c log t.

Since j is the unique optimal arm under γ,

Eγ
[
Wt(g)−Ng

t (j)
∣∣∣∣ Rgt ] ≤ c log t.

Using Markov’s inequality and using the fact that Wt(g) ≥ pgt
2 , we get

Prγ

(
Ng
t (j) ≤ (1− δ) log t

KL(θj , λ)

∣∣∣∣ Rgt
)

= Prγ

(
Wt(g)−Ng

t (j) ≥Wt(g)− (1− δ) log t
KL(θj , λ)

∣∣∣∣ Rgt
)

≤Prγ

(
Wt(g)−Ng

t (j) ≥ pgt

2 −
(1− δ) log t
KL(θj , λ)

∣∣∣∣ Rgt
)

≤
E
[
Wt(g)−Ng

t (j)
∣∣ Rgt ]

pgt
2 −

(1−δ) log t
KL(θj ,λ)

=O
( log t

t

)
.

Bounding Pr(Ct | Rgt ): Following through with the same steps as the original proof, we can
replace (2.7) with

Prθ(Ct | Rgt ) ≤ t1−a Prγ(Ct | Rgt ) ≤ t1−aO
( log t

t

)
= O

( log t
ta

)
.

Bounding Pr(Et | Rgt ): Next, we need to show a probabilistic result in lieu of (2.8) of Lai and
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Robbins (1985). Let m = (1−δ) log t
KL(θj ,λ) and let α > 0 such that (1 +α) = 1−a

1−δ . We need to upper bound

Prθ
(

max
j≤m

Lj > (1− a) log t
)

= Prθ
(

max
j≤m

Lj > (1 + α)KL(θj , λ)m
)

≤ Prθ
(

max
j≤m
{Lj − jKL(θj , λ)} > αKL(θj , λ)m

)
.

Let Zi = log
(
f(Yi;θj)
f(Yi;λ)

)
−KL(θj , λ). We have E[Zi] = 0. Let Var(Zi) = σ2. Then, by Kolmogorov’s

inequality, we have

Prθ

max
j≤m

j∑
i=1

Zi > αKL(θj , λ)m

 ≤ 1
α2KL(θj , λ)2m2 Var

(
m∑
i=1

Zi

)

= σ2

α2KL(θj , λ)2m

= O

( 1
log t

)
,

since m = Θ(log t).
Combine: Combining, we have

Prθ

(
Nt(j) ≤

(1− δ) logn
KL(θj , λ)

∣∣∣∣ Rgt
)

= Prθ(Cn
∣∣ Rgt ) + Prθ(En

∣∣ Rgt )
= O

( log t
ta

)
+O

( 1
log t

)
.

Since KL(θj , λ) ≤ (1 + δ)KL(θj ,OPT(g)) and 1−δ
1+δ = 1− ε, we have

Prθ

(
Nt(j) ≤

(1− ε) log t
KL(θj ,OPT(g))

∣∣∣∣ Rgt
)
≤ O

( 1
log t

)

as desired.

Proof of Proposition C.6. The proof of this result follows the same steps as Proposition C.5. Let
ε = 1/2 and let θ∗ > θj so that 1−ε

KL(θj ,θ∗) = b. In the proof of Proposition C.5, replace OPT(g) with

θ∗. Then, the same proof goes through and we get Pr
(
Nt(j) ≤ b logn

∣∣ Rgt ) = O
(

1
log t

)
. �

E. Proof of Theorem 4.1

In this section, we prove that PF-UCB is the Nash solution. We first state an additional proposition,
which states that the number of pulls of each arm is optimal.

Proposition E.1. For any a ∈ Asub, PF-UCB satisfies

lim
T→∞

E[NT (a)]
log T = J(a).
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First, we provide the proof of Theorem 4.1 using the results of Propositions 4.2, 4.3,4.4 and E.1.
We then state the full proofs of Propositions 4.2, 4.4, and E.1 in Appendix E.1. Lastly, we prove
Proposition 4.3 in Appendix E.2.

Proof of Theorem 4.1. Fix a group g and an arm a ∈ Agsub. Let ε > 0. Let δ ∈ (0, δ0) according
to Proposition 4.3. Let Ht = Ht(δ).

E[Ng
T (a)] =

T∑
t=1

Pr(Pullgt (a))

=
T∑
t=1

(Pr(Pullgt (a), Agreedy
t (g) 6= a,Ht)

+ Pr(Pullgt (a), Agreedy
t (g) = a) + Pr(Pullgt (a), Agreedy

t (g) 6= a, H̄t))

≤
T∑
t=1

Pr(Pullgt (a), Agreedy
t (g) 6= a, a ∈ AUCB

t , Ht) +O(log log T ).(19)

where the last step follows from Proposition 4.4 and Proposition 4.2.
First, assume that a /∈ Asub. That is, there exists a group g′ such that a is optimal for g′. We

claim that Pr(Pullgt (a)
∣∣ a ∈ AUCB

t , Ht) = 0. Notice that when Ht is true, a is not the greedy arm
for g, and moreover, a /∈ Âsub. Therefore, a is not involved in the optimization problem (P (θ)), and
a is not the greedy arm for g, so g would not pull a when Ht is true. Therefore, Pullgt (a) = 0 when
Ht is true. This implies that if a /∈ Asub,

lim
T→∞

E[Ng
T (a)]

log T = 0.(20)

Next, assume a ∈ Asub. By definition of the algorithm, if {Pullgt (a), Agreedy
t (g) 6= a} occurs,

then Ng
t (a) ≤ q̂gt (a)Nt(a). If Ht(δ), then q̂gt (a) ≤ qgt (a) + ε. Therefore,

∑T
t=1 1(Pullgt (a), a ∈

AUCB
t , Ht(δ)) ≤ (qgt (a) + ε)NT (a). Then, using (19), we can write

lim sup
T→∞

E[Ng
T (a)]

log T = lim sup
T→∞

E
[∑T

t=1 1(Pullgt (a), a ∈ AUCB
t , Ht(δ))

]
+O(log log T )

log T

≤ lim sup
T→∞

(qg(a) + ε)E[NT (a)]
log T

≤ (qg(a) + ε)J(a),

where the last inequality follows from Proposition E.1. Since this holds for all ε > 0,

lim sup
T→∞

E[Ng
T (a)]

log T ≤ qg(a)J(a).(21)

Recall that Proposition E.1 states

lim
T→∞

E[NT (a)]
log T = J(a).(22)
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This implies that (21) must be an equality all g. If this weren’t the case, then lim supT→∞
E[NT (a)]

log T
would be strictly less than J(a), which would be a contradiction.

Moreover, we claim that (21) and (22) implies limT→∞
E[Ng

T (a)]
log T = qg(a)J(a) for all g. By

contradiction, suppose there exists a g′ ∈ G such that lim infT→∞
E[Ng′

T (a)]
log T = qg

′(a)J(a) − α for

some α > 0. Then, (22) implies that lim supT→∞
∑
g 6=g′

E[Ng′
T (a)]

log T ≥ (1− qg′(a))J(a) + α, which is a
contradiction. Therefore, for every g,

lim
T→∞

E[Ng
T (a)]

log T = qg(a)J(a).

Combining with (20) yields the desired result:

lim
T→∞

E[RegretgT (a)]
log T = lim

T→∞

∑
a∈A∆g(a)E[Ng

T (a)]
log T = lim

T→∞

∑
a∈Asub

∆g(a)qg(a)J(a).

�

E.1. Proof of Propositions 4.2, 4.4, and E.1

Proof of Proposition 4.2. Let g ∈ G and let a ∈ Agsub. We bound
∑T
t=1 Pr(Pullgt (a), a = Agreedy

t (g)).
We can assume that the events θ̂t(a) ∈ [θ(a) − δ, θ(a) + δ] and Λt occur using Lemma B.4, and
Lemma B.2 respectively. Since a is the greedy arm, it must be that θ̂t(a′) ≤ θ(a) + δ for all a′ ∈ Ag.

Define the event

Rt = {Agreedy
t (g) = a,Λt, θ̂t(a) ≤ θ(a) + δ, θ̂t(a′) ≤ θ(a) + δ ∀a′ ∈ Ag}.

Our goal is to bound
∑T
t=1 Pr(Rt).

For Rt to occur, θ̂t(a′) ≤ θ(a) + δ (since a is the greedy arm) and UCBt(a′) ≥ OPT(g) (since
Λt) for all a′ ∈ Agopt. By Lemma B.3 there exists a constant c > 0 such that if Nt(a′) > c log t for
some a′ ∈ Agopt, Rt cannot happen. Moreover, for every a′ ∈ Agopt, Pr(Nt(a′) < c log t) < O

(
1

log t

)
from Proposition C.6.

Divide the time period into epochs, where epoch k starts at time sk = 22k . Let Tk be the
time steps in epoch k. Let Gk = {Nsk

(a) > 3c log sk ∀a ∈ Agopt} be the event that all optimal
arms were pulled at least 3c log sk times by the start of epoch k. If Gk occurs, since sk = √sk+1,
Nsk+1(a) > 3

2r log sk+1 > r log sk+1, and hence Rt can never happen during epoch k. Moreover,
Pr(Ḡk) = O

(
1

log sk

)
for any k.

Suppose we are in a “bad epoch”, where Gk does not occur. We claim that Rt can’t occur more
than O(log sk+1) times during epoch k. For Rt to occur, the arm j with the highest UCB satisfies
UCBt(j) ≥ OPT(g) and θ̂t(j) ≤ θ(a) + δ.

Claim E.2. For any action j ∈ Ag,
∑s
t=1 Pr(AUCB

t (g) = j,UCBt(j) ≥ OPT(g), θ̂t(j) ≤ θ(a) +
δ
∣∣ Ḡk) = O(log s).

Using Claim E.2 and taking a union bound over all actions j implies
∑
t∈Tk

Pr(Rt
∣∣ Ḡk) =∑

t∈Tk

∑
j∈Ag Pr(Rt, AUCB

t (g) = j
∣∣ Ḡk) = O(log sk+1). Since Pr(Ḡk) = O

(
1

log sk

)
,
∑
t∈Tk

Pr(Rt) =
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O(1). Since there are O(log log T ) epochs,
∑T
t=1 Pr(Rt) = O(log log T ). �

Proof of Proposition 4.4. Let Ht = Ht(δ). Fix a group g and an arm a ∈ Agsub. For g to pull a
when Agreedy

t (g) 6= a, it must be that a ∈ AUCB
t .

First, assume a /∈ Asub. Then, there exist groups G ⊆ G in which a is optimal. If a is the greedy
arm for some g′ ∈ G, then a /∈ Âsub, implying a is not considered in the optimization problem (P̂t).
In this case, group g would never pull arm a. Therefore, it must be that a is not the greedy arm for
all groups in G. We show the following lemma, which proves the proposition for an arm a /∈ Asub.

Lemma E.3. Let a /∈ Asub, and let G be the set of groups in which a is optimal. Then,

T∑
t=1

Pr(Pullt(a), Agreedy
t (g) 6= a ∀g ∈ G, a ∈ AUCB

t ) = O(log log T ).

Now assume a ∈ Asub. We assume that the events Λt and θ̂t(a) ∈ [θ(a)− δ, θ(a) + δ] hold using
Lemma B.2 and Lemma B.4. Since a ∈ AUCB

t and Λt, it must be that UCBt(a) ≥ OPT(Γ(a)). Let
Et = {Pullgt (a),Λt, θ̂t(a) ∈ [θ(a)− δ, θ(a) + δ],UCBt(a) ≥ OPT(Γ(a))} Our goal is to show

E
[
T∑
t=1

1(Et, H̄t)
]

= O(log log T ).

Divide the time interval into epochs, where epoch k starts at time sk = 22k . Let K = O(log log T )
be the total number of epochs. Let Tk be the time steps in epoch k.

Let Hk = ∩t∈Tk
Ht. Clearly, if Hk is true, then by definition,

∑
t∈Tk

1(Et, H̄t) = 0. Therefore, we
can write

E
[
T∑
t=1

1(Et, H̄t)
]

=
K∑
k=1

E

∑
t∈Tk

1(Et, H̄t)

 =
K∑
k=1

E
∑
t∈Tk

1(Et, H̄t)
∣∣∣∣ H̄k

Pr(H̄k)


We bound the expectation and the probability separately.

1) Bounding E
[∑

t∈Tk
1(Et, H̄t)

∣∣∣∣ H̄k

]
: If Et occurs at some time step t, UCBt(a) ≥ OPT(Γ(a))

and θ̂t(a) ≤ θ(a)+δ. By Lemma B.3 it must be that Nt(a) = O(log t). Clearly, Ns(a) ≥
∑s
t=1 1(Et),

implying that
∑
t∈Tk

1(Et) = O(log sk+1). Therefore,
∑
t∈Tk

1(Et, H̄t) ≤
∑sk+1
t=1 1(Et) = O(log sk+1)

2) Bounding Pr(H̄k): For a ∈ Asub let ca = 0.9
KL(θ(a),OPT(Γ(a))) . For a /∈ Asub, let ca = 1. Let

Fk = {θ̂sk
(a) ∈ [θ(a)− δ/2, θ(a) + δ/2], Nsk

(a) ≥ ca log sk ∀a ∈ A} be the event that at time sk, all
arms a have been pulled ca log sk times and all arms are within an “inner” boundary (half as small
as the boundary defined for Ht). We bound Pr(H̄k) by conditioning on the event Fk. Firstly, we
bound Pr(F̄k) using the probabalistic lower bound of Proposition C.5-C.6:

Lemma E.4. For any k, Pr(F̄k) = O
(

1
log sk

)
.

Next, we show that if Fk is true, then Hk occurs with probability at least 1−O
(

1
log sk

)
.

Lemma E.5. For any action a, Pr
(
θ̂t(a) /∈ [θ(a)− δ, θ(a) + δ] for some t ∈ Tk | Fk

)
≤ O

(
1

log sk

)
.
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Therefore,

Pr(H̄k) ≤ Pr(F̄k) + Pr(H̄k

∣∣ Fk) = O

( 1
log sk

)
.

3) Combine: Combining, we have

E
[
T∑
t=1

1(Et, H̄t)
]
≤

K∑
k=1

(
O(log sk+1)O

( 1
log sk

))

≤
K∑
k=1

O(1)

=O(log log T ),

where the last inequality follows due to the fact that log sk+1
log sk

= 2 for any k. �

Proof of Proposition E.1. Let a ∈ Asub. We need to show lim supT→∞
E[NT (a)]

log T ≤ J(a), as the
lower bound is implied by (5). By Proposition 4.2, the number of times a is pulled when a is the
greedy arm for some group g is O(log log T ). Therefore,

E[NT (a)] =
T∑
t=1

Pr(Pullt(a), a ∈ AUCB
t ) +O(log log T ).

The result follows from the fact that KL-UCB is optimal (same argument as Proposition C.2). �

E.1.1. Deferred Proofs of Lemmas

Proof of Claim E.2. Recall thatGk = {Nsk
(a) > 3c log sk ∀a ∈ Agopt}. We will show

∑T
t=1 Pr(AUCB

t =
j,UCBt(j) ≥ OPT(g), θ̂t(j) ≤ θ(a) + δ

∣∣ Ḡk) = O(log log T ). From Lemma B.3, there exists a con-
stant c′ such that if Nt(j) > c′ log T then, {UCBt(j) ≥ OPT(g), θ̂t(j) ≤ θ(a) + δ} cannot occur.∑

t∈Tk

Pr(AUCB
t (g) = j,UCBt(j) ≥ OPT(g), θ̂t(j) ≤ θ(a) + δ

∣∣ Ḡk)
=
c′ log T∑
n=1

∑
t∈Tk

Pr(AUCB
t (g) = j,UCBt(j) ≥ OPT(g), θ̂t(j) ≤ θ(a) + δ,Nt(a) = n

∣∣ Ḡk)
≤
c′ log T∑
n=1

∑
t∈Tk

Pr(AUCB
t (g) = j,Nt(a) = n

∣∣ Ḡk).(23)

Our goal is to show that
∑
t∈Tk

Pr(AUCB
t (g) = j,Nt(a) = n

∣∣ Ḡk) = O(1) for any n. Fix n, and
write

∑
t∈Tk

Pr(AUCB
t (g) = j,Nt(j) = n

∣∣ Ḡk) = E

∑
t∈Tk

1(AUCB
t (g) = j,Nt(j) = n)

∣∣∣∣ Ḡk


Let Lt = 1(AUCB
t (g) = j,Nt(j) = n) be the indicator for the event of interest. Our goal is to
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count the number of times Lt occurs. Let Ym = {∃ t :
∑t
s=1 Ls = m} be the event that Ls occurs at

least m times. Note that for Ym to occur, it must be that Ym−1 occurred. Therefore, by explicitly
writing out the expectation, we have

E
[
T∑
t=1

1(AUCB
t (g) = j,Nt(j) = n)

∣∣∣∣ Ḡk
]
≤
∑
m≥1

mPr(Ym
∣∣ Ḡk)

=
∑
m≥1

mPr(Ym
∣∣ Ym−1, Ḡk) Pr(Ym−1

∣∣ Ḡk).
We claim that there exists a λ ∈ (0, 1) such that Pr(Ym

∣∣ Ym−1, Ḡk) ≤ λ. Let τ be the time
when Ls occurred for the m− 1’th time, which exists since Ym−1 is true. For Ym to occur, it must
be that arm j was not pulled at time τ , even though arm j is the UCB. Given that j is the UCB,
there exists a group g in which Ng

τ (a) ≤ q̂gt (a)Nτ (a). If such a group arrives, it will pull j with
probability at least 1

K . Therefore, at time τ , the probability that arm j will be pulled is at least
ming∈G pg

K . Then, λ = 1−ming∈G pg

K satisfies Pr(Ym
∣∣ Ym−1, Ḡk) ≤ λ.

Therefore,

E
[
T∑
t=1

1(AUCB
t = j,Nt(j) = n)

∣∣∣∣ Ḡk
]

=
∑
m≥1

mPr(Ym
∣∣ Ym−1, Ḡk) Pr(Ym−1

∣∣ Ḡk)
≤
∑
m≥1

mλm

= O(1).

Substituting back into (23) gives

T∑
t=1

Pr(AUCB
t = j,UCBt(j) ≥ OPT(g), θ̂t(j) ≤ θ(a) + δ

∣∣ Ḡk) ≤ c′ log T∑
n=1

O(1) = O(log T ).

�

Proof of Lemma E.3. Let a /∈ Asub, let G be the set of groups in which a is an optimal arm. We
condition on whether a is the UCB for some group in G.

First, suppose a = AUCB
t (g) for some group g ∈ G, implying θ(a) = OPT(g). We can assume

θ̂t(a) > OPT(g)−δ from Lemma B.4. Then, if a is not the greedy arm for g, there exists a suboptimal
arm j ∈ Agsub with higher mean but lower UCB than a. This implies that the UCB radius of
j is smaller than the UCB radius of a, implying that j was pulled more times: Nt(j) ≥ Nt(a).
We show that this event cannot happen often. Let Et = {Pullt(a), Agreedy

t (g) 6= a, a ∈ AUCB
t , a =
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AUCB
t (g), θ̂t(a) > OPT(g)− δ}. For any j ∈ Agsub,

T∑
t=1

1(Et, Nt(j) ≥ Nt(a), θ̂t(j) > OPT(g)− δ)

≤
T∑
t=1

t∑
n=1

t∑
nj=n

1(Et, θ̂nj (j) > OPT(g)− δ,Nt(j) = nj , Nt(a) = n)

≤
T∑

nj=1
1(θ̂nj (j) > OPT(g)− δ)

nj∑
n=1

T∑
t=n

1(Et, Nt(a) = n)

≤
T∑

nj=1
1(θ̂nj (j) > OPT(g)− δ)nj ,

where the last inequality uses
∑T
t=n 1(Et, Nt(a) = n) ≤ 1 (since pulling arm a increasing Nt(a)

by 1). Since Pr(θ̂n(j) > OPT(g) − δ) ≤ exp(−cn) for some constant c > 0,
∑T
t=1 Pr(Et, Nt(j) ≥

Nt(a), θ̂t(j) > OPT(g)− δ) = O(1). Taking a union bound over actions j ∈ Agsub gives us the desired
result:

T∑
t=1

Pr(Pullt(a), Agreedy
t (g) 6= a ∀g ∈ G, a ∈ AUCB

t ,∃g ∈ G : a = AUCB
t (g)) = O(log log T ).

Now, suppose a /∈ AUCB
t (g) for all g ∈ G. This means that there is another group h where

a = AUCB
t (h), but a is suboptimal for h. We assume Λt holds. Let ah be an optimal arm for h.

Since Λt, UCBt(ah) ≥ OPT(h). Therefore, it must be that UCBt(a) ≥ OPT(h). By Lemma C.4,

T∑
t=1

Pr(Pullt(a),UCBt(a) ≥ OPT(h)) = O(log log T ).

This finishes the proof. �

Proof of Lemma E.4. Fix a ∈ A and time t. We will show Pr(θ̂sk
(a) ∈ [θ(a) − δ/2, θ(a) +

δ/2], Nsk
(a) ≥ ca log sk) ≥ 1− O

(
1

log t

)
. Then the result follows from taking a union bound over

actions. We first show that PF-UCB is log-consistent.

Lemma E.6. PF-UCB is log-consistent.

Let g ∈ Γ(a). Since Pr(Mt(a) < pg

2 t) ≤ exp(−1
2pgt), we can assume that there have been at

least pg

2 t arrivals of g by time t. Then, using Proposition C.5 and Proposition C.6, we know that
at time t, Pr(Nt(a) < ca log t|Mt(a) ≥ pg

2 t) ≤ O
(

1
log t

)
. Next, we show that the probability of the
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event θ̂t(a) /∈ [θ(a)− δ/2, θ(a) + δ/2] given that we have more than ca log t pulls of a is small.

Pr(θ̂t(a) /∈ [θ(a)− δ/2, θ(a) + δ/2]
∣∣ Nt(a) ≥ ca log t)

=
t∑

n=ca log t
Pr(θ̂n(a) /∈ [θ(a)− δ/2, θ(a) + δ/2]

∣∣ Nt(a) = n) Pr(Nt(a) = n)

≤
t∑

n=ca log t
exp(−c1n) Pr(Nt(a) = n)

≤c3 exp(−c2 log t)

≤ c3
tc2
,

for some constants c1, c2, c3 > 0 that depends on the instance, a, and δ. Combining, we have that
for any action a, Pr(θ̂sk

(a) ∈ [θ(a)− δ/2, θ(a) + δ/2], Nsk
(a) ≥ ca log sk) ≥ 1−O

(
1

log t

)
.

�

Proof of Lemma E.5. Let Ua = θ(a) + δ and U Ia = θ(a) + δ/2. Let η = Ua −U Ia . Since Fk is true,
Nsk

(a) ≥ ca log sk. Let n1 = Nsk
(a). Let θn(a) be the empirical average of arm a after n pulls. We

will bound

Pr(∪∞n2=n1+1{θ̂n2(a) /∈ [La, Ua]}
∣∣ θ̂n1(a) ∈ [LIa, U Ia ]).

For any n2, θ̂n2(a) > Ua implies θ̂n2(a) > θ̂n1(a) + η. Fix n2 > n1. Let m = n2 − n1.

{
θ̂n2(a) > Ua

}
=
{
n2∑
i=1

Xi > n2Ua

}

=

n1θ̂
n1(a) +

n2∑
i=n1+1

Xi > n2Ua


=


m∑
j=1

Xn1+j > n1(Ua − θ̂n1(a)) +mUa


=


m∑
j=1

(Xn1+j − µ) > n1(Ua − θ̂n1(a)) +m(Ua − µ)


Case m ≤ n1: Since Ua − µ > 0 and Ua − θ̂n1(a) > η if Fk is true,

Pr
(

n1⋃
m=1
{θ̂n1+m(a) > Ua}

∣∣∣∣ Fk
)
≤ Pr

 n1⋃
m=1


m∑
j=1

(Xn1+j − µ) > n1η


∣∣∣∣ Fk


≤ Pr

(
max

m=1,...,n1
Sm > n1η

∣∣∣∣ Fk) ,
where Sm =

∑m
j=1(Xn1+j − µ). Given that Xn1+j − µ are zero mean independent random variables,
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by Kolomogorov’s inequality, we have

Pr
(

n1⋃
m=1
{θ̂n1+m(a) > Ua}

∣∣∣∣ Fk
)
≤ 1
n2

1η
2 Var(Sn1) = σ2

n1η2 = σ2

η2 ·
1

ca log sk
,

where σ2 = Var(X1).
Case m > n1:

Pr
( ∞⋃
m=n1

{θ̂n1+m(a) > Ua}
∣∣∣∣ Fk

)
≤ Pr

( ∞⋃
m=n1

{∑m
j=1(Xn1+j − µ)

m
> Ua − µ

} ∣∣∣∣ Fk
)

≤
∞∑

m=n1

Pr
(∑m

j=1(Xn1+j − µ)
m

> Ua − µ
∣∣∣∣ Fk

)

≤
∞∑

m=n1

exp(−mD)

= exp(−n1D)
1− exp(−D)

= 1
scaD
k (1− exp(−D))

,

for a constant D > 0 that depends on Ua − µ and σ2.
Therefore,

Pr
( ∞⋃
m=1
{θ̂Nsk

(a)+m(a) > Ua}
∣∣∣∣ Fk

)

≤Pr
(

n1⋃
m=1
{θ̂Nsk

(a)+m(a) > Ua}
∣∣∣∣ Fk

)
+ Pr

( ∞⋃
m=n1

{θ̂Nsk
(a)+m(a) > Ua}

∣∣∣∣ Fk
)

≤σ
2

η2 ·
1

ca log sk
+ 1
scaD
k (1− exp(−D))

=O
( 1

log sk

)
,

as desired. �

Proof of Lemma E.6. Fix a group g. At time t, if group g arrives, the PF-UCB pulls either the
UCB arm or the greedy arm. The original regret analysis of KL-UCB from Garivier and Cappé
(2011) shows that

T∑
t=1

Pr(At /∈ Agopt, At = AUCB
t , gt = g) = O(log T ).

Proposition 4.2 shows that the number of times the greedy arm is pulled and incurs regret is
O(log log T ). Combining, the total regret is O(log T ). �
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E.2. Proof of Proposition 4.3

Proof. First, we prove the statement with respect to the variables (sg)g∈G . Let fs(s) =
∑
g∈G log sg,

and let sg∗ =
∑
a∈Ag ∆g(a) (Jg(a)− qg∗(a)J(a)) and ŝgt =

∑
a∈Ag ∆̂g(a)

(
Ĵg(a)− q̂gt (a)Ĵ(a)

)
. Since fs

is strictly concave with respect to s, sg∗ is unique. Define the event Ht(δ) = {θ̂t(a) ∈ [θ(a)−δ, θ(a)+δ]
for all a ∈ A}.

Lemma E.7. For any ε > 0, there exists δ > 0 such that if Ht(δ), then ŝgt ∈ [sg∗ − ε, sg∗ + ε] for all
g ∈ G.

This shows that if Ht(δ), then the variables ŝgt are close to sg∗ for all g. Next, we need to show
that the corresponding q’s are also close. Let proj(z, P ) be the projection of point z onto a polytope
P .

Let Q = {q :
∑
g∈G q

g(a) = 1 ∀a ∈ Asub, q
g(a) = 0 ∀g ∈ G, a /∈ Asub, q

g(a) ≥ 0 ∀g ∈ G, a ∈ A}
be the feasible space. Let Sg(q, θ̃) =

∑
a∈Ag ∆̃g(a)

(
J̃g(a)− qg(a)J̃(a)

)
, where ∆̃g(a), J̃g(a), and

J̃(a) are computed with θ̃.
Given s = (sg)g∈G , let Q(s, θ̃) = {qg(a) ∈ Q : Sg(q, θ̃) = sg} be the set of all feasible q’s that

corresponds to the solution s under the parameters θ̃. Note that Q(s, θ̃) is a linear polytope, and
we can write it as Q(s, θ̃) = {q : A(θ̃)q = b(s), q ≥ 0} for a matrix A(θ̃) and a vector b(s). We are
interested in the polytopes Q(s, θ) and Q(ŝt, θ̂t), which correspond the optimal solutions of (P (θ))
and (P̂t) respectively. The next two lemmas state that these polytypes are close together:

Lemma E.8. Let ε > 0. There exists δ > 0 such that if Ht(δ), for any q̂ ∈ Q(ŝt, θ̂t), ||proj(q̂, Q(s, θ))−
q̂||2 ≤ ε.

Lemma E.9. Let ε > 0. There exists δ > 0 such that if Ht(δ), for any q ∈ Q(s, θ), ||proj(q,Q(ŝt, θ̂t))−
q||2 ≤ ε.

Let q∗ = argminq∈Q(s,θ) ||q||22, q̂ = argminq∈Q(ŝt,θ̂t) ||q||
2
2. Our goal is to show ||q∗ − q̂||1 ≤ ε. Let

R(η) = {q ∈ Q(s, θ) : ||q||2 ≤ ||q∗||2 + η} for η > 0. Since the function || · ||22 is strongly convex and
q∗ is minimizer, we have the following result:

Claim E.10. For every ε > 0, there exists η > 0 such that if q ∈ R(η), then ||q − q∗||2 ≤ ε.

First, assume ||q̂t||2 ≤ ||q∗||2. Let η > 0 be from Claim E.10 using ε = ε
2 . Let δ > 0 be

from Lemma E.8 using ε = min{ ε2 , η}. Let q′ = proj(q̂, Q(s, θ)) ∈ Q(s, θ). From Lemma E.8,
||q̂t − q′||2 ≤ η, implying ||q′||2 ≤ ||q̂t||2 + η ≤ ||q∗||2 + η. Therefore, q′ ∈ R(η). Claim E.10 implies
||q′ − q∗|| ≤ ε

2 . Let δ > 0 correspond to ε
2 from Lemma E.8, so that ||q̂t − q′||2 ≤ ε

2 . Then,

||q̂t − q∗||2 ≤ ||q̂t − q′||2 + ||q′ − q∗||2 ≤ ε.

An analogous argument shows the same result in the case that ||q∗||2 ≤ ||q̂t||2 using Lemma E.9.
�

E.2.1. Proof of Lemmas

We first state an additional lemma:

Lemma E.11. For any ε > 0 there exists a δ > 0 such that if Ht(δ), then for any feasible solution
q, |f(q)− f̂(q)| < ε.
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Proof of Lemma E.11. Let q be a feasible solution. Let Sg(q, θ̃) =
∑
a∈Ag ∆̃g(a)

(
J̃g(a)− qg(a)J̃(a)

)
,

where ∆̃g(a), J̃g(a), and J̃(a) are computed with θ̃.
For each g, let εg > 0 be such that if |s̃g − sg∗| ≤ εg, then | log sg∗ − log s̃g| ≤ ε

G . ∆g(a), Jg(a),
and J(a) are all differentiable functions of θ with finite derivatives around θ∗. Then, it is possible
to find δg > 0 such that if Ht(δg), |∆̂g(a)

(
Ĵg(a)− qg(a)Ĵ(a)

)
−∆g(a) (Jg(a)− qg(a)J(a)) | ≤ εg

|A| .
Summing over actions, |Sg(q, θ̂t)− Sg(q, θ̂)| ≤ εg. Then, if Ht(δg), | logSg(q, θ̂)− logSg(q, θ)| ≤ ε

G .
Take δ = ming∈G δg. If Ht(δ) is true, |f(q)− f̂(q)| < ε. �

Proof of Lemma E.7. Let ε > 0. Let Sε = {s : |sg − sg∗| ≤ ε ∀g} be the set around s∗ of interest.
Our goal is to show that fs(ŝ) ∈ Sε. Let fbd = max{f(s) : s ∈ bd(Sε)} < f∗ be the largest f on
the boundary of Sε. Then, if fs(s) > fbd, it must be that s ∈ Sε. (Since the entire line between s
and s∗ must have a value of fs that is higher than fs(s) due to concavity, and it must cross the
boundary.) Therefore, we need to show fs(ŝt) > fbd. Let q̂t be the corresponding solution to ŝt.
Then, fs(ŝt) = f̂t(q̂t). Let δ > 0 as in Lemma E.11 with ε = f∗ − fbd. Then, if Ht(δ) is true,

fs(ŝt) = f̂t(q̂t) ≥ f̂t(q∗) ≥ f(q∗)− (f∗ − fbd) = fbd,

where the second inequality follows from Lemma E.11.
�

Proof of Lemma E.8. Let ε > 0. Let n be the dimension of q. We will make use of the following
closed form formula for the projection onto a linear subspace:

Fact E.12. Let P = {x : Ax = b}. The orthogonal projection of z onto P is proj(z, P ) =
z −A>(AA>)−1(Az − b).

Let Q = Q(s, θ̃), and let A, b be the corresponding parameters of the linear constraints; i.e.
Q = {x : Ax = b, x ≥ 0}. Similarly, let Q̂ = Q(ŝt, θ̂t), and let Â, b̂ be defined similarly. Note that
Fact E.12 only works with equality constraints.

We define a distance between two linear polytopes. We use the notation P (D, f) = {x : Dx = f}.
Then, Q = P (A, b), Q̂ = P (Â, b̂).

Definition E.13. For two polytopes P (A, b) and P (A′, b′), the distance is defined as d(P (A, b), P (A′, b′)) =
max{||A−A′||2, ||b− b′||2}.

Note that for every α > 0, there exists δ > 0 such that Ht(δ) implies d(Q, Q̂) ≤ α using
Lemma E.7. For any I ∈ 2[n], let PI = P (AI , bI) = {x : Ax = b, xi = 0 ∀i ∈ I}.

Claim E.14. There exists a constant C ≥ 1 such that for any I ∈ 2[n] and any Ã, b̃ of same
dimensions as AI , bI , if q̃ ∈ P (Ã, b̃) with q̃ ≤ 1 (for all elements), then ||q̃ − proj(q̃, PI)||2 ≤
Cd(PI , P (Ã, b̃)).
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Proof of Claim E.14. From Fact E.12, we have ||q̃ − proj(q̃, PI)||2 = ||A>I (AIA>I )−1(AI q̃ − bI)||2.
Since q̃ ∈ P (Ã, b̃), Ãq̃ = b̃. Let λ = maxI ||A>I (AIA>I )−1||2 and let d = d(PI , P (Ã, b̃)). Therefore,

||q̃ − proj(q̃, PI)||2 ≤ λ||(AI − Ã)q̃ + (b̃− bI)||2
≤ λ

(
||AI − Ã||2||q̃||2 + ||b̃− bI ||2

)
≤ 2λnd.

Therefore, C = 2λn. �
We now describe an iterative process to prove this result.
Let Q0 = {q : Aq = b} (Q without the non-negativity constraint), and same with Q̂0 = {q :

Âq = b̂}. Let α0 = d(Q0, Q̂0). Let q̃0 = proj(q̂, Q0). By Claim E.14, ||q̂ − q̃0||2 ≤ Cα0. If q̃0 ≥ 0,
then STOP here.

Otherwise, find an index i which violates the non-negativity constraint using the following
method:

• Let q ∈ Q be an arbitrary feasible point (q ≥ 0).

• From the point q̃0, move along the direction towards q. Let p0 be the first point on this line
where p0 is non-negative.

• Since Q is simply Q0 with non-negativity constraints and both sets are convex, p0 ∈ Q.

• Let i be an index where q̃0
i < 0 and p0

i = 0 (the last index to become non-negative).

Since q̂ ≥ 0, it must be that q̂i ≤ Cα0 since ||q̃0 − q̂|| ≤ Cα0.
Let Q1 be the same polytope as Q0, but with the additional constraint that qi = 0 — call this

constraint C. Let A1, b1 be the corresponding equality constraints for Q1. Let Q̂1 be the same
polytope as Q̂, but with the additional equality constraint that qi = q̂i — call this constraint Ĉ. Let
Â1, b̂1 be the equality constraints for Q̂1. Note that the only difference between constraints C and Ĉ
is the right hand side, which differ by at most Cα0. Therefore, d(Q1, Q̂1) ≤ d(Q0, Q̂0)+Cα0 ≤ 2Cα0.
Clearly, q̂ ∈ Q̂1. Let q̃1 = proj(q̂, Q1). Applying Claim E.14 again, we have ||q̂− q̃1||2 ≤ C(2Cα0) =
2C2α0. If q̃1 ≥ 0, then STOP here.

Otherwise, let j be the index which violates the non-negativity constraint found using the same
method as before; except this time, we draw a line between q̃1 towards p0 ∈ Q. We let p1 be the
first point where p1 ≥ 0. Then, we repeat the above process. We define Q2 to be the same polytope
as Q1, with the additional constraint that qj = 0. Q̂2 is defined as Q̂1 with the additional constraint
qj = q̂j . Then, q̂j ≤ 2C2α0. Therefore, d(Q2, Q̂2) ≤ d(Q1, Q̂1) + 2C2α0 ≤ 2Cα0 + 2C2α0 ≤ 4C2α0.
Applying Claim E.14, we get ||q̂ − q̃2||2 ≤ C(4C2α0) = 4C3α0. If q̃2 ≥ 0, then STOP here.

After stopping: If this process stopped at iteration m, then q̃m ∈ Q and ||q̂ − q̃m||2 ≤
2mCm−1α0. It must be thatm ≤ n. If α0 = ε

2nCn−1 , then ||q̂−q̃m||2 ≤ ε. Then, ||proj(q̂, Q)−q̂||2 ≤ ε.
Let δ > 0 such that Ht(δ) implies d(Q, Q̂) ≤ α0. �

Proof of Lemma E.9. This proof follows essentially the same steps as the proof of Lemma E.8
by swapping Q and Q̂. The main difference is that we are projecting q onto Q(ŝt, θ̂t), but this
must hold for all possible values of ŝt, θ̂t (using a single δ). Due to this, the only thing we have to
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change from the proof of Lemma E.8 is Claim E.14. We must show that there exists a constant
C where Claim E.14 is satisfied for all possible values of ŝt, θ̂t. The only place where C relies on
a property of the polytope PI is in choosing λ. Therefore our goal is to uniformly upper bound
maxI ||Â>I (ÂIÂ>I )−1||2 for all possible ÂI that can be induced by all possible ŝt, θ̂t.

Note that since we assume that Ht(δ0) holds, the possible matrices Â lie in a compact space
(since every element of the matrix Â can be at most δ0 apart). Since ||A>(AA>)−1||2 is a continuous
function of the elements of the matrix A, λ1 = maxÂ ||Â

>(ÂÂ>)−1||2 exists. Moreoever, for any
I, ||Â>I (ÂIÂ>I )−1||2 ≤ C(n)||Â>(ÂÂ>)−1||2 for a constant C(n). Therefore, by replacing λ with
λ1C(n), Claim E.14 holds. �

F. Price of Fairness Proofs

F.1. Proof of Theorem 4.5

Proof. Consider the set of profiles (sg)g∈G that are in the feasible region of the polytope defined by
the constraints of (P (θ)). Refer to this polytope as the “utility set”, in the language of Bertsimas
et al. (2011). This utility set is compact and convex, and therefore we can apply Theorem 2 of
Bertsimas et al. (2011), which gives us the desired inequality. It is easy to see that the point in
this utility set that maximizes total utility corresponds to a regret-optimal policy, and the point in
the utility set that maximizes proportional fairness corresponds to PF-UCB (by definition, since
PF-UCB maximizes proportional fairness within this set). �

F.2. Proof of Proposition 4.6

Proof. In this proof, for convenience, we use subscripts instead of superscript to refer to groups g
since we do not need to refer to time steps.

Let {1, . . . ,M} be the set of shared arms, where θ1 ≤ · · · ≤ θM . Let G = [G] be the set of
groups, where OPT(1) ≤ · · · ≤ OPT(G). We assume that θM < OPT(1). (If there is a shared arm
whose reward is as large as OPT(1), then neither policy will incur any regret from this arm, and
hence this arm is irrelevant.) In this case, all of the regret in the regret-optimal solution goes
to group 1, and the other groups incur no regret. Therefore, the total utility gain of the regret-
optimal solution is the sum of the regret at the disagreement point for groups 2 to G. Specifically,
limT→∞ SYSTEMT (I) = limT→∞

∑G
g=2

R̃g
T (πKL-UCB)

log T .
We will show that for each group g ≥ 2, the regret incurred from PF-UCB is less than half of

the regret at the disagreement point — i.e. RgT (πPF-UCB, I) ≤ 1
2R̃

g
T (I). Then, the utility gain for

the group reduces by at most a half from the regret-optimal solution, which is our desired result.
Let Rg = limT→∞

Rg
T (πPF-UCB,I)

log T and R̃g = limT→∞
R̃g

T (I)
log T for all g ∈ G. Recall that the

proportionally fair solution comes out of the optimal solution to the following optimization problem:

(P (θ))

max
q≥0

∑
g∈G

log
( ∑
a∈Ag

sub

∆g(a) (Jg(a)− qg(a)J(a))
)+

s.t.
∑
g∈G

qg(a) = 1 ∀a ∈ Asub

qg(a) = 0 ∀g ∈ G, a /∈ Asub ∩ Ag.
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We first show a structural result of the optimal solution. Note that in terms of minimizing total
regret, it is optimal for group 1 to pull all suboptimal arms. Therefore, if qg(a) > 0 for some g > 1,
we think of this as “transferring” pulls of arm a from group 1 to group g. This transfer increases
the regret by a factor of ∆g(a)

∆1(a) . We prove the following property that these transfers must satisfy:

Claim F.1 (Structure of Optimal Solution). For g ∈ [M ], let b = max{a : qg(a) > 0}. If h < g,
then qh(a) = 0 for all a < b.

Writing out the KKT conditions of the optimization problem gives us the following result.

Claim F.2 (KKT conditions). Let g, h ∈ G, a ∈ A such that qg(a) > 0 and h < g. Then,
sg ≥ sh∆g(a)

∆h(a) . Moreover, if q1(a) > 0, sg ≤ ∆2(a)
∆1(a)s1 for any g > 1.

The next claim is immediate from Claim F.2.

Claim F.3. If h < g and there exists an arm a such that qg(a) > 0, then sg ≤ sh.

Regret is minimized if q1(a) = 1 for all a, in which case s1 = 0. If s1 6= 0, then we think of this
as pulls from group 1 that are re-allocated to other groups g 6= 1. This re-allocation increases total
regret, since other groups incur more regret from pulling any arm compared to group 1.

Let a0 = max{a : qg(a) 6= 1}. All pulls for any action a > a0 come from group 1. We claim
that q2(a0) > 0. Suppose not. Let a′ > 2 such that q2(a0) > 0. Then, by Claim F.1, q2(a) = 0
for all a. This implies that s2 = r2 > ra′ ≥ sa′ , which contradicts Claim F.3. Then, by Claim F.2,
s2 = s1

∆2(a0)
∆1(a0) .

Next, we claim that s2 ≥ R̃2
2 , which proves the desired result for g = 2. Note that s1 represents

the amount of regret that was “transferred” from group 1 to other groups, which increases the total
regret. If all of this was transferred to group 2, the total regret from group 2 would be at most
s1

∆2(a2)
∆1(a2) ≤ s2. Therefore, R2 ≤ s2. Since R2 + s2 = R̃2, s2 ≥ R̃2

2 .
For g > 2, Claim F.2 shows sg ≥ s2. Moreover, since OPT(g) ≥ OPT(2), R̃g ≤ R̃2. Therefore,

sg ≥ s2 ≥ R̃2
2 ≥

R̃g

2 as desired.
�

F.3. Proof of Claims

Proof of Claim F.1. Suppose not. Let g ∈ G and b = max{a : qg(a) > 0}. Let a < b such that
qh(a) > 0. Then, since

∑
g′ qg′(a) = 1, qg(a) < 1. By the ordering of arms and groups, we have

∆h(a)
∆g(a) >

∆h(b)
∆g(b)

.(24)

We essentially show, using this inequality, that if we want to “transfer” pulls from group h to g, it
is more efficient to do so using arm a rather than arm b, and hence it is a contradiction that qh(b) is
positive.

We construct a “swap” that will strictly increase the objective function. Let ε = min{qh(a), qg(b), 1−
qg(a), 1− qh(b)}.

• Decrease qh(a) by ε, and increase qh(b) by ∆h(a)J(a)
∆h(b)J(b) ε ≤ ε, where the last inequality follows

from the convexity of KL(θb, ·). By construction, sh does not change.
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• Increase qg(a) by ε, and decrease qg(b) by ∆h(a)J(a)
∆h(b)J(b) ε. The first operation decreases sg by

∆g(a)J(a)ε, while the second operation increases sg by ∆h(a)J(a)∆g(b)
∆h(b) ε. By (24), this strictly

increases sg overall.

This is a contradiction. �

Proof of Claim F.2. From the stationarity KKT condition, we have that

∆g(a)J(a)
sg

+ λ(a)− µg(a) = 0,

∆h(a)J(a)
sh

+ λ(a)− µh(a) = 0,

for some λa ∈ R and µg(a), µh(a) ≥ 0. From complementary slackness, µg(a)qg(a) = 0. Since
qg(a) > 0, it must be that µg(a) = 0. Since µh(a) ≥ 0, ∆g(a)J(a)

sg
≤ ∆h(a)J(a)

sh
. �

G. Other Proofs

G.1. Proof that the Nash Solution is Unique Under Grouped Bandit Model

The uniqueness of the Nash bargaining solution in the general bargaining problem requires that the set
U is convex. In the grouped bandit model, it is not clear that the set U(I) = {(UtilGaing(π, I))g∈G :
π ∈ Ψ} is convex. In this section, we show that the uniqueness theorem still holds in the grouped
bandit setting. The proof is essentially the same as the original proof of Nash (1950); we simply
show that the potential non-convexity due to the lim infs creates inequalities in our favor.

Let G be the number of groups. Let W (u) =
∑
g∈G log ug, and let f(U) = argmaxu∈U W (u) for

U ⊆ RG. Fix a grouped bandit instance I, and let u∗ = f(U(I)). We first show that u∗ is unique
(i.e. argmaxu∈U(I)W (u) is unique). Suppose there was another u′ ∈ U(I) with the same welfare.
Then, let ū ∈ U(I) be the policy that runs u′ with probability 50%, and u∗ with probability 50%.
Using the fact that lim infT→∞(aT + bT ) ≥ lim infT→∞ aT + lim inf bT implies that ūg ≥ 1

2(u∗g + u′g)
for all g. Since log is strictly concave, log ūg > 1

2(log u∗g + log u′g). This implies W (ū) > W (u∗),
which is a contradiction.

Next, we show that f is the unique solution that satisfies the four axioms. Let U = U(I). It is
easy to see that this solution satisfies the axioms. We need to show that no other solution satisfies
them. Suppose g(·) satisfies the axioms. We need to show g(U) = f(U). Let U ′ = {(αgug)g∈G : u ∈
U ;αgu∗g = 1, αg > 0}. U ′ is the translated utility set so that u∗ becomes the 1 vector. Then, the
optimal welfare is W (1) = 0. We need to show g(U ′) = 1. We claim that there is no v ∈ U ′ such
that

∑
g∈G vg > G. Assume that such a v exists. For λ ∈ (0, 1), let t be the utilities from the policy

that runs the policy induced by v with probability λ, and the policy induced by 1 with probability
1− λ. Then, by the same argument with lim inf to prove uniqueness, tg ≥ λvg + (1− λ)1. If λ is
small enough, then

∑
g∈G log tg > 0. This is a contradiction to 1 maximizing W (·).

Consider the symmetric set U ′′ = {u ∈ RG : u ≥ 0,
∑
g ug ≤ G}. We have shown that U ′ ⊆ U ′′.

By Pareto efficiency and symmetry, it must be that g(U ′′) = 1. By independence of irrelevant
alternatives, g(U ′) = 1, and we are done.
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G.2. Proof that Assumption 2.2 is Sufficient

Proposition G.1. If an instance I satisfies Assumption 2.2, then there exists a consistent policy
π such that f(π) > −∞. Otherwise, f(π) = −∞ for all π ∈ Ψ.

Proof. First, suppose I satisfies Assumption 2.2. We need to show that there exists a consistent
policy such that f(π) > −∞. We will construct a feasible solution to the optimization problem
(P (θ)) with a strictly positive objective value. This will imply that the objective value Y ∗ is strictly
larger than 0, and hence the social welfare of PF-UCB is higher than −∞.

For each arm a ∈ A, let g(a) ∈ Γ(a). Start with qg(a)(a) = 1 for all a and qg(a) = 0 for g 6= g(a).
We will modify these values for suboptimal arms Asub. For arm a ∈ Asub, let g′(a) 6= g(a) be
another group with access to arm a. We will “split” the pulls of arm a between groups g(a) and
g′(a) in a way that both groups benefit from the disagreement point. Let p(a) ∈ [0, 1] such that
p(a)J(a) = Jg

′(a)(a). Let qg′(a) = p(a)/2 and qg(a) = 1− p(a)/2. Then, Jg(a)− qg(a)J(a) > 0 for
g ∈ {g(a), g′(a)}. This implies that sg > 0 for all g, and therefore Y ∗ > 0. This proves the first part
of the proposition.

For the second statement, suppose I does not satisfy Assumption 2.2. Let g′ be the group that
does not have a suboptimal arm that is shared with another group. First, suppose g′ does not have
any suboptimal arms. Then, all arms available to group g′ is optimal, so group g′ will incur zero
regret regardless of the algorithm. Hence, the utility gain for group g′ is exactly 0, and therefore
W (π, I) = −∞ for any π.

Next, suppose g′ does have a suboptimal arm but it is not shared. Let π be a consistent policy.
Then from the following upper bound on Nash SW from Section 3.2,

W (π, I) ≤ lim inf
T→∞

∑
g∈G

log

 ∑
a∈Ag

sub

∆g(a) (Jg(a)− qgT (a, π)J(a))


+

.

Since g′ is the only group with access to arm a for every a ∈ Ag
′

sub, it must be that qg
′

T (a, π) = 1
for every a ∈ Ag

′

sub. Moreover, Jg′(a) = J(a) for every a ∈ Ag
′

sub. This implies that the term
corresponding to g′ in the sum equals log 0 = −∞. Therefore, W (π, I) = −∞ for any π ∈ Ψ. �

G.3. Omitted Details of Theorem 3.3

We provide details on the two steps in Section 3.2 starting from (10). (5) implies that for every
ε > 0, there exists a Tε such that if T ≥ Tε, then

E[NT (a)]
log T ≥ (1− ε)J(a).

Therefore, for large enough T , plugging into (10), we get

RgT (π, I)
log T ≥

∑
a∈Asub

∆g(a)qgT (a, π)J(a)(1− ε).
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This implies that

lim sup
T→∞

RgT (π, I)
log T ≥ lim sup

T→∞
(1− ε)

∑
a∈Asub

∆g(a)qgT (a, π)J(a).

Since this holds for every ε > 0 and the RHS is continuous in ε,

lim sup
T→∞

RgT (π, I)
log T ≥ lim sup

T→∞

∑
a∈Asub

∆g(a)qgT (a, π)J(a).(25)

Plugging in (25) into the definition of UtilGaing(π, I) gives

UtilGaing(π, I) ≤ lim inf
T→∞

∑
a∈Ag

sub

∆g(a) (Jg(a)− qgT (a, π)J(a)1{a ∈ Asub}) .

Using the definition of W (π, I) and taking the lim inf outside of the sum gives

W (π, I) ≤ lim inf
T→∞

∑
g∈G

log
( ∑
a∈Ag

sub

∆g(a) (Jg(a)− qgT (a, π)J(a)1{a ∈ Asub})
)+

.

53


	Introduction
	Bandits, Groups and Axiomatic Bargaining
	Contributions
	Simple Instance
	Related Literature

	The Axiomatic Bargaining Framework for Bandits
	Grouped Bandit Model
	Background: Axiomatic Bargaining
	Fairness Framework for Grouped Bandits
	Grouped K-armed Bandit Model

	Fairness-Regret Trade-off
	Unfairness of Regret Optimal Policies
	Upper Bound on Nash Social Welfare

	Nash Solution for Grouped K-armed Bandits
	The Nash Solution: PF-UCB
	Price of Fairness

	Extension to Grouped Linear Contextual Bandits
	Experiments
	Synthetic Grouped K-Armed Bandits
	Case Study: Warfarin Dosing

	Conclusion
	Deferred Descriptions
	Negative Externality Example from Raghavan et al. (2018)
	Optimal Allocation Matching (OAM) Policy

	Proof Preliminaries
	Notation
	Commonly Used Lemmas

	Proof that KL-UCB is Regret Optimal
	Probabilistic Lower Bound of Nt(a) for Grouped Bandit
	Proof of lemma:mainepoch
	Proof of Claims

	Deferred Proofs for thm:klucboptstochasticarrivals
	Proof that KL-UCB is log-consistent
	Proof of theorem:numberpulls
	Proof of prop:lowerboundstochastic and prop:lowerboundoptstochastic

	Proof of Theorem 4.1
	Proof of Propositions 4.2, 4.4, and E.1
	Deferred Proofs of Lemmas

	Proof of 4.3
	Proof of Lemmas


	Price of Fairness Proofs
	Proof of thm:generalpof
	Proof of Theorem 4.6
	Proof of Claims

	Other Proofs
	Proof that the Nash Solution is Unique Under Grouped Bandit Model
	Proof that assump:feasible is Sufficient
	Omitted Details of prop:nashswub


