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Abstract

Algorithms produce a growing portion of decisions and recommendations both in pol-
icy and business. Such algorithmic decisions are natural experiments (conditionally quasi-
randomly assigned instruments) since the algorithms make decisions based only on observable
input variables. We use this observation to develop a treatment-effect estimator for a class
of stochastic and deterministic decision-making algorithms. Our estimator is shown to be
consistent and asymptotically normal for well-defined causal effects. A key special case of
our estimator is a multidimensional regression discontinuity design. We apply our estimator
to evaluate the effect of the Coronavirus Aid, Relief, and Economic Security (CARES) Act,
where hundreds of billions of dollars worth of relief funding is allocated to hospitals via an
algorithmic rule. Our estimates suggest that the relief funding has little effect on COVID-
19-related hospital activity levels. Naive OLS and IV estimates exhibit substantial selection
bias.
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1 Introduction

Today’s society increasingly resorts to algorithms for decision-making and resource allocation.
For example, judges in the US make legal decisions aided by predictions from supervised ma-
chine learning algorithms. Supervised learning is also used by governments to detect potential
criminals and terrorists, and by banks and insurance companies to screen potential customers.
Tech companies like Facebook, Microsoft, and Netflix allocate digital content by reinforcement
learning and bandit algorithms. Retailers and e-commerce platforms engage in algorithmic pric-
ing. Similar algorithms are encroaching on high-stakes settings, such as in education, healthcare,
and the military.

Other types of algorithms also loom large. School districts, college admissions systems,
and labor markets use matching algorithms for position and seat allocations. Objects worth
astronomical sums of money change hands every day in algorithmically run auctions. Many
public policy domains like Medicaid often use algorithmic rules to decide who are eligible.

All of the above, diverse examples share a common trait: a decision-making algorithm makes
decisions based only on its observable input variables. Thus conditional on the observable vari-
ables, algorithmic treatment decisions are (quasi-)randomly assigned. That is, they are indepen-
dent of any potential outcome or unobserved heterogeneity. This property turns algorithm-based
treatment decisions into instrumental variables (IVs) that can be used for measuring the causal
effect of the final treatment assignment. The algorithm-based instrument may produce stratified
randomization, regression-discontinuity-style local variation, or some combination of the two.

This paper shows how to use data obtained from algorithmic decision-making to identify and
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where Y; is the outcome of interest, X; € RP is a vector of pre-treatment covariates used as the al-

estimate causal effects. In our framework, the analyst observes a random sample {(Y;, X;, D;, Z;)}

gorithm’s input variables, D; is the binary treatment assignment, possibly made by humans, and
Z; is the binary treatment recommendation made by a known algorithm. The algorithm takes X;
as input and computes the probability of the treatment recommendation A(X;) = Pr(Z; = 1|X;).
Z; is then randomly determined based on the known probability A(X;) independently of every-
thing else conditional on X;. The algorithm’s recommendation Z; may influence the final treat-
ment assignment D;, determined as D; = Z;D;(1) + (1 — Z;)D;(0), where D;(z) is the potential
treatment assignment that would be realized if Z; = z. Finally, the observed outcome Yj is
determined as Y; = D;Y;(1) 4+ (1 — D;)Y;(0), where Y;(1) and Y;(0) are potential outcomes that
would be realized if the individual were treated and not treated, respectively. This setup is an
IV model where the IV satisfies the conditional independence condition but may not satisfy the
overlap (full-support) condition. To our knowledge, there is no standard estimator for this setup.

Within this framework, we first characterize the sources of causal-effect identification for
a class of data-generating algorithms. This class includes all of the aforementioned examples,
nesting both stochastic and deterministic algorithms. The sources of causal-effect identification
turn out to be summarized by a suitable modification of the Propensity Score (Rosenbaum and
Rubin, 1983). We call it the Approzimate Propensity Score (APS). For each covariate value z,
the Approximate Propensity Score is the average probability of a treatment recommendation in



a shrinking neighborhood around z, defined as

A(x®)dx*
p(z) = lim fB(I’g) (d )* ;
6—0 fB(m,é) x

where B(z,¢) is a p-dimensional ball with radius é centered at z. The Approximate Propensity
Score provides an easy-to-check condition for what causal effects the data from an algorithm
allow us to identify. In particular, we show that the conditional local average treatment effect
(LATE; Imbens and Angrist, 1994) at covariate value z is identified if and only if the Approximate
Propensity Score is nondegenerate, i.e., pA(z) € (0,1).

The identification analysis suggests a way of estimating treatment effects using the algorithm-
produced data. The treatment effects can be estimated by two-stage least squares (2SLS) where
we regress the outcome on the treatment with the algorithm’s recommendation as an IV. To
make the algorithmic recommendation a conditionally independent IV, we propose to control for
the Approximate Propensity Score. A more precise definition is as follows.

1. For small bandwidth § > 0 and a large number of simulation draws .S, compute

where X7y, ..., X: g are S independent simulation draws from the uniform distribution on

PH(X;:0) =

03 \

B(X;,8).! This p*(X;;6) is a simulation-based approximation to the Approximate Propen-
sity Score pA(z).

2. Using the observations with p*(X;;d) € (0,1), run the following 2SLS IV regression:

D; =0 +1Z; +72p°(Xi;0) + v; (First Stage)
Y; = Bo + 1D; + B2p°(Xi;6) + €; (Second Stage).

Let Bf be the estimated coeflicient on D;.

As the main theoretical result, we prove the 2SLS estimator Bf is a consistent and asymp-
totically normal estimator of a well-defined causal effect (weighted average of conditional lo-
cal average treatment effects). We also show that inference based on the conventional 2SLS
heteroskedasticity-robust standard errors is asymptotically valid as long as the bandwidth ¢ goes
to zero at an appropriate rate. There appears to be no existing estimator with these asymp-
totic properties even for the multidimensional RDD, a special case of our framework where the
decision-making algorithm is deterministic and uses multiple input (running) variables for as-
signing treatment recommendations. Moreover, our result applies to much more general settings
with stochastic algorithms, deterministic algorithms, and combinations of the two. We prove the

'To make common § for all dimensions reasonable, we standardize each characteristic X;; (j = 1, ..., p) to have
mean zero and variance one, where p is the number of input characteristics. For the bandwidth d, we suggest that
the analyst considers several different values and check if the 2SLS estimates are robust to bandwidth changes,
as we often do in regression discontinuity design (RDD) applications.



asymptotic properties by exploiting results from differential geometry and geometric measure
theory, which may be of independent interest.

The practical performance of our estimator is demonstrated through simulation and an origi-
nal application. We first conduct a Monte Carlo simulation mimicking real-world decision-making
based on machine learning algorithms. We consider a data-generating process combining stochas-
tic and deterministic algorithms. Treatment recommendations are randomly assigned for a small
experimental segment of the population and are determined by a high-dimensional, deterministic
machine learning algorithm for the rest of the population. Our estimator is shown to be feasible
in this high-dimensional setting and have smaller mean squared errors relative to alternative
estimators.

Our empirical application is an analysis of COVID-19 hospital relief funding. The Coronavirus
Aid, Relief, and Economic Security (CARES) Act and Paycheck Protection Program designated
$175 billion for COVID-19 response efforts and reimbursement to health care entities for expenses
or lost revenues (Kakani, Chandra, Mullainathan and Obermeyer, 2020). This policy intended
to help hospitals hit hard by the pandemic, as “financially insecure hospitals may be less capable
of investing in COVID-19 response efforts” (Khullar, Bond and Schpero, 2020). We ask whether
this problem is alleviated by the relief funding to hospitals.

We identify the causal effects of the relief funding by exploiting the funding eligibility rule.
The government employs an algorithmic rule to decide which hospitals are eligible for funding.
This fact allows us to apply our method to estimate the effect of relief funding. Specifically, our
2S5LS estimators use eligibility status as an instrumental variable for funding amounts, while con-
trolling for the Approximate Propensity Score induced by the eligibility-determining algorithm.

The resulting estimates suggest that COVID-19 relief funding has little to no effect on out-
comes, such as the number of COVID-19 patients hospitalized at each hospital. The estimated
causal effects of relief funding are much smaller and less significant than the naive ordinary least
squares (OLS) (with and without controls) or 2SLS estimates with no controls. Our finding pro-
vides causal evidence for the concern that funding in the CARES Act might not be well targeted
to the clinics and hospitals with the greatest needs.?

Related Literature

Theoretically, our framework integrates the classic propensity-score (selection-on-observables)
scenario with a multidimensional extension of the RDD. We analyze this integrated setup in
the IV world with noncompliance. This general setting appears to have no prior established
estimator. Armstrong and Kolesar (2020) provide an estimator for a related setting with perfect

compliance.?

2See, for example, Kakani et al. (2020) as well as Forbes’s article, “Hospital Giant HCA To Return $6 Billion in
CARES Act Money,” at https://www.forbes.com/sites/brucejapsen/2020/10/08/hospital-giant-hca-to-
return-6-billion-in-cares-act-money, retrieved September 2021.

3Building on their prior work (Armstrong and Kolesar, 2018), Armstrong and Kolesar (2020) consider esti-
mation and inference on average treatment effects under the assumption that the final treatment assignment is
independent of potential outcomes conditional on observables. Their estimator is not applicable to the IV world we
consider. Their method and our method also achieve different goals; their goal lies in finite-sample optimality and
asymptotically valid inference while our goal is to obtain consistency, asymptotic normality, and asymptotically


https://www.forbes.com/sites/brucejapsen/2020/10/08/hospital-giant-hca-to-return-6-billion-in-cares-act-money
https://www.forbes.com/sites/brucejapsen/2020/10/08/hospital-giant-hca-to-return-6-billion-in-cares-act-money

When we adapt our estimator to the multidimensional RDD case, our estimator has three
features. First, it is a consistent and asymptotically normal estimator of a well-interpreted causal
effect (average of conditional treatment effects along the RDD boundary) even if treatment
effects are heterogeneous. Second, it uses observations near all the boundary points as opposed
to using only observations near one specific boundary point, thus avoiding variance explosion
even when X; has many elements. Third, it can be easily implemented even in cases with many
covariates and complex algorithms (RDD boundaries). Our method circumvents the difficulty
of identifying the decision boundary from a complicated decision-making algorithm. No prior
estimator appears to have all of these properties (Papay, Willett and Murnane, 2011; Zajonc,
2012; Keele and Titiunik, 2015; Cattaneo, Titiunik, Vazquez-Bare and Keele, 2016; Imbens and
Wager, 2019). Appendix A.1 provides a detailed review of the most closely related papers on
the multidimensional RDD.

The Approximate Propensity Score developed in this paper shares its spirit with the local
random assignment interpretation of the RDD, discussed by Frolich (2007), Cattaneo, Frandsen
and Titiunik (2015), Cattaneo, Titiunik and Vazquez-Bare (2017), Frandsen (2017), Sekhon
and Titiunik (2017), Frolich and Huber (2019), Abdulkadiroglu, Angrist, Narita and Pathak
(Forthcoming) and Eckles, Ignatiadis, Wager and Wu (2020). These papers consider settings
that fit into this paper’s framework.

Our estimator is applicable to a class of data-generating algorithms that includes stochastic
and deterministic algorithms used in practice. Our results thus nest existing insights on quasi-
experimental variation in particular algorithms, such as surge pricing (Cohen, Hahn, Hall, Levitt
and Metcalfe, 2016), bandit (Li, Chu, Langford and Schapire, 2010), reinforcement learning
(Precup, 2000), supervised learning (Cowgill, 2018; Bundorf, Polyakova and Tai-Seale, 2019), and
market-design algorithms (Abdulkadiroglu, Angrist, Narita and Pathak, 2017; Abdulkadiroglu
et al., Forthcoming; Abdulkadiroglu, 2013; Kawai, Nakabayashi, Ortner and Chassang, 2020;
Narita, 2020, 2021). Our framework also reveals new sources of identification for algorithms
that, at first sight, do not appear to produce a natural experiment.*

Our empirical application uses the proposed method to study hospitals receiving CARES Act
relief funding. Our empirical finding contributes to emerging work on how health care providers
respond to financial shocks (Duggan, 2000; Adelino, Lewellen and Sundaram, 2015; Dranove,
Garthwaite and Ody, 2017; Adelino, Lewellen and McCartney, 2021). Our empirical setting

valid inference.

4A focal group of decision-making algorithms are machine learning algorithms, as illustrated in our machine-
learning simulation. While we are interested in machine learning as a data-production tool, the existing literature
(except the above mentioned strand) focuses on machine learning as a data-analysis tool. For example, a set of
predictive studies applies machine learning to make predictions important for social policy questions (Kleinberg,
Lakkaraju, Leskovec, Ludwig and Mullainathan, 2017; Einav, Finkelstein, Mullainathan and Obermeyer, 2018).
Another set of causal and structural work repurposes machine learning to aid with causal inference and structural
econometrics (Athey and Imbens, 2017; Belloni, Chernozhukov, Ferndndez-Val and Hansen, 2017; Bonhomme,
Lamadon and Manresa, 2019; Mullainathan and Spiess, 2017). We supplement these studies by highlighting the
role of machine learning as a data-production tool. This paper also has a conceptual connection to the heated
conversation about whether algorithmic decisions are better than human decisions. Here “better” is in terms of
fairness and efficiency (Hoffman, Kahn and Li, 2017; Horton, 2017; Kleinberg et al., 2017). In this study, we take
a complementary perspective in that we take a decision algorithm as given, no matter whether it is good or bad,
and study how to use its produced data for impact evaluation.
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is a healthcare crisis, complementing prior work on more normal situations. Our analysis also
exploits rule-based locally random assignment of cash flows to hospitals. This feature provides
our estimates with additional confidence in their causal interpretation.

2 Framework

Our framework is a mix of the conditional independence, multidimensional RDD, and instru-
mental variable scenarios. In the setup in the introduction, we are interested in the effect of
some binary treatment D; € {0,1} on some outcome of interest ¥; € R. As is standard in the
literature, we impose the exclusion restriction that the treatment recommendation Z; € {0, 1}
does not affect the observed outcome other than through the treatment assignment D;. This
allows us to define the potential outcomes indexed against the treatment assignment D; alone.?
We consider algorithms that make treatment recommendations based solely on individual ¢’s
predetermined, observable covariates X; = (Xj1, ..., Xip)" € RP. Let the function A : RP — [0, 1]
represent the decision algorithm, where A(X;) = Pr(Z; = 1|X;) is the probability that the treat-
ment is recommended for individual ¢ with covariates X;. The central assumption is that the
analyst knows function A and is able to simulate it. That is, the analyst is able to compute the
recommendation probability A(x) given any input value x € RP. The treatment recommenda-
tion Z; for individual ¢ is then randomly determined with probability A(X;) independently of
everything else. Consequently, the following conditional independence property holds.

Property 1 (Conditional Independence). Z; L(Y;(1),Y:(0), D;(1), D;(0))|X;.

Note that the codomain of A contains 0 and 1, allowing for deterministic treatment assign-
ments conditional on X;. Our framework therefore nests the RDD as a special case. Another
special case of our framework is the classic conditional independence scenario with the common
support condition (A(X;) € (0,1) almost surely). In addition to these simple settings, this
framework nests many other situations, such as multidimensional RDDs and complex machine
learning and market-design algorithms, as illustrated in Section 7.

In typical machine-learning scenarios, an algorithm first applies machine learning on X; to
make some prediction and then uses the prediction to output the recommendation probability
A(X;), as in the following example.

Example. Automated disease detection algorithms use machine learning, in particular deep
learning, to detect various diseases and to identify patients at risk (Gulshan et al., 2016). Using
our framework described above, a detection algorithm predicts whether an individual ¢ has a
certain disease (Z; = 1) or not (Z; = 0) based on a digital image X; € RP of a part of the
individual’s body, where each X;; € R denotes the intensity value of a pixel in the image. The
algorithm uses training data to construct a binary classifier A : RP — {0, 1}. The classifier takes
an image of individual ¢ as input and makes a binary prediction of whether the individual has

"Formally, let Y;(d, z) denote the potential outcome that would be realized if i’s treatment assignment and
recommendation were d and z, respectively. The exclusion restriction assumes that Y;(d, 1) = Y;(d,0) for d € {0,1}
(Imbens and Angrist, 1994).



the disease:

The algorithm’s diagnosis Z; may influence the doctor’s treatment decision for the individual,
denoted by D; € {0,1}. We are interested in how the treatment decision D; affects the individ-

ual’s outcome Y;.

Let Y,; be defined as Y,; = D;(2)Y;(1) + (1 — D;(2))Y;(0) for z € {0,1}. Y,; is the poten-
tial outcome when the treatment recommendation is Z; = 2. It follows from Property 1 that
Z; L (Y14, Yoi)| X

We put a few assumptions on the covariates X; and the algorithm A. To simplify the
exposition, the main text assumes that the distribution of X; is absolutely continuous with respect
to the Lebesgue measure. Appendix A.3 extends the analysis to the case where some covariates in
X; are discrete. Let X be the support of X;, Xy = {z € X : A(z) =0}, X1 = {x € X : A(x) = 1},
LP be the Lebesgue measure on RP, and int(,S) denote the interior of a set S C RP.

Assumption 1.

(a) (Almost Everywhere Continuity of A) A is continuous almost everywhere with respect to

the Lebesgue measure.
(b) (Measure Zero Boundaries of Xy and Xy) LP(X)) = LP(int(Xy)) for k=0, 1.

Assumption 1 (a) allows the function A to be discontinuous on a set of points with the
Lebesgue measure zero. For example, A is allowed to be a discontinuous step function as long
as it is continuous almost everywhere. Assumption 1 (b) holds if the Lebesgue measures of the

boundaries of X and X} are zero.

3 Identification

What causal effects can be learned from data (Y;, X;, D;, Z;) generated by the algorithm A7 A
key step toward answering this question is what we call the Approxzimate Propensity Score (APS).
To define it, we first define the fized-bandwidth Approximate Propensity Score as follows:

a o IBas) AlT)de”
p(x;0) = e
fB(z,é) X
where B(x,8) = {z* € RP : ||z — 2*|| < &} is the (open) §-ball around = € X.5 Here, || - || denotes

the Euclidean norm on RP. To make a common bandwidth § for all dimensions reasonable, we

SWhether we use an open ball or closed ball does not affect p* (z;9). We use a ball for simplicity. When
we instead use a rectangle, ellipsoid, or any standard kernel function to define p* (x; ), the limit lims_,o p** (z; 9)
may be different at some points (e.g., at discontinuity points of A), but the same identification results hold under
suitable conditions.



normalize X;; to have mean zero and variance one for each j = 1, ...,p.” We assume that A is a
LP-measurable function so that the integrals exist. We then define APS as follows:

pA(z) = lim p? (3 0).
0—0

APS at z is the average probability of a treatment recommendation in a shrinking ball around =x.
We call this the Approzimate Propensity Score, since this score modifies the standard propensity
score A(X;) to incorporate local variation in the score. APS exists for most covariate points and
algorithms (see Appendix A.2).

Figure 1 illustrates APS. In the example, X; is two dimensional, and the support of X; is
divided into three sets depending on the value of A. For the interior points of each set, APS is
equal to A. On the border of any two sets, APS is the average of the A values in the two sets.
Thus, p?(z) = £(0+0.5) = 0.25 for any z in the open line segment AB, p?(z) = 3(0.5+1) = 0.75
for any z in the open line segment BC, and p?(z) = 3(0+1) = 0.5 for any x in the open line
segment BD.

We say that a causal effect is identified if it is uniquely determined by the joint distribution
of (Yi, X;, D;, Z;). Our identification analysis uses the following continuity condition.

Assumption 2 (Local Mean Continuity). For z € {0,1}, the conditional expectation functions
E[Y.i|X;] and E[D;(2)|X;] are continuous at any point x € X such that p*(z) € (0,1) and
A(z) € {0,1}.

Assumption 2 is a multivariate extension of the local mean continuity condition that is
frequently assumed in the RDD.® A(z) € {0,1} means that the treatment recommendation Z;
is deterministic conditional on X; = z. If APS at the point x is nondegenerate (p?(x) € (0, 1)),
however, there exists a point close to x that has a different value of A from x’s, which creates
variation in the treatment recommendation near x. For any such point x, Assumption 2 requires
that the points close to z have similar conditional means of the outcome Y,; and treatment
assignment D;(2).? Note that Assumption 2 does not require continuity of the conditional
means at x for which A(z) € (0,1), since the identification of the conditional means at such
points follows from Property 1 without continuity.

Under the above assumptions, APS provides an easy-to-check condition for whether an algo-
rithm allows us to identify causal effects.

"This normalization is without loss of generality in the following sense. Take a vector X; of any continuous
random variables and A* : R” — [0,1]. The normalization induces the random vector X; = T(X; — E[X]]),
where T is a diagonal matrix with diagonal entries Var(Xllf"l)l/z s Var(Xli*p>1/2. Let A(z) = A*(T 'z + E[X]]).
Then (X[, A*) is equivalent to (X;, A) in the sense that A(X;) = A*(X]) for any individual s.

8In the RDD with a single running variable, the point x for which p*(z) € (0,1) and A(x) € {0,1} is the cutoff
point at which the treatment probability discontinuously changes.

°In the context of the RDD with a single running variable, one sufficient condition for continuity of E[Y;;|X;] is
a local independence condition in the spirit of Hahn, Todd and van der Klaauw (2001): (Y;(1),Y;(0), D;(1), D;(0))
is independent of X; near z. A weaker sufficient condition, which allows such dependence, is that E[Y;(d)|D;(1) =
d1,D;(0) = do, X;] and Pr(D;(1) = di,D;(0) = do|X;) are continuous at z for every d € {0,1} and (di,do) €
{0,1}* (Dong, 2018). This assumes that the conditional means of the potential outcomes for each of the four
types determined based on the potential treatment assignment D;(z) and the conditional probabilities of those
types are continuous at the cutoff. These two sets of conditions are sufficient for continuity of E[Y%;|X;] regardless
of the dimension of X;, accommodating multidimensional RDDs.

7



Proposition 1 (Identification). Under Assumptions 1 and 2:

(a) E[Y1; — Yoi|X; = 2| and E[D;(1) — D;(0)|X; = x] are identified for every x € int(X) such
that p*(x) € (0,1).1°

(b) Let S be any open subset of X such that p(x) exists for all x € S. Then either E[Yy; —
Yoi|X; € S] or E[D;(1) — D;(0)|X; € S] or both are identified only if p*(x) € (0,1) for
almost every x € S (with respect to the Lebesgue measure).!t

Proof. See Appendix C.1. O

Proposition 1 characterizes a necessary and sufficient condition for identification. Part (a)
says that the average effects of the treatment recommendation Z; on the outcome Y; and on
the treatment assignment D; for the individuals with X; = x are both identified if APS at z is
neither 0 nor 1. Non-degeneracy of APS at = implies that there are both types of individuals
who receive Z; = 1 and Z; = 0 among those whose X; is close to x. Assumption 2 ensures that
these individuals are similar in terms of average potential outcomes and treatment assignments.
We can therefore identify the average effects conditional on X; = z. In Figure 1, p?(z) € (0,1)
holds for any z in the shaded region (the union of the minor circular segment made by the chord
AC and the line segment BD).

Part (b) provides a necessary condition for identification. It says that if the average effect
of the treatment recommendation conditional on X; being in some open set S is identified, then
we must have pA(a:) € (0,1) for almost every x € S. If, to the contrary, there is a subset of S
of nonzero measure for which pA(z) = 1 (or p*(x) = 0), then Z; has no variation in the subset,
which makes it impossible to identify the average effect for the subset.

Proposition 1 concerns causal effects of treatment recommendation, not of treatment assign-
ment. The proposition implies that the conditional average treatment effects and the conditional
local average treatment effects (LATESs) are identified under additional assumptions.

Corollary 1 (Perfect and Imperfect Compliance). Under Assumptions 1 and 2:

(a) The average treatment effect conditional on X; = z, E[Y;(1) — Y;(0)|X; = =], is identified
for every x € int(X) such that p*(z) € (0,1) and Pr(D;(1) > D;(0)|X; = z) = 1 (perfect
compliance).

(b) The local average treatment effect conditional on X; = z, E[Y;(1)-Y;(0)|D;(1) # D;(0), X; =
x), is identified for every x € int(X) such that p(x) € (0,1), Pr(D;(1) > D;(0)|X; = x) =
1 (monotonicity), and Pr(D;(1) # D;(0)|X; = x) > 0 (existence of compliers).

Proof. See Appendix C.2. O

0The causal effects may not be identified at a boundary point  of X for which p* (z) € (0,1). For example,
if A(z*) =1 for all z* € B(z,0) N X and A(z") = 0 for all z* € B(z,d) \ X for any sufficiently small § > 0,
p™(x) € (0,1) but the causal effects are not identified at x since Pr(Z; = 0|X; € B(x,d)) = 0.

We assume that p? is a LP-measurable function so that {z € S : p*(z) = 0} and {z € S : p*(2) = 1} are
LP-measurable.



Non-degeneracy of APS pA(x) therefore summarizes what causal effects the data from A
identify. Note that the key condition (p*(x) € (0,1)) holds for some points  for every standard
algorithm except trivial algorithms that always recommend a treatment with probability O or 1.
Therefore, the data from almost every algorithm identify some causal effect.

4 Estimation

The sources of quasi-random assignment characterized in Proposition 1 suggest a way of estimat-
ing causal effects of the treatment. In view of Proposition 1, it is possible to nonparametrically
estimate conditional average causal effects E[Y1; — Yp;|X; = z] and E[D;(1) — D;(0)|X; = «] for
points z such that p“(z) € (0,1). This approach is hard to use in practice, however, when X;
has many elements.

We instead seek an estimator that aggregates conditional effects at different points into a sin-
gle average causal effect.!? Proposition 1 suggests that conditioning on APS makes algorithm-
based treatment recommendation quasi-randomly assigned. This motivates the use of an al-
gorithm’s recommendation as an instrument conditional on APS, which we operationalize as

follows.

4.1 Two-Stage Least Squares Meets APS

Suppose that we observe a random sample {(Y;, X;, D;, Z;)}1'; of size n from the population
whose data generating process is as described in the introduction and Section 2. Consider the
following 2SLS regression using the observations with pA(X;;6,) € (0,1):

D; =0 + 71 Zi + 720 (X3 65) + vi (1)
Y; = Bo + B1D; + Bop™ (X3 6n) + €5, (2)

where bandwidth §,, shrinks toward zero as the sample size n increases. Let I; ,, = H{pA (X 6n) €
(0,1)}, Dy = (1, Di, pA(X4;60))', and Zip, = (1, Zi, pA(X;;6,))". The 2SLS estimator B is then
given by

n n
B=0ZinDj, Lin) "> ZinYilip.
i=1

=1

Let Bl denote the 2SLS estimator of 31 in the above regression.'3

121f the analyst is interested in heterogeneity in terms of covariates, it is also possible to split the sample into
subgroups based on covariates and apply our method separately to different subgroups.

BFor the standard RDD with a single running variable X; € R and cutoff c, pA(Xi§5n) = )(27;5;6 + % if

X, € [c = 0n,c+ 6,] and p?(X,;6,) € {0,1} otherwise. In this special case, the estimator 3, from the 2SLS
regression (1) and (2) is numerically equivalent to a version of the RD local linear estimator (Hahn et al., 2001)

which uses a box kernel and places the same slope coefficient of X; on both sides of the cutoff. It is possible
to allow for slope changes at the cutoff by viewing p* (X5;0n) as a running variable with cutoff % and applying
standard RD local linear estimators (i.e., adding interaction terms D;(p®(Xy;6n) — 3) and Zi(p® (Xs;6n) — 3) to
(1) and (2), respectively). However, it is not straightforward to extend this approach to the multidimensional



The above regression uses true fixed-bandwidth APS p4(X;;d,), but it may be difficult to
analytically compute if A is complex. In such a case, we propose to approximate pA(Xi; on)
using brute force simulation. We draw a value of z from the uniform distribution on B(Xj,d,)
a number of times, compute A(z) for each draw, and take the average of A(x) over the draws.!*
Formally, let X[y, ..., X7 be S, independent draws from the uniform distribution on B (X, 6n),

and calculate 5
1 n

i Xzaén = — A X* .

p*(Xi;6,) Sﬂ; (X75)

We compute p®(X;; d,,) for each i = 1,..., n independently across i so that p*(X1;d,), ..., p*(Xn; 0n)
are independent of each other. For fixed n and X, the approximation error relative to true
pA(X;;0,) has a 1/4/S, rate of convergence.'® This rate does not depend on the dimension of
X, so the simulation error can be made negligible even when X; has many elements.

Now consider the following simulation version of the 2SLS regression using the observations
with p*(X;;0,) € (0,1):

D =~ +7Zi + vp®(Xi;6n) + v (3)
Y; = Bo + B1D; + Pop®(Xi;6n) + €. (4)

Let Bf denote the 2SLS estimator of 31 in the simulation-based regression. This regression is the
same as the 2SLS regression (1) and (2) except that it uses the simulated fixed-bandwidth APS
p*(Xi;6,) in place of p(X;;8,).16

4.2 Consistency and Asymptotic Normality

We establish the consistency and asymptotic normality of the 2SLS estimators B and Bf Our
consistency and asymptotic normality result uses the following assumptions.

Assumption 3.
(a) (Finite Moment) E[Y;}] < oco.

(b) (Nonzero First Stage) There exists a constant ¢ > 0 such that E[D;(1) — D;(0)|X; = x] > ¢
for every x € X such that p*(z) € (0,1).

RDD, since the value of p?(X;; 0r) no longer determines whether Z; = 1 or Z; = 0 unless the RD boundary is
linear, which may invalidate the use of pA(Xi; 0n) as a single running variable. We leave to future research how
to allow for more flexible 2SLS specifications in the general multi-dimensional setting.

14See Appendix A.5 for how to efficiently sample from the uniform distribution on a p-dimensional ball.

®More precisely, we have |p®(Xi;6n) — p™ (Xi;0n)| = Ops(1//Sn), where O, indicates the stochastic bound-
edness in terms of the probability distribution of the .S,, simulation draws.

16Tn many industry and policy applications, the analyst is only able to change the algorithm’s recommendation
Z; by redesigning the algorithm. In this case, the effect of recommendation Z; on outcome Y; may also be of
interest. We can estimate the effect of recommendation by running the following ordinary least squares (OLS)
regression using the observations with p°(X;;4d) € (0,1):

Yi = a0 + a1Zi + aap® (X3 0) + wi.

The estimated coefficient on Z;, &3, is our preferred estimator of the recommendation effect.
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(¢) (Nonzero Conditional Variance) If Pr(A(X;) € (0,1)) > 0, then Var(A(X;)|A(X;) €
(0,1)) > 0.

If Pr(A(X;) € (0,1)) = 0, then the following conditions (d)-(g) hold.
(d) (Nonzero Variance) Var(A(X;)) > 0.

For a set S C RP, let cl(S) denote the closure of S and let OS denote the boundary of S,
i.e., 05 = cl(S) \ int(S5).

(e) (C? Boundary of Q*) There exists a partition {QF,...,Q%,} of @ = {z € R : A(z) = 1}
(the set of the covariate points whose A value is one) such that
(i) dist(€2y,, 82" ) > 0 for any m,m' € {1,...,M} such that m # m'. Here dist(S,T) =
infresyer ||x —yl| is the distance between two sets S and T C RP;

(ii) S¥F, is nonempty, bounded, open, connected and twice continuously differentiable for
eachm € {1,..., M}. Here we say that a bounded open set S C RP is twice continuously
differentiable if for every x € S, there exists a ball B(x,€) and a one-to-one mapping
Y from B(x,€) onto an open set D C RP such that 1 and 1)~ are twice continuously
differentiable, ¥(B(x,e) N S) C {(z1,...,xp) € R : z, > 0} and ¢Y(B(x,e) N OS) C
{(z1,...,2p) € RP : x, = 0}.

Let fx denote the probability density function of X; and let H* denote the k-dimensional
Hausdorff measure on RP.7

(f) (Regularity of Deterministic A)

(i) HP~H(00) < 00, and [5q. fx(@)dHP~ (z) > 0.
(i) There exists § > 0 such that A(x) = 0 for almost every x € N(X,0) \ QF, where
N(S,0) ={x e RV : ||z — y|| < I for some y € S} for a set S CRP and 6 > 0.
(9) (Conditional Moments and Density near 9Q*) There exists § > 0 such that
(1) EY1;|X5], E[Y0i|Xi], E[D;(1)|X;], E[D;(0)|X;] and fx are continuously differentiable
and have bounded partial derivatives on N(0Q*,0);
(i) E[YZX:), EYZ|X;), E[Y1:D;i(1)|X;] and E[Yy; D;(0)|X;] are continuous on N (99*,5);
(iii) E[Y|X;] is bounded on N(99*,4).
Assumption 3 is a set of conditions for establishing consistency. Assumption 3 (b) assumes

that, conditional on each value of X; for which APS is nondegenerate, more individuals would
change their treatment assignment status from 0 to 1 in response to treatment recommendation

"The k-dimensional Hausdorff measure on RP is defined as follows. Let ¥ be the Lebesgue o-algebra on RP
(the set of all Lebesgue measurable sets on R?). For S € ¥ and 6 > 0, let H5(S) = inf{>>77, d(E;)* S C
U521 Ej,d(E;) < 6,E; C RP for all j}, where d(E) = sup{||z — y|| : #,y € E}. The k-dimensional Hausdorff
measure of S on R? is H*(S) = lims_,o HE(S).
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than would change it from 1 to 0.'® Under this assumption, the estimated first-stage coefficient on
Z; converges to a positive quantity. Note that, if there exists ¢ < 0 such that E[D;(1)—D;(0)|X; =
x] < ¢ for every x € X with p(z) € (0,1), changing the labels of treatment recommendation
makes Assumption 3 (b) hold.

Assumption 3 (c) rules out potential multicollinearity. If the support of A(X;) contains only
one value in (0,1), p(X;;6,) is asymptotically constant and equal to A(X;) conditional on
pA(X;;8,) € (0,1), resulting in the multicollinearity between p?(X;;d,) and the constant term.
Although dropping the constant term from the 2SLS regression solves this issue, Assumption 3
(c) allows us to only consider the regression with a constant for the purpose of simplifying the pre-
sentation. In Appendix C.3, we provide 2SLS estimators that are consistent and asymptotically
normal even if we do not know whether Assumption 3 (c) holds.

Assumption 3 (d)—(g) are a set of conditions we require for proving consistency and asymptotic
normality of Bl when A is deterministic and produces only multidimensional RD variation.
Assumption 3 (d) says that A produces variation in the treatment recommendation.

Assumption 3 (e) imposes the differentiability of the boundary of Q* = {z € RP : A(z) =
1}. The conditions are satisfied if, for example, Q* = {x € RP : f(x) > 0} for some twice
continuously differentiable function f : RP — R such that Vf(x) = (8f (=) 87 (m))’ # 0 for all

Ox1 777 Oz
x € RP with f(z) = 0. Q* takes this form, for example, when the conditional treatment effect

E[Y;(1) —Y;(0)|X] is predicted by supervised learning based on smooth models such as lasso and
ridge regressions, and treatment is recommended to individuals who are estimated to experience
nonnegative treatment effects.

In general, the differentiability of * may not hold. For example, if tree-based algorithms
such as Classification And Regression Tree (CART) and random forests are used to predict the
conditional treatment effect, the predicted conditional treatment effect function is not differen-
tiable at some points. Although the resulting Q* does not exactly satisfy Assumption 3 (e), the
assumptions approximately hold in that 2* is arbitrarily well approximated by a set that satisfies
the differentiability condition.!®

Part (i) of Assumption 3 (f) says that the boundary of Q* is (p — 1) dimensional and that
the boundary has nonzero density.2? Part (ii) puts a weak restriction on the values A takes on
outside the support of X;. It requires that A(x) = 0 for almost every = ¢ Q* that is outside
X but is in the neighborhood of X. A(x) may take on any value if = is not close to X. These
conditions hold in practice. Assumption 3 (g) imposes continuity, continuous differentiability
and boundedness on the conditional moments of potential outcomes and the probability density

18 At the cost of making the presentation more complex, the assumption can be relaxed so that the sign of
E[D;(1) — D;(0)|X; = x] is allowed to vary over  with p*(z) € (0, 1).

9For example, suppose that p = 2, A(z) = 1 if z; > 0 and 22 > 0, and A(z) = 0 otherwise. In this case,
Q" ={z € R?:2; > 0,22 > 0}. Let {Q}32, be a sequence of subsets of R? where Q = {z € R? : x5 >
i x1 > 0} for each k. Qy is twice continuously differentiable for all k, and well approximates Q* for a large k
in that dur (2", Q) — 0 as k — oo, where du(S,T) = max{sup, g infyer ||z — y||, sup,cr infres ||z — yl|} is the
Hausdorff distance between two sets S and 7' C R”.

20The boundary of Q* may fail to be (p — 1) dimensional in trivial cases where the Lebesgue measure of Q*
is zero and hence A(X;) = 0 with probability one. For example, when the covariate space is three dimensional
(p = 3) and Q" is a straight line, not a set with nonzero volume nor even a plane, the boundary of Q* is the same

as Q%, and its two-dimensional Hausdorff measure is zero.
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near the boundary of Q*.
When A is stochastic, asymptotic normality requires additional assumptions. Let

C* = {x € RP: A is continuously differentiable at x},

and let D* = RP \ C* be the set of points at which A is not continuously differentiable.
Assumption 4. If Pr(A(X;) € (0,1)) > 0, then the following conditions (a)-(c) hold.
(a) (Probability of Neighborhood of D*) Pr(X; € N(D*,d)) = O(9).
(b) (Bounded Partial Derivatives of A) The partial derivatives of A are bounded on C*.
(c) (Bounded Conditional Mean) E[Y;|X;] is bounded on X.

Assumption 4 is required for proving asymptotic normality of 1 when A is stochastic. To
explain the role of Assumption 4 (a), consider a path of covariate points x5 € N(D*,0) N
C* indexed by 6 > 0. Since A is continuous at x5, p(z5) = A(z;s) (as formally implied by
Proposition A.2 in Appendix A.2). However, pA(:xg; ) does not necessarily get sufficiently close
to A(zs) even as 0 — 0, since x is in the J-neighborhood of D* and hence A may discontinuously
change within the 0-ball B(zs,d). Assumption 4 (a) requires that the probability of X; being
in the é-neighborhood of D* shrink to zero at the rate of §, which makes the points in the
neighborhood negligible.

Assumption 4 (a) often holds in practice. If A is continuously differentiable on X, then
D*NX = (), so this condition holds. If, for example, the treatment recommendation is randomly
assigned based on a stratified randomized experiment or on the e-Greedy algorithm (see Example
A.1 (a) in Appendix A.6), D* is the boundary at which the recommendation probability changes
discontinuously. For any boundary of standard shape, the probability of X; being in the -
neighborhood of the boundary vanishes at the rate of 4, and the required condition is satisfied.
We provide a sufficient condition for this condition in Appendix A.4. Assumption 4 (b) and (c)
are regularity conditions, imposing the boundedness of the partial derivatives of A and of the
conditional mean of the outcome.

The following assumption is the key to proving asymptotic normality of the simulation-based

estimator /7.

Assumption 5 (The Number of Simulation Draws). n='/2S, — oo, and Pr(p*(Xi;6,) €

(O,'ylosgn”) U(l-— 'yhzggn", 1)) = 0(n71/2571/2) for some v > %

Assumption 5 says that we need to choose the number of simulation draws S, so that it
grows to infinity faster than n!/2, and that the probability that pA(X;;0,) lies on the tails
(0, yli’ggn") u(l-— ylfgn", 1) vanishes faster than n~1/ 25%/2. This condition makes the bias caused
by using p*(X;;0,) instead of p?(X;; 6,) asymptotically negligible. To illustrate how the second

part of this assumption restricts the rate at which S, goes to infinity, consider an example where
Pr(pA(X;;0,) € (0,1)) = O(6,), and p?A(X;;6,) is approximately uniformly distributed on the
tails (0,71(:5”") U(l-— ’yl%gn", 1). In this case, Pr(p?(X;;6,) € (0,71%%:1) U (1 - fylosgnn,l)) =
O (0, l(?ggnn), and the second part of Assumption 5 requires that S, grow sufficiently fast so that
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n1/2671/210gn . NP, .. rol/2 1
— e = o(1). One choice of S, satisfying this is S, = an”d,/~ for some o > 0 and x > 3,

in which case

nl/25L/? logn logn
fén = anr-1/2 o(1).

Under the above conditions, the 2SLS estimators 31 and Bf are consistent and asymptotically
normal estimators of a weighted average treatment effect.

Theorem 1 (Consistency and Asymptotic Normality). Suppose that Assumptions 1 and 3 hold,
and that 6, — 0, né, — oo and S, — 0o as n — oo. Then the 2SLS estimators 31 and [}
converge in probability to

1 = lim Bl (0)(¥:(1) — Yi(0))]

where
p*(Xi;0)(1 — p(Xi; 6))(Di(1) — Dy(0))

ElpA(Xi;0)(1 = pA(Xi;0))(Di(1) — D;(0))]

Suppose, in addition, that Assumptions 4 and 5 hold and that né2 — 0 as n — co. Then
)
)

wz(d) =

6151 — B1) -5 N(0,1
657135 — Br) 5 N (0,1

where we define 6,1 and (65)~" as follows. Let

Y
)

n n n
o= ZinDLin) O, 2inZ 1) DinZi  Iin) "
=1 i=1 =1
where
éi,n = E - D;7n5

3, is the conventional heteroskedasticity-robust estimator for the variance of the 2SLS estimator.

2
n

S

$)2 s the analogously-defined estimator for the

67 1s the second diagonal element of 3. (6

variance of B from the simulation-based regression.

Proof. See Appendix C.3. O

Theorem 1 says that the 2SLS estimators converge to the limit of a weighted average of causal
effects for the subpopulation whose fixed-bandwidth APS is nondegenerate (p(X;;6) € (0,1))
and who would switch their treatment status in response to the treatment recommendation
(D;(1) # D;(0)).2! The limit lims_,q E[w;(8)(Y;(1) — Y;(0))] always exists under the assumptions
of Theorem 1. It also shows that inference based on the conventional 2SLS heteroskedasticity-
robust standard errors is asymptotically valid if §,, goes to zero at an appropriate rate. The
convergence rate of 3, is O,(1/+/n) if Pr(A(X;) € (0,1)) > 0 and is O,(1/y/nd,) if Pr(A(X;) €
(0,1)) = 0.

Our consistency result requires that 6, go to zero slower than n~'. The rate condition
ensures that, when Pr(A(X;) € (0,1)) = 0, we have sufficiently many observations in the d,-

neighborhood of the boundary of Q*. Importantly, the rate condition does not depend on the

2In principle, it is possible to estimate other weighted averages and the unweighted average by reweighting
different observations appropriately. For example, we can estimate the unweighted average treatment effect by
weighting observations by the inverse of fixed-bandwidth APS.
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dimension of X;, unlike other bandwidth-based estimation methods such as kernel methods. This
is because we use all the observations in the J-neighborhood of the boundary, and the number
of those observations is of order nd, regardless of the dimension of X; if the dimension of the
boundary is one less than the dimension of Xj, i.e., (p — 1).

The asymptotic normality result requires that J, go to zero sufficiently quickly so that
nd2 — 0. When Pr(A(X;) € (0,1)) > 0, we need to use a small enough 6, so that p?(X;;d,)
converges to p?(X;) fast enough and §&,-neighborhood of D* is asymptotically small enough.
When Pr(A(X;) € (0,1)) = 0, the asymptotic normality is based on undersmoothing, which
eliminates the asymptotic bias by using the observations sufficiently close to the boundary of
Q*. In both cases, the bias of our estimator is O(d,,). The standard deviation is O(1/y/n) when
Pr(A(X;) € (0,1)) > 0 and is O(1/y/nd,) when Pr(A(X;) € (0,1)) = 0. The condition that
né2 — 0 ensures that the bias converges to zero faster than the standard deviation in either

(3&86.22

Whether or not Pr(A(X;) € (0,1)) = 0, when we use simulated fixed-bandwidth APS, the
consistency result requires that the number of simulation draws S, go to infinity as n increases.
The asymptotic normality result requires a sufficiently fast growth rate of .S;, given by Assumption
5 to make the bias caused by using p*(X;;6,) negligible.?3

Finally, note that the weight w;(d) given in Theorem 1 is negative if D;(1) < D;(0), so
Elw;i(0)(Yi(1) — Y;(0))] may not be a causally interpretable convex combination of treatment
effects Yj(1) — Y;(0). This can happen because the treatment effect of those whose treatment
assignment switches from 1 to 0 in response to the treatment recommendation (defiers) negatively
contributes to E[w;(0)(Y;(1) — Y;(0))]. Additional assumptions prevent this problem. If the
treatment effect is constant, for example, the 2SLS estimators are consistent for the treatment
effect.

Corollary 2. Suppose that Assumptions 1 and 3 hold, that the treatment effect is constant, i.e.,
Yi(1) — Y;(0) = b for some constant b, and that 6,, — 0, nd, — oo, and S, — 00 as n — 0.
Then the 25LS estimators 31 and 7 converge in probability to b.

Another approach is to impose monotonicity (Imbens and Angrist, 1994). Let LATE(x) =
E[Y;(1) —Y;(0)|D;(1) # D;(0), X; = x] be the local average treatment effect (LATE) conditional
on X; = x.

Corollary 3. Suppose that Assumptions 1 and 3 hold, that Pr(D;(1) > D;(0)|X; = x) =1 for
any x € X with p*(z) € (0,1) (monotonicity), and that &, — 0, nd, — oo and S, — oo as
n — 00. Then the 25LS estimators Bl and Bf converge in probability to

lim Elw(X;;0)LATE(X;)],
6—0

22In the special case of the univariate RDD, standard RD local linear estimators are shown to have the same
convergence rate under our assumptions (the smoothness of regression functions, in particular).

23To sum up, the asymptotic normality result for the simulation-based estimator Bf requires the sequence
(80, Sn) to satisfy né, — oo, nd2 — 0, and Assumption 5. In the preceding example where Pr(pA(Xi;(Sn) €
(0,1)) = O(8,) and p?(Xi; ) is approximately uniformly distributed on the tails (0, 'yl%gn") ul- fylc:gg;, 1), one
appropriate choice of (d,,S») that satisfies all conditions is d, = ain™"! and S, = azn”™? for some a1, a2 > 0,

K1 € (%,1) and k2 > %
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where

o) — PO = pA@:0) EDAL) = DAO)LX, =a]
7 ElpA(Xi;6)(1 = pA(Xi;6))(Di(1) — D;(0))]
The 2SLS estimators are consistent for the limit of a weighted average of conditional LATEs
over all values of X; with nondegenerate fixed-bandwidth APS p?(X;;d,). The weights are pro-
portional to p?(X;; 6, )(1 — p?(Xi;6,)), and to the proportion of compliers, E[D;(1) — D;(0)|X;].

4.3 Intuition and Challenges

The result in Theorem 1 holds whether A is stochastic (Pr(A(X;) € (0,1)) > 0) or deterministic
(Pr(A(X;) € (0,1)) = 0). If we consider these two underlying cases separately, the probability
limit of the 2SLS estimators has a more specific expression. If Pr(A(X;) € (0,1)) > 0,

EIA(X:) (1 = A(X:))(Di(1) — D;(0))(Yi(1) — Yi(0))] (5)
E[A(X:)(1 — A(X3))(Di(1) — D;(0))] .

plim 3; = plim 3} =

The 2SLS estimators converge to a weighted average of treatment effects for the subpopulation
with nondegenerate A(X;), as shown in the proof of Theorem 1 in Appendix C.3.

To relate this result to existing work, consider the following 2SLS regression with the (stan-
dard) propensity score A(X;) control:

D =0 +71Z;i + 2A(X;) + v (6)
Y = Bo + B1D;i + B2 A(X:) + €. (7)

Under conditional independence, the 2SLS estimator from this regression converges in probability
to the treatment-variance weighted average of treatment effects in (5) (Angrist and Pischke, 2008;
Hull, 2018).24 Not surprisingly, for this selection-on-observables case, our result shows that the
2SLS estimator is consistent for the same treatment effect whether we control for the propensity
score, fixed-bandwidth APS, or simulated fixed-bandwidth APS.

Importantly, using fixed-bandwidth APS as a control allows us to consistently estimate a
causal effect even if A is deterministic and produces multidimensional regression-discontinuity

variation. If Pr(A(X;) € (0,1)) =0,

Foepe EID:(1) — Di0))(¥i(1) — Yi(O)IX; = a] e (w)dHr 1 (2)
plim iy = plina 3 = Bm D:(1) — Di(0)[X; = al fx ()0 (x) '

The 2SLS estimators converge to a weighted average of treatment effects for the subpopulation

(9)

who are on the boundary of the treated region.

24Precisely speaking, Angrist and Pischke (2008) consider the OLS regression of ¥; (or D;) on Z; controlling a
dummy variable for every value taken on by X; (i.e., the model is saturated in X;) when X; is a discrete variable:

Yi=onZi+ Y aoa{Xi =a} +us. (8)

reEX

E[(Z;—E[Z;|X;])Y;]
El(Z;—E[Z;|1X;])?] *
Angrist and Pischke (2008) show that this expression is reduced to the treatment-variance weighted average
E[A(X;)(A-A(X;)) (Y15 —Y04)]
E[A(X;)(1-A(X5))
follows even when X, is continuous and we control the propensity score linearly.

By the Frisch-Waugh Theorem, the population coeflicient on Z; from (8) is given by a1 =

of treatment effects

under the conditional independence assumption. Their derivation
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Proving this result requires a technique that may be useful for other problems. Recall that
the 2SLS regression uses the observations with p?(X;;d,) € (0,1) (or p*(Xi;6,) € (0,1) when
we use simulated fixed-bandwidth APS) only. By definition, if pA(X;;0) € (0,1), X; must be
in the §-neighborhood of the boundary of Q*. Therefore, to derive the probability limit of 31,
it is necessary to derive the limits of the integrals of relevant variables over the é-neighborhood
(e.g., fN(&Q*,a) ElY:|X; = z|fx(z)dz) as § shrinks to zero. We take an approach drawing on
change of variables techniques from differential geometry and geometric measure theory.?> In
this approach, we first use the coarea formula (Lemma B.3 in Appendix B.3) to write the integral
of an integrable function g over N(99*,0) in terms of the iterated integral over the levels sets of
the signed distance function of Q*:

d
| s [ g()dHP L (2)dA, (10)
N(8*,6) =6 J{z/€RP:dg,. (¢/) =M}

where df,. is the signed distance function of Q* (see Appendix B.2 for the definition). The set
{a/ € RP : d§).(2") = A} is a level set of d§., which collects the points in Q* when A > 0 and
the points in R \ Q* when A < 0 whose distance to the boundary 9Q* is |A|. Figure 2a shows a
visual illustration of the level set.

We then use the area formula (Lemma B.4 in Appendix B.3) to write the integral over each
level set in terms of the integral over the boundary 9Q*:

g(x)dHP ! (z) = / g(a* + Avg- (2)) JOY Yo (2, \)dHPH(2%),  (11)

/{x’GRP:d?Z* (z")=A} o0+

where vg«(z*) is the inward unit normal vector of 9Q* at x* (the unit vector orthogonal to all
vectors in the tangent space of 9Q* at x* that points toward the inside of Q*), and Jg?l* pax(x*, )
is the Jacobian of the transformation ¥« (z*, A) = z*+Avq«(2*). Figure 2b illustrates this change
of variables formula. Finally, combining (10) and (11) and proceeding with further analysis, we
prove in Appendix C.3.3 that when g is continuous,

/N oy 90 =0 ( /a o) @) + 0(1)> .

Thus, the integral over the d-neighborhood of 9Q* scaled up by 6! converges to the integral
over boundary points with respect to the (p — 1)-dimensional Hausdorff measure. This result is
used to derive the expression of the probability limit of 51 given by (9).

25Qur approach using geometric theory shows that 31 converges to an integral of the conditional treatment
effect over boundary points with respect to the Hausdorff measure. In constrast, prior studies on multidimensional
RDDs express treatment effect estimands in terms of expectations conditional on X; being in the boundary like
E[Y1; — Yoi|X: € 0Q"] (Zajonc, 2012). However, those conditional expectations are, formally, not well-defined,
since LP(0Q") = 0 and hence Pr(X; € 092") = 0. We therefore prefer our expression in terms of an integral with
respect to the Hausdorff measure to any expressions in terms of conditional expectations on the boundary. Arias,
Rubio-Ramirez and Waggoner (2018), Bornn, Shephard and Solgi (2019), and Qiao (2021) use similar tools from
differential geometry and geometric measure theory, but for different purposes.
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5 Machine Learning Simulation

This section assesses the feasibility and performance of our method, by conducting a Monte Carlo
experiment motivated by high-dimensional decision making by machine learning. Consider a
tech company that applies a machine-learning-based deterministic decision algorithm to a large
segment of the population. At the same time, the company conducts a randomized controlled
trial (RCT) using the rest of the population. They are interested in estimating treatment effects
using data from both segments. Our approach offers a way of exploiting not only the RCT
segment but also the deterministic algorithm segment.

We simulate 1,000 hypothetical samples from the following data-generating process. Each
sample {(Y;, Xy, D;, Z;)}_, is of size n = 10,000. There are 100 covariates (p = 100), and X; ~
N(0,%). Y;(0) is generated as Y;(0) = 0.75X ag + 0.25¢p;, where og € R and ¢p; ~ N(0, 1).
We consider two models for Y;(1), one in which the treatment effect ¥;(1) —Y;(0) does not depend
on X; and one in which the treatment effect depends on X;.

Model A. Y;(1) = Y;(0) + €13, where €1; ~ N(0,1).
Model B. Y;(1) = Y;(0) + X!ay, where oy € R,
The choice of parameters X, a and «y is explained in Appendix D. D;(0) and D;(1) are generated
as D;(0) =0 and D;(1) = 1{Y;(1) — Y;(0) > w;}, where u; ~ N(0,1).
To generate Z;, let qo.495 and qg 505 be the 49.5th and 50.5th (empirical) quantiles of the first
covariate X;1. Let Tpred(Xi) be a real-valued function of X;, which we regard as a prediction
of the effect of recommendation on the outcome for individual ¢ obtained from past data. We

construct 7,,eq by random forests using an independent sample (see Appendix D for the details).
Z; is then generated as

Z} ~ Bernoulli(0.5) if X1 € [g0.495, 0.505)
Zi=41 if X1 ¢ [qo.495, o.505] and Tpeq(X;) >0
0 if Xi1 € [qo.495, o.505] and Tppeq(X;) < 0.

The first case corresponds to the RCT segment while the latter two cases to the deterministic
algorithm segment. The function A is given by

0.5 if 1 € [q0.495, 90.505]
A(z) =491 if 21 ¢ [g0.495, Q0.505] and Tppea(z) > 0
0 if 21 ¢ [qo.495, qo.505] and Tpeq(x) < 0.

Finally, D; and Y; are generated as D; = Z;D;(1)+(1—Z;)D;(0) and Y; = D;Y;(1)+(1—D;)Y;(0),
respectively.

Estimators and Estimands. We use the data {(Y;, X;, D;, Z;)}!'_; to estimate treatment
effect parameters. Our main approach is 2SLS with fixed-bandwidth APS controls in Theorem
1. To compute fixed-bandwidth APS, we use S = 400 simulation draws for each observation.

We compare our approach with two naive alternatives. The first alternative is OLS of Y¥; on
a constant and Dj; (i.e., the difference in the sample mean of Y; between the treated group and
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untreated group) using all observations. The second alternative is 2SLS with A(X;) controls.
This method uses the observations with A(X;) € (0,1) to run the 2SLS regression of Y; on a
constant, D;, and A(X;) using Z; as an instrument for D; (see (6) and (7) in Section 4.3) and
reports the coefficient on D;.

We consider four parameters as target estimands: ATE = E[Y;(1) — Y;(0)], ATE(RCT) =
E[Y;(1)-Y;(0)[X1 € [g0.495, q0.505]], LATE = E[Y;(1)-Y;(0)|Ds(1) # D;(0)], and LATE(RCT) =
E[Y;(1) = Yi(0)|D;(1) # D;(0), Xi1 € [q0.495, 90.505)]. In the case where the treatment effect does
not depend on X; (Model A), ATE and LATE are the same as ATE(RCT) and LATE(RCT),
respectively. In the case where the treatment effect depends on X; (Model B), ATE and LATE
differ from ATE(RCT) and LATE(RCT), respectively. However, since the RCT segment is a
randomly selected subpopulation, the average effect for the RCT segment is close to the uncon-
ditional average effect. As a result, ATE is similar to ATE(RCT) and LATE is to LATE(RCT).

For both models, the 2SLS estimator converges in probability to LATE(RCT) (equivalently,
the right-hand side of equation (5)) whether we control for fixed-bandwidth APS or A(Xj;).
However, 2SLS with A(X;) controls uses only the individuals for the RCT segment while 2SLS
with fixed-bandwidth APS controls additionally uses the individuals near the decision boundary
of the deterministic algorithm (i.e., the boundary of the region for which 7,,¢q(x) > 0). Therefore,
2SLS with fixed-bandwidth APS controls is expected to produce a more precise estimate than
2SLS with A(X;) controls if the conditional effects for those near the boundary are not far from
the target estimand.

Results. Table 1 reports the bias, standard deviation (SD), and root mean squared error
(RMSE) of each estimator. Panels A and B present the results for the cases where the conditional
effects are homogeneous and heterogeneous, respectively. Note first that OLS with no controls is
significantly biased, showing the importance of correcting for omitted variable bias. 2SLS with
fixed-bandwidth APS achieves this goal, as demonstrated by its smaller biases across all possible
treatment effect models, target parameters, and values of the bandwidth §. 2SLS with fixed-
bandwidth APS controls shows a consistent pattern; as the bandwidth & grows, the bias increases
while the variance declines. For several values of §, 2SLS with fixed-bandwidth APS controls
outperforms 2SLS with A(X;) controls in terms of the RMSE. This finding implies that exploiting
individuals near the multidimensional decision boundary of the deterministic algorithm can lead
to better performance than using only the individuals in the RCT segment.

We also evaluate our inference procedure based on Theorem 1. Table 1 reports the coverage
probabilities of the 95% confidence intervals for LATE(RCT) constructed from the 2SLS esti-
mates and their heteroskedasticity-robust standard errors. The confidence intervals offer nearly
correct coverage when ¢ is small, which supports the implication of Theorem 1 that the inference
procedure is valid when we use a sufficiently small §. Overall, Table 1 shows that our estimator
works well in this high-dimensional setting and performs better than alternative estimators.
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6 Empirical Policy Application
6.1 Hospital Relief Funding during the COVID-19 Pandemic

Here we provide our real-world empirical application. As part of the 3-phase Coronavirus Aid,
Relief, and Economic Security (CARES) Act, the US government has distributed tens of billions
of dollars of relief funding to hospitals since April 2020. This funding intended to help health
care providers hit hardest by the COVID-19 outbreak and at a high risk of closing. The bill spec-
ified that providers may (but are not required to) use the funds for COVID-19-related expenses,
such as construction of temporary structures, leasing of properties, purchasing medical supplies
and equipment (including personal protective equipment and testing supplies), increased work-
force utilization and training, establishing emergency operation centers, retrofitting facilities and
managing the surge in capacity, among others.

We are interested in whether this funding had a causal impact on hospital operation and
activities in dealing with COVID-19 patients. We focus on an initial portion of this funding
($10 billion), which was allocated to hospitals that qualified as “safety net hospitals” according
to a specific eligibility criterion. This eligibility criterion intends to direct funding towards hos-
pitals that “disproportionately provide care to the most vulnerable, and operate on thin margins.”
Specifically, an acute care hospital was deemed eligible for funding if the following conditions
hold:

e Medicare Disproportionate Patient Percentage (DPP) of 20.2% or greater. DPP is equal
to the sum of the percentage of Medicare inpatient days attributable to patients eligible
for both Medicare Part A and Supplemental Security Income (SSI), and the percentage of

total inpatient days attributable to patients eligible for Medicaid but not Medicare Part
}\.26

e Annual Uncompensated Care (UCC) of at least $25,000 per bed. UCC is a measure of
hospital care provided for which no payment was received from the patient or insurer. It
is the sum of a hospital’s bad debt and the financial assistance it provides.??

e Profit Margin (Net income/(Net patient revenue + Total other income)) of 3.0% or less.

Hospitals that do not qualify on any of the three dimensions are funding ineligible. Figure 3
visualizes how the three dimensions determine funding eligibility. As the bottom two-dimensional
planes show, eligibility discontinuously changes as hospitals cross the eligibility boundary in the
space of the three characteristics. This setting is a three-dimensional RDD, falling under our
framework.

The final funding amount is calculated as follows. Each eligible hospital is assigned an
individual facility score, which is calculated as the product of DPP and the number of beds in
that hospital. This facility score determines the share of funding allocated to the hospital, out
of the total $10 billion. The share received by each hospital is determined by the ratio of the

26Source: https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/dsh
2Source: https://www.aha.org/fact-sheets/2020-01-06-fact-sheet-uncompensated-hospital-care-
cost
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hospital’s facility score to the sum of facility scores across all eligible hospitals. The amount of
funding that can be received is bounded below at $5 million and capped above at $50 million.
Figure 4 shows the distribution of funding amounts received by eligible hospitals. A majority of
eligible hospitals receive the minimum amount of $5 million. A small mass of hospitals receive
amounts close to the maximum of $50 million. We replicate the funding eligibility status as well
as the amount of funding received, by using publicly available data from the Healthcare Cost
Report Information System (HCRIS) for the 2018 financial year.?

To obtain outcome measures of interest, we use the publicly available COVID-19 Reported
Patient Impact and Hospital Capacity by Facility dataset. This provides facility-level data on
hospital utilization aggregated on a weekly basis, from July 31st 2020 onwards.?? Summary
statistics about hospital outcomes and characteristics are documented in Table 2. Eligible hos-
pitals have higher fractions of inpatient and ICU beds occupied by COVID-19 patients. Eligible
hospitals also have a higher disproportionate patient percentage, higher uncompensated care per
bed, lower profit margins, more employees and beds, and shorter lengths of inpatient stay. These
patterns are consistent with the funding’s goal of helping struggling hospitals.

6.2 Covariate Balance Estimates

We first evaluate the balancing property of fixed-bandwidth APS conditioning using fixed-
bandwidth-APS-controlled differences in covariate means for hospitals who are and are not
deemed eligible for funding. Specifically, we run the following OLS regression of hospital-level
characteristics on the eligibility status using observations with p*(X;;d,) € (0,1):

Wi =0 +71Zi + 720°(Xi; 0n) + i,

where W; is one of the predetermined characteristics of the hospital, Z; is a funding eligibility
dummy, X; is a vector of the three input variables (DPP, UCC, and profit margin) that determine
the funding eligibility, and p®(Xj;dy,) is the simulated fixed-bandwidth APS. We compute fixed-
bandwidth APS using S = 10,000 simulation draws.?* The estimated coefficient on Z; is the
fixed-bandwidth-APS-controlled difference in the mean of the covariate between eligible and
ineligible hospitals. For comparison, we also run the OLS regression of hospital characteristics
on the eligibility status with no controls using the whole sample.

Table 3 reports the covariate balance estimates. Column 1 shows that, without controlling for
fixed-bandwidth APS, eligible hospitals are significantly different from ineligible hospitals. We
find that all the relevant hospital eligibility characteristics are strongly associated with eligibility.
Once we control for fixed-bandwidth APS with small enough bandwidth 4, eligible and ineligible
hospitals have similar financial and utilization characteristics, as reported in columns 2-6 of

28We use the methodology detailed in the CARES ACT website to project funding based on 2018 financial
year cost reports. We use the RAND cleaned version of the dataset which can be accessed at https://www.
hospitaldatasets.org/

29Qource:  https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/
anag-cw7u

30Figure A.2 in Appendix E.4 reports fixed-bandwidth APS for several hospitals with varying numbers of
simulation draws. We find that S = 10,000 is sufficient for well stabilizing fixed-bandwidth APS simulation.

21


https://www.hhs.gov/coronavirus/cares-act-provider-relief-fund/general-information/index.html
https://www.hospitaldatasets.org/
https://www.hospitaldatasets.org/
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u

Table 3. These estimates are consistent with our theoretical results, establishing the empirical
relevance of fixed-bandwidth APS controls.

6.3 2SLS Estimates

The balancing performance of fixed-bandwidth APS motivates us to estimate causal effects of
funding by 2SLS using funding eligibility as an instrument for the amount of funding received.
We study the effect of funding on relevant hospital outcomes, such as the number of inpatient
beds occupied by adult COVID patients between July 31st 2020 and August 6th 2020. We run
the following 2SLS regression on four different hospital-level outcome variables, using hospitals
with p*(X;;0) € (0,1):

D; = +v1Zi + v2p®(Xi;0) + v
Y; = Bo + B1D; + Bap®(X4; 6) + €,

where Y; is a hospital-level outcome and D; is the amount of relief funding received.?! We also
run the OLS and 2SLS regressions with no controls, as well as OLS regression controlling for
the three eligibility determinants (disproportionate patient percentage, uncompensated care per
bed and profit margin).??> These alternative regressions are computed using the sample of all
hospitals, as benchmark estimators.

The first stage effects of funding eligibility on funding amount (in millions), shown in columns
3-10 of Table 4, suggest that funding eligibility boosts the amount of funding significantly.
For example, in column 3 of Table 4, we can see that funding eligibility increases funding by
approximately 15 million dollars on average.

OLS estimates of funding effects, reported as the benchmark in column 1 of Table 4, indicate
that funding is associated with a higher number of adult inpatient beds and higher number of
staffed ICU beds utilized by patients who have lab-confirmed or suspected COVID. The estimates
indicate that a million dollar increase in funding is associated with 5.58 more adult inpatient
beds occupied by patients with lab-confirmed or suspected COVID. The corresponding increase

31This specification uses a continuous treatment, unlike our theoretical framework with a binary treatment.
We obtain similar results when the treatment is a binary transformation of the amount of relief funding received
(e.g., a dummy indicating whether the amount exceeds a certain value). Results are available upon request.

32Precisely speaking, we run the following specification of each alternative estimator for each hospital-level
outcome variable Y;. For the OLS regression without any controls, we estimate:

Y; = fo + B1D; + €.
For the 2SLS regression without any controls, we run:

Di =~y +mZi +vi
Yi = Bo+ B1Di + €.

For the OLS regression controlling for disproportionate patient percentage, uncompensated care per bed and
profit margin, we estimate:

Yi = Bo + B1Di + B2 X1 + B3 Xi2 + PaXiz + €,

where X1 is disproportionate patient percentage, X;2 is uncompensated care per bed, and X;3 is profit margin.
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in total adult inpatient beds occupied by those who have lab-confirmed COVID is 4.53 and the
increase in staffed ICU beds occupied by those who have lab-confirmed or suspected COVID is
1.67. The estimated increase in staffed ICU beds occupied by lab-confirmed COVID patients is
1.51. These uncontrolled OLS estimates show a similar picture as the descriptive statistics in
Table 2. Naive 2SLS estimates with no controls and OLS with covariate controls produce similar
significantly positive associations of funding with outcomes.

However, the OLS or uncontrolled 2SLS estimates turn out to be an artifact of selection
bias. In contrast with these naive estimates, our preferred 2SLS estimates with fixed-bandwidth
APS controls show a different picture (columns 4-10). The gains in the number of inpatient
beds and staffed ICU beds occupied by suspected and lab-confirmed COVID patients become
much smaller and lose significance across all bandwidth specifications. These results suggest that
fixed-bandwidth APS reveals important selection bias in the estimated effects of funding. Once
we control for fixed-bandwidth APS to eliminate the bias, funding has little to no effect on the
hospital utilization level by COVID-19 patients.?3

The above analysis looks at the immediate effects of relief funding. However, the effects of
relief funding might kick in after a time lag, given that expansion in capacity and staff takes
time. To investigate the relevance of this concern, we finally measure the evolving effects of
relief funding. We estimate our main 2SLS specification on the 7-day average of each hospital
outcome for each week from July 31st, 2020 to April 2nd, 2021. We plot the results in Figure
5. The estimated dynamic effects are similar to the initial null effects in Table 4, even several
months after the distribution of relief funding. This dynamic analysis suggests that funding has
no substantial effect even in the long run.

We further extend this analysis by estimating the heterogeneous effects of funding for different
types of hospitals. Figure 6 plots the resulting estimates by repeating the same dynamic analysis
as in Figure 5, but for different groups of hospitals defined by hospital size and ownership type.
Overall, hospitals with different characteristics sometimes face different trends of funding effects,
but none of the differences is statistically significant at the 5% level. We do not find any strong
evidence of heterogeneity in the funding effects at any point in time.

Having said that, there is some suggestive indication of potential heterogeneity. In Panel 6a,
for example, the estimated funding effect spiked among the hospitals in the lowest quartile of
revenue from December 2020 to February 2021. This trend may suggest that the funding was
able to alleviate the financial burden faced by struggling hospitals in this strata and allowed
them to take on new patients during the winter surge.

There is also a sizable dip in the funding effect of for-profit hospitals around the same period.
This could be due to regional differences in the distribution of hospital ownership. Nonprofits
and government-managed hospitals tend to be in rural areas, which both received more funding
and experienced a worse surge during the winter. On the other hand, the for-profits that received
funding tend to be in urban areas and experienced a less extreme winter wave.

The overall insignificance of the estimates suggests that funding by the CARES Act had

33The 2SLS estimates in Table 4 are unlikely to be compromised by differential attrition. Estimates reported
in Table A.1 in Appendix E.4 show little difference in outcome availability rates between eligible and ineligible
hospitals once we control for fixed-bandwidth APS.
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largely no effect on hospital utilization trends during the pandemic. This finding is consistent
with policy and media arguments that CARES Act funding was not well targeted toward needy
providers. Unlike the previous arguments and descriptive analyses, the analysis here provides
causal evidence supporting the concern.

7 Other Examples

Here we give real-world examples of other algorithms and discuss the applicability of our frame-
work.

Example 1 (Bandit Algorithms). We are constantly exposed to digital information (movie,
music, news, search results, advertisements, and recommendations) through a variety of devices
and platforms. Tech companies allocate these pieces of content by using bandit algorithms.
Our method is applicable to many popular bandit algorithms. For simplicity, assume a perfect-
compliance scenario where the company perfectly controls the treatment assignment (D; = Z;).
The algorithms below first use past data and supervised learning to estimate the conditional
means and variances of potential outcomes, E[Y;(2)|X;] and Var(Y;(z)|X;), for each z € {0,1}.
Let p1, and o2 denote the estimated functions. The algorithms use u.(X;) and 02(X;) to deter-
mine the treatment assignment for individual i.

(a) (Thompson Sampling Using Gaussian Priors) The algorithm first samples potential out-
comes from the normal distribution with mean (uo(X;), #1(X;)) and variance-covariance
matrix diag(o3(X;),0%(X;)). The algorithm then chooses the treatment with the highest
sampled potential outcome:

7] = argmaxy(z), ATS(X;) = Elargmaxy(2)|Xi],
2€{0,1} 2€{0,1}

where y(z) ~ N (1.(X;),02(X;)) independently across z. These algorithms often induce
quasi-experimental variation in treatment assignment, as a strand of the computer science
literature has observed (Precup, 2000; Li et al., 2010; Narita, Yasui and Yata, 2019; Saito,
Aihara, Matsutani and Narita, 2021). Suppose that the functions pg, p1, 03 and a% are

continuous. The function A and APS have an analytical expression:

ATS(J:) :pTS(.CE) S < [Lo(l‘) - /Ll(m) ) ’

o4(z) + of(z)

where ® is the cumulative distribution function of a standard normal distribution. This
APS is nondegenerate, meaning that the data from the algorithm allow for causal-effect
identification.

(b) (Upper Confidence Bound, UCB) Unlike the above stochastic algorithm, the UCB algo-
rithm (Li et al., 2010) is a deterministic algorithm, producing a less obvious example of
our framework. This algorithm chooses the treatment with the highest upper confidence
bound for the potential outcome:

ZY98 = arg max{p.(X;) + ao.(X;)}, AVCB(z) = argmax{p.(z) + ac.(z)},

2=0,1 z=0,1
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where « is chosen so that |u,(z) — E[Y:(2)|X; = z]| < ao,(x) at least with some probability,
for example, 0.95, for every x. Suppose that the function g = 3 — po + a(oy — 0¢) is
continuous on X" and is continuously differentiable in a neighborhood of = with Vg(z) # 0
for any x € X such that g(x) = 0. APS for this case is given by

0 if 1 () + aoi(x) < po(z) + aop(x)
PP = {05 it p(z) + a0 (z) = () + aoo(x)
1 if p1(z) + aoi(x) > po(z) + aoco(x).

This means that the UCB algorithm produces potentially complicated quasi-experimental
variation along the boundary in the covariate space where the algorithm’s treatment rec-
ommendation changes from one to the other. It is possible to identify and estimate causal
effects across the boundary.

Example 2 (Unsupervised Learning). Customer segmentation is a core marketing practice that
divides a company’s customers into groups based on their characteristics and behavior so that
the company can effectively target marketing activities at each group. Many businesses today
use unsupervised learning algorithms, clustering algorithms in particular, to perform customer
segmentation. Using our notation, assume that a company decides whether it targets a campaign
at customer i (Z; = 1) or not (Z; = 0). The company first uses a clustering algorithm such as
K-means clustering or Gaussian mixture model clustering to divide customers into K groups,
making a partition {Si,..., Sk} of the covariate space RP. The company then conducts the
campaign targeted at some of the groups:

Zl = 1{X; € UperSi}y, A“F(z) = 1{z € UperSi},

where T' C {1, .., K} is the set of the indices of the target groups.

For example, suppose that the company uses K-means clustering, which creates a partition
in which a covariate value x belongs to the group with the nearest centroid. Let cy, ..., cx be the
centroids of the K groups. Define a set-valued function C' : RP — 211K} where 211K} ig the
power set of {1,..., K}, as C(x) = argmingc gy gy |7 — gl If C(z) is a singleton, x belongs to
the unique group in C'(z). If C(x) contains more than one indices, the group to which = belongs
is arbitrarily determined. APS for this case is given by

0 if Cx)NT =10
P ) =205  if|Cx)| =2, x € d(UrerSi)
1 if C(x)CT

and p©L(x) € (0,1) if |C(x)| > 3 and = € O(UperSk), where |C(z)]| is the number of elements in
C(z).3* Thus, it is possible to identify causal effects across the boundary 9(UerSk).

341f |C(x)| = 2 and = € O(UkerSk), « is on a linear boundary between one target group and one non-target
group, and hence APS is 0.5. If |C(z)] > 3 and z € 9(UkerSk), = is a common endpoint of several group
boundaries, and APS is determined by the angles at which the boundaries intersect.
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Example 3 (Supervised Learning). Millions of times each year, judges make jail-or-release
decisions that hinge on a prediction of what a defendant would do if released. Many judges
now use proprietary algorithms (like COMPAS criminal risk score) to make such predictions
and use the predictions to support jail-or-release decisions. Using our notation, assume that a
criminal risk algorithm recommends jailing (Z; = 1) or releasing (Z; = 0) for each defendant 1.
The algorithm uses defendant i’s observable characteristics X;, including criminal history and
demographics. The algorithm first translates X; into a risk score r(X;), where r : RP — R is
a function estimated by supervised leaning based on past data and assumed to be fixed. For
example, Kleinberg et al. (2017) construct a version of r(X;) using gradient boosted decision
trees. The algorithm then uses the risk score to make the final recommendation:

z2L = 1{r(X;) > ¢}, A%E(z) = 1{r(z) > ¢},

35 A similar procedure applies to

where ¢ € R is a constant threshold that is set ex ante.
the screening of potential borrowers by banks and insurance companies based on credit scores
estimated by supervised learning (Agarwal, Chomsisengphet, Mahoney and Stroebel, 2017).

A widely-used approach to identifying and estimating treatment effects in these settings is
to use the score r(X;) as a continuous univariate running variable and apply a univariate RDD
method (Cowgill, 2018). However, whether r(X;) is continuously distributed or not depends on
how the function r is constructed. For example, suppose that r is constructed by a tree-based

algorithm and is the following simple regression tree with three terminal nodes:

71 iffL‘l §0
r(x) =< ry ifx1 >0,29 <0
T3 if 1 > 0,29 > 0,

where 71 < r9 < ¢ < r3. In this case, the score r(X;) is a discrete variable, and hence it may not
be suitable to apply a standard univariate RDD method.

Our approach is applicable to this case as long as at least one of the original multi-dimensional
covariates X; are continuously distributed. Since A%F(z) = 1{r(z) > ¢} = 1{x1 > 0,22 > 0},
APS for this case is given by

0 ifz; <0oray <0

pSL(zc) _ 0.25 if Tl = Ty = 0
0.5 if (1 =0,29 >0) or (z1 > 0,29 =0)
1 if 1 > 0,29 > 0.

It is therefore possible to identify causal effects across the boundary {z € X : (z1 = 0,22 >
0) or (x1 > 0,22 =0)}.

35The algorithm sometimes discretizes the original risk score r(X;) into d(r(X;)), where d : R — N (Cowgill,
2018). In this case, the algorithm uses the discretized risk score to make the final recommendation: Z7F =
1{d(r(X3)) > ¢}
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Example 4 (Policy Eligibility Rules). Medicaid and other welfare policies often decide who
are eligible based on algorithmic rules, as studied by Currie and Gruber (1996) and Brown,
Kowalski and Lurie (2020).3¢ Using our notation, the state government determines whether each
individual i is eligible (Z; = 1) or not (Z; = 0) for Medicare. The state government’s eligibility
rule AMedicaid 1 ang individual characteristics X; (e.g. income, family composition) into an
Zi]\dedica're'

eligibility decision A similar procedure also applies to bankruptcy laws (Mahoney,

2015). These policy eligibility rules produce quasi-experimental variation as in Example 3.
Example 5 (Mechanism Design: Matching and Auction). Centralized economic mechanisms

such as matching and auction are also suitable examples, as summarized below (Abdulkadiroglu
et al., 2017, Forthcoming; Abdulkadiroglu, 2013; Kawai et al., 2020; Narita, 2020, 2021):

‘ Matching (e.g., School Choice) ‘ Auction
1 Student Bidder
X; | Preference/Priority/Tie-breaker Bid
7 Whether student ¢ is Whether bidder 4
‘ assigned treatment school wins the good
D Whether student 7 Same as Z;
attends treatment school
Y; Student i’s Bidder i’s future
future test score economic performance

In mechanism design and other algorithms with capacity constraints, the treatment recommen-
dation for individual ¢ may depend not only on X; but also on the characteristics of others.
These interactive situations can be accommodated by our framework if we consider the following
large market setting.3” Suppose that there is a continuum of individuals 4 € [0, 1] and that the
recommendation probability for individual ¢ with covariate X; is determined by a function M as

follows:
PI‘(Z,L = 1|Xz, Fx_i) = M(Xl, Fx_i).

Here Fx , = Pr({j € [0,1] \ {¢} : X; < x}) is the distribution of X among all individuals
j € [0,1]\ {i}. The function M : R? x F — [0,1], where F is a set of distributions on RP,
gives the recommendation probability for each individual in the market. With a continuum of
individuals, for any ¢ € [0,1], Fx_, is the same as the distribution of X in the whole market,
denoted by Fx. Therefore, the data generated by the mechanism M are equivalent to the data
generated by the algorithm A : RP — [0,1] such that A(z) = M (z; Fx) for all z € RP. Our
framework is applicable to this large-market interactive setting.

The above discussions can be summarized as follows.

36These papers estimate the effect of Medicaid eligibility by exploiting variation in the eligibility rule across
states and over time (simulated instrumental variable method). In contrast, our method exploits local variation
in the eligibility status across different individuals given a fixed eligibility rule.

3"The approach proposed by Borusyak and Hull (2020) is applicable to finite-sample settings if the treatment
recommendation probability, which may depend on all individuals’ characteristics, is nondegenerate for multiple
individuals.
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Corollary 4. In all the above examples, there exists x € int(X) such that pA(z) € (0,1).
Therefore, a causal effect is identified under Assumptions 1 and 2.

8 Conclusion

As algorithmic decisions become the new norm, the world becomes a mountain of natural ex-
periments and instruments. We develop a general method to use these algorithm-produced
instruments to identify and estimate causal treatment effects. Our analysis of the CARES Act
hospital relief funding uses the proposed method to find that relief funding has little effect on
COVID-19-related hospital activities. OLS or uncontrolled 2SLS estimates, by contrast, show
considerably larger and more significant effects. The large estimates appear to be an artifact
of selection bias; relief funding just went to hospitals with more COVID-19 patients, without
helping hospitals accommodate additional patients.

Our analysis clarifies a few implications for policy and management practices around algorith-
mic decision-making. It is important to record the implementation of algorithms in a replicable,
simulatable way, including what input variables X; are used to make algorithmic recommenda-
tion Z;. Another key lesson is the importance of recording an algorithm’s recommendation Z;
even if they are superseded by a human decision D;. These data retention efforts would go a
long way to exploit the full potential of algorithms as natural experiments.

An important topic for future research is estimation details, such as data-driven bandwidth
selection. This work needs to extend Imbens and Kalyanaraman (2012) and Calonico, Cattaneo
and Titiunik (2014)’s bandwidth selection methods in the univariate RDD to our setting.?8
Inference on treatment effects in our framework relies on conventional large sample reasoning. It
seems natural to additionally consider permutation or randomization inference as in Imbens and
Rosenbaum (2005). It will also be challenging but interesting to develop finite-sample optimal
estimation and inference strategies such as those recently introduced by Armstrong and Koleséar
(2018, 2020) and Imbens and Wager (2019). Finally, we look forward to empirical applications
of our method in a variety of business, policy, and scientific domains.

38For univariate RDDs, Imbens and Kalyanaraman (2012) and Calonico et al. (2014) estimate the bandwidth
that minimizes the asymptotic mean squared error (AMSE). It is not straightforward to estimate the AMSE-
optimal bandwidth in our setting with many running variables and complex IV assignment, since it requires
nonparametric estimation of functions on the multidimensional covariate space such as conditional mean functions,
their derivatives, the curvature of the RDD boundary, etc.
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Figure 1: Example of the Approximate Propensity Score
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Figure 2: Illustration of the Change of Variables Techniques
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Table 1: Bias, SD, and RMSE of Estimators and Coverage of 95% Confidence Intervals

Our Method: 2SLS with Approximate Propensity Score Controls 2SLS OLS
6 =0.01 6 =0.05 6=0.1 6=0.25 6=0.5 6=1 with with No
A(X;) Controls
Controls
Panel A: Homogeneous Conditional Effects (Model A)
Estimand: ATE = ATE(RCT) =0
Bias .603 .634 .644 .659 .684 .740 572 754
SD .304 .205 157 .110 .078 .061 372 .024
RMSE 675 .667 .663 .668 .689 .842 .683 754
Estimand: LATE = LATE(RCT) = 0.564
Bias .039 .070 .080 .095 120 176 .008 .190
SD .304 .205 157 .110 .078 .061 372 .024
RMSE .306 217 176 .145 .143 .186 372 191
Coverage 94.8% 92.8% 92.9% 84.6% 69.6% 18.6% — —
Avg N 235 727 1275 2567 3995 5561 100 10000
Panel B: Heterogeneous Conditional Effects (Model B)
Estimand: ATE = ATE(RCT) =0
Bias .568 587 .589 .604 .636 .709 .545 1.192
SD 331 .222 .170 118 .083 .063 .399 .025
RMSE .657 .628 .613 .615 .642 712 .676 1.193
Estimand: LATE = 0.564
Bias .004 .023 .025 .040 .072 145 —.019 .628
SD 331 222 170 118 .083 .063 .399 .025
RMSE 331 .223 172 125 110 158 .399 .629
Estimand: LATE(RCT) = 0.559
Bias .009 .028 .030 .045 077 .150 —.014 .633
SD 331 222 170 118 .083 .063 .399 .025
RMSE 331 224 173 127 114 .163 .399 .634
Coverage 95.9% 94.8% 95.0% 93.2% 87.1% 37.4% — —
Avg N 235 723 1274 2567 3993 5561 100 10000

Notes: This table shows the bias, the standard deviation (SD) and the root mean squared error (RMSE) of 2SLS with
Approximate Propensity Score controls, 2SLS with A(X;) controls, and OLS with no controls. These statistics are
computed with the estimand set to ATE, ATE(RCT), LATE, or LATE(RCT). The row “Coverage” in each panel shows
the probabilities that the 95% confidence intervals of the form [Bf —1.966%, Bf + 1.9662] contains LATE(RCT), where Bf
is the 2SLS estimate with Approximate Propensity Score controls and 67, is its heteroskedasticity-robust standard error.
We use 1,000 replications of a size 10,000 simulated sample to compute these statistics. We use several possible values of
J to compute the Approximate Propensity Score. All Approximate Propensity Scores are computed by averaging 400
simulation draws of A(X;). Panel A reports the results under the model in which the treatment effect does not depend on
X; (Model A). Panel B reports the results under the model in which the treatment effect depends on X; (Model B). The
bottom row “Avg N” in each panel shows the average number of observations used for estimation (i.e., the average number
of observations for which the Approximate Propensity Score or A(X;) is strictly between 0 and 1).
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Figure 3: Three-dimensional Regression Discontinuity in Hospital Funding Eligibility
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Notes: The top figure visualizes the three dimensions that determine funding eligibility. The bottom figures show the data
points plotted along 2 out of 3 dimensions. The bottom left panel plots disproportionate patient percentage against profit
margin, while the bottom right panel plots uncompensated care per bed against profit margin. We remove hospitals above
the 99th percentile of disproportionate patient percentage and uncompensated care per bed, for visibility purposes.
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Table 2: Hospital Characteristics and Outcomes

All Ineligible Eligible Hospitals w/
Hospitals Hospitals APS € (0,1)

Panel A: Outcome Variable Means

# Confirmed/Suspected Covid Patients 105.59 98.41 136.61 125.19
# Confirmed Covid Patients 80.1 73.86 107.83 86.78
# Confirmed/Suspected Covid Patients in ICU 31.37 28.92 42.1 36.84
# Confirmed Covid Patients in ICU 26.62 24.41 36.56 31.41
Observations 4,008 3,293 715 429

Panel B: Hospital Characteristics Means

Beds 143.66 134.6 188.35 206.47
Interns and residents (full-time equivalents) per bed .06 .05 A1 .09
Adult and pediatric hospital beds 120.26 113.29 154.66 170.49
Ownership: Proprietary (for-profit) .19 2 .18 .15
Ownership: Governmental .22 .22 .23 .16
Ownership: Voluntary (non-profit) .58 .58 .59 .68
Inpatient length of stay 9.21 10.14 4.66 4.38
Employees on payroll (full-time equivalents) 973.9 897.31 1351.57 1525.06
Disproportionate patient percentage .21 .18 .38 .36
Uncompensated care per bed 59,850 56,556.03 76,096.31 45,996.48
Profit margin .02 .04 -.07 -.03
Observations 4,633 3,852 781 485

Notes: This table reports averages of outcome variables and hospital characteristics by safety net eligibility. A
safety net hospital is defined as any acute care hospital with disproportionate patient percentage of 20.2% or
greater, annual uncompensated care of at least $25,000 per bed and profit margin of 3.0% or less. Panel A
reports the outcome variable means. Outcome variable estimates are 7 day sums for the week spanning July
31st 2020 to August 6th 2020. Confirmed or Suspected COVID patients refer to the sum of patients in inpatient
beds with lab-confirmed /suspected COVID-19. Confirmed COVID patients refer to the sum of patients in
inpatient beds with lab-confirmed COVID-19, including those with both lab-confirmed COVID-19 and influenza.
Inpatient bed totals also include observation beds. Similarly, Confirmed/ Suspected COVID patients in ICU
refer to the sum of patients in ICU beds with lab-confirmed or suspected COVID-19. Confirmed COVID
patients in ICU refers to the sum of patients in ICU beds with lab-confirmed COVID-19, including those with
both lab-confirmed COVID-19 and influenza. Panel B reports the means for hospital characteristics for the
financial year 2018. Column 1 shows the means for All Hospitals. Columns 2 and 3 show the means for hospitals
that are ineligible and eligible to receive safety net funding respectively. Column 4 shows the means for the
hospitals with non-degenerate Approximate Propensity Score with bandwidth é = 0.05. Approximate
Propensity Score is computed by averaging 10,000 simulation draws.
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Figure 4: Funding Distribution for Eligible Hospitals
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Notes: The figure shows the distribution of funding amounts for eligible hospitals. Each eligible hospital is assigned an
individual facility score, which is the product of Disproportionate Patient Percentage and number of beds in the hospital.
The share of $10 billion received by an eligible hospital is determined by the ratio of the individual facility score of that
hospital to the sum of facility scores across all eligible hospitals. The amount of funding that can be received by an eligible
hospital is calculated as the product of this ratio and $10 billion, and is bounded below at $5 million and bounded above

at $50 million.
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Table 3: Covariate Balance Regressions

Mean No Our Method: OLS with Approximate Propensity Score Controls
(Ineligible)  Controls 6 =0.01 0 =0.025 0 =0.05 6 =0.075 0=0.1 6=0.25 6=05
(1) () (3) (4) (5) (6) (7) (8) 9)
Panel A: Determinants of Funding Eligibility
Profit margin .04 -0.11%%* -0.03 -0.01 0.02 0.01 0.02 0.05%* 0.06%**
(0.01) (0.06) (0.04) (0.03) (0.03) (0.02) (0.01) (0.01)
N=4633 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368
Uncompensated 56556.02 19,540.28*** 4.943.70 10,234.70 -4,182.07 -9,506.62 -10,959.35 -8,009.43 -6,033.20
care per bed (3,827.22)  (12,150.44) (10,151.35) (8,666.22) (7,671.12)  (7,017.85)  (4,538.28)  (3,675.48)
N=4633 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368
Disproportionate .18 0.21%%* -0.09 -0.09 -0.09 -0.08 -0.08 -0.06%* -0.07%**
patient percentage (0.01) (0.09) (0.07) (0.07) (0.06) (0.05) (0.03) (0.01)
N=4633 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368
Panel B: Other Hospital Characteristics
Full time employees 897.32 454 .26*** 2,645.18 344.35 62.07 101.29 20.46 206.57 110.85
(69.23)  (1,635.80)  (1,021.21)  (663.92) (511.76) (419.46) (218.52) (143.16)
N=4626 N=90 N=238 N=483 N=669 N=873 N=1723 N=2365
Medicare net revenue 20.04 18.36*** 34.67 -8.81 -6.39 -1.27 1.55 4.19 -0.42
(in millions) (2.39) (29.56) (18.59) (14.25) (12.03) (10.83) (6.64) (4.68)
N=4511 N=89 N=238 N=482 N=666 N=870 N=1684 N=2323
Occupancy 44 0.07*** 0.19% 0.07 -0.00 0.01 0.01 0.03 0.04**
(0.01) (0.09) (0.06) (0.04) (0.04) (0.03) (0.02) (0.01)
N=4624 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368
Operating margin .02 -0.11%%* -0.03 0.00 0.03 0.02 0.03 0.06*** 0.07***
(0.01) (0.06) (0.05) (0.03) (0.03) (0.03) (0.02) (0.01)
N=4541 N=89 N=238 N=476 N=660 N=863 N=1676 N=2314
Beds 134.6 53.75%** 190.00 33.57 4.05 7.37 8.64 16.50 8.30
(7.05) (105.37) (67.12) (47.58) (39.07) (33.42) (20.05) (14.46)
N=4633 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368
Costs per discharge 66.28 -49.95%* 3.88 3.29% 1.59 -6.40 -0.62 6.23 6.23
(in thousands) (17.93) (2.18) (1.50) (1.22) (8.15) (2.34) (4.82) (4.85)
N=3539 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368
p-value joint significance 0 .73 476 .864 724 .269 0 0

Notes: This table shows the results of the covariate balance regressions at the hospital level. The dependent variables for these regressions are drawn

from the Healthcare Cost Report Information System for the financial year 2018. Disproportionate patient percentage, profit margin and

uncompensated care per bed are used to determine the hospital’s safety net funding eligibility. Other dependent variables shown indicate the
financial health and utilization of the hospitals. In column 1, we regress the dependent variables on the safety net eligibility of the hospital with no
controls. In columns 2-8, we regress the dependent variables on funding eligibility controlling for the Approximate Propensity Score with different
values of bandwidth 6. All Approximate Propensity Scores are computed by averaging 10,000 simulation draws. Column 9 shows the mean of
dependent variables for hospitals that are ineligible to receive safety net funding. Robust standard errors are reported in the parenthesis and number
of observations are reported separately for each regression. The last row reports the p-value of the joint significance test.
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Table 4: Estimated Effects of Funding on Hospital Utilization

OLS OLS 2SLS Our Method: 2SLS with Approximate Propensity Score Controls
with with with
No Covariate No
Controls Controls Controls § = 6= §= 6= 6= 6= §=
0.01 0.025 0.05 0.075 0.1 0.25 0.5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
# Confirmed/Suspected COVID Patients

First stage 13.78%%% 15 11%  13.34%%% 14.28%%% 14.19%%% 13.80%%* 13.96%%* 13.06%+*
(in millions) (0.49)  (5.83)  (3.54)  (2.27)  (1.87)  (1.61)  (1.03)  (0.74)
$1mm of funding  5.58*** 3.25%%* 277¢% 103  -1.86  -3.10  -4.08  -2.91 0.15 -0.31
(0.68)  (0.89)  (0.58)  (5.64)  (5.40)  (4.99)  (4.57)  (3.58)  (1.59)  (1.21)
Observations 3532 3532 3532 73 195 392 547 719 1389 1947

# Confirmed COVID Patients

First stage 13.90%%% 16.55%*%  14.37FF% 15.05%%% 14.81%%% 14.42%%% 14,10%%% 13.19%%*
(in millions) (0.50)  (6.11)  (3.66)  (2.33)  (1.91)  (1.64)  (1.04)  (0.75)
$1mm of funding  4.53%*%  2,50%*  2.44%%* (.05 -2.14 1.42 0.13 -0.03  -0.09  -0.63
(0.63)  (0.79)  (0.50)  (4.33)  (3.97)  (217)  (1.97)  (L74)  (1.12)  (0.96)
Observations 3558 3558 3558 70 191 385 539 709 1366 1923

# Confirmed/Suspected COVID Patients in ICU

First stage 13.88%F% 14.67%  13.420F% 15.75%%% 15.20%0F 14, 74%0% 14 31%%F 13 18%F*
(in millions) (0.51)  (5.59)  (3.49)  (2.32)  (1.93)  (1.67)  (1.06)  (0.76)
$1mm of funding ~ 1.67**¥* 0.91%%  0.95%%*  0.93 0.71 0.36 -0.05 0.16 -0.03  -0.32
(0.21)  (0.28)  (0.18)  (1.47)  (1.27)  (0.74)  (0.70)  (0.60)  (0.40)  (0.36)
Observations 3445 3445 3445 72 186 374 520 678 1314 1846

# Confirmed COVID Patients in ICU

First stage 13.89%%% 1580%  13.79%%% 15.78%kk 1553%k% 1508%K* 14,43%%% 13.40%**
(in millions) (0.50)  (6.15)  (3.73)  (241)  (2.02)  (L73)  (1.09)  (0.77)
$1mm of funding  1.51%%*  0.82%*  0.88%**  0.50 -0.11 0.18 0.04 0.12 013 -0.35
(0.21)  (0.27)  (0.17)  (1.54)  (1.37)  (0.70)  (0.64)  (0.56)  (0.39)  (0.34)
Observations 3503 3503 3503 67 181 370 514 671 1321 1868

Notes: In this table we regress relevant outcomes at the hospital level on safety net funding. Column 1 presents the results
of OLS regression of the outcome variables on safety net funding without any controls. Column 2 presents the results of
OLS regression of the outcome variables on safety net funding controlling for disproportionate patient percentage,
uncompensated care per bed and profit margin. In columns 3-10, we instrument safety net funding with eligibility to
receive this funding and present the results of 2SLS regressions. In columns 3-10, the first stage shows the effect of being
deemed eligible on the amount of relief funding received by hospitals, in millions of dollars. Column 3 shows the results of
a 2SLS regression with no controls. In columns 4-10, we run this regression controlling for the Approximate Propensity
Score with different values of bandwidth § on the sample with nondegenerate Approximate Propensity Scores. All
Approximate Propensity Scores are computed by averaging 10,000 simulation draws. The outcome variables are the 7 day
totals for the week spanning July 31st, 2020 to August 6th, 2020. Confirmed or Suspected COVID patients refer to the
sum of patients in inpatient beds with lab-confirmed/suspected COVID-19. Confirmed COVID patients refer to the sum
of patients in inpatient beds with lab-confirmed COVID-19, including those with both lab-confirmed COVID-19 and
influenza. Inpatient bed totals also include observation beds. Similarly, Confirmed/Suspected COVID patients in ICU
refer to the sum of patients in ICU beds with lab-confirmed or suspected COVID-19. Confirmed COVID patients in ICU
refers to the sum of patients in ICU beds with lab-confirmed COVID-19, including those with both lab-confirmed
COVID-19 and influenza. Robust standard errors are reported in parentheses.
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Figure 5: Dynamic Effects of Funding on Weekly Hospital Outcomes
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Notes: The figure shows the results of estimating our main 2SLS specification about the effect of $1mm of relief funding on
weekly hospital outcomes from 07/31/2020 to 04/02/2021. The outcomes record the 7-day sum of the number of hospitalized
patients with the specified condition. We compute the Approximate Propensity Score with S = 10,000 and § = 0.05. The
estimates from the uncontrolled OLS, uncontrolled 2SLS, and 2SLS with the Approximate Propensity Score controls are
plotted on the y-axis. Standard error ribbons are given in grey.
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Figure 6: Dynamic Heterogeneous Effects of Hospital Funding by Hospital Characteristics
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Notes: The figure shows the results of estimating our main 2SLS specification of the effect of $1mm of relief funding on
weekly confirmed/suspected Covid-19 patients from 07/31/2020 to 04/12/2021, where the sample is stratified by quartiles
of different hospital characteristics, or ownership type. There are no significant estimates at the 5% level. We estimate APS
with S = 10,000 and ¢ = 0.05.
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A Extensions and Discussions

A.1 Related Literature: Details

In this section, we discuss the related methodological literature on the multidimensional RDD in
detail. Imbens and Wager (2019) propose the finite-sample-minimax linear estimator of the form
> i1 7:Y; and uniform confidence intervals for treatment effects in the multidimensional RDD.
One version of their approach constructs a linear estimator by choosing the weight (+;)?_; greedily
to make the inference as precise as possible. Although their estimator is favorable in terms of
precision, it is not obvious what estimand the estimator estimates, without assuming a constant
treatment effect. The other version of Imbens and Wager (2019)’s approach and some other
existing approaches (Zajonc, 2012; Keele and Titiunik, 2015) consider nonparametric estimation
of the conditional average treatment effect E[Y;(1) —Y;(0)|X; = z] for a specified boundary point
x. The estimand has a clear interpretation, but “when curvature is nonnegligible, equation (6)
can effectively make use of only data near the specified focal point ¢, thus resulting in relatively
long confidence intervals” (Imbens and Wager, 2019, p. 268), where equation (6) defines their
estimator.

To obtain more precise estimates while keeping interpretability, several papers studying a two-
dimensional RDD, including Zajonc (2012) and Keele and Titiunik (2015), propose to estimate
an integral of conditional average treatment effects over the boundary. Their approach first
nonparametrically estimates E[Y;(1) —Y;(0)|X; = z] and the density of X; for a large number of
points z in the boundary and then computes the weighted average of the estimated conditional
average treatment effects with the weight set to the estimated density.

The above approach is difficult to implement, however, when X; is high dimensional or the
decision algorithm is a complex, black box function of X;, for the following reasons. First, it
is computationally demanding to estimate E[Y;(1) — ¥;(0)|X; = z] for numerous points in the
boundary such that the weighted average well approximates the integral of E[Y;(1)—Y;(0)|X; = z]
over the boundary. Second, identifying boundary points from a general decision algorithm itself
is hard unless it has a known analytical form. By contrast, we develop an estimator that uses
observations near all the boundary points without tracing out the boundary or knowing its
analytical form, thus alleviating the limitations of existing estimators.

A.2 Existence of the Approximate Propensity Score

Proposition 1 assumes that APS exists, but is it fair to assume so? In general, APS may fail to
exist. Figure A.1 shows such an example. In this example, X; is two dimensional, and

Ax) =

1if 3(2)F ! < [jo|| < 4(3)F! for some k=1,2,---
0 if 2(2)F 1 < ||lz|| < 3(2)F1! for some k =1,2,---.

1 1
2 2
1 1
2 2



Figure A.1: Example of Algorithm A for which Approximate Propensity Score Does Not Exist

A=1
A=0

It is shown that

A(0:6) L if § = 4(3)"! for some k =1,2,---
p(0;0) =
2—77 if 6 = 3(1)*1 for some k =1,2,---.
Therefore, lims_,q p*(0; ) does not exist.
Nevertheless, APS exists for almost every x, as shown in the following proposition.

Proposition A.1. p(z) exists and is equal to A(x) for almost every x € X (with respect to the
Lebesgue measure).

Proof. See Appendix C.6. O

Does APS exist at a specific point 7 What is the value of APS at z if it is not equal to
A(x)? We show that APS exists and is of a particular form for most covariate points and typical
algorithms. For each x € X and each ¢ € Supp(A(X;)), define

Upq={ueB(0,1): %i_r% Az + u) = ¢}.

U, 4 is the set of vectors in B(0,1) such that the value of A approaches g as we approach x from
the direction of the vector. With this notation, we obtain a sufficient condition for the existence
of APS at a point z.

Proposition A.2. Take any x € X. If there exists a countable set Q) C Supp(A(X;)) such that
LP(UgeqUs q) = LP(B(0,1)) and Uy, is LP-measurable for all ¢ € Q, then pA(z) exists and is
given by

22geq 15" Usg)
Lr(B(0,1))

p(x) =
Proof. See Appendix C.4. O

A-2



If almost every point in B(0, 1) is contained by one of countably many U, ,’s, therefore, APS
exists and is equal to the weighted average of the values of ¢ with the weight proportional to the
hypervolume of U, 4. This result implies that APS exists in practically important cases.

Corollary A.1.
1. (Continuity points) If A is continuous at x € X, then p™(x) exists and p*(x) = A(x).

2. (Interior points) Let X; = {x € X : A(x) = q} for some q € [0,1]. Then, for any interior
point x € int(X,), pA(z) exists and p*(z) = q.

3. (Smooth boundary points) Suppose that {z € X : A(z) = q1} = {z € X : f(x) > 0} and
{r e X: Ax) = @@} = {z € X : f(x) < 0} for some q1,q2 € [0,1], where f : RP — R.
Let © € X be a boundary point such that f(x) = 0, and suppose that f is continuously
differentiable in a neighborhood of x with Vf(x) # 0. In this case, p™(x) exists and

pA(x) = 3(q1 + q2).

4. (Intersection points under CART and random forests) Let p = 2, and suppose that {z € X :
Alx) =q} ={(z1,22) € X 121 <0 orae <0}, {z € X : A(x) = q2} = {(x1,22) € X :
x1 > 0,29 > 0}, and 0 = (0,0) € X. This is an example in which tree-based algorithms
such as Classification And Regression Tree (CART) and random forests are used to create
A. In this case, p*(0) exists and p*(0) = %ql + %qg.

Proof. See Appendix C.5. O

A.3 Discrete Covariates

In this section, we provide the definition of APS and identification and asymptotic normality
results when X; includes discrete covariates. Suppose that X; = (Xg;, Xi), where Xy € RPd
is a vector of discrete covariates, and X, € RP¢ is a vector of continuous covariates. Let Xy
denote the support of X4 and be assumed to be finite. We also assume that X; is continuously
distributed conditional on Xy;, and let X, (z4) denote the support of X.; conditional on Xy; = x4
for each xq € X4. Let Xy o(zq) = {xc € Xe(2q) : Az, xc) = 0} and Xe1(zg) = {ze € Xe(zg) -
A(zg,x.) =1}
Define APS as follows: for each z = (z4,2.) € X,

A I s Al@a, 27)da?
p*(z;0) = e
fB(wC,é) L

pA(ac) = lim pA(:L'; J),
6—0

)

where B(z.,d) = {z} € RPe : ||z, — z%|| < 0} is the d-ball around =, € RPe. In other words, we
take the average of the A(zq, z}) values when x is uniformly distributed on B(z.,d) holding z4
fixed, and let § — 0. Below, we assume that Assumptions 1, 2, 3 and 4 hold conditional on Xy;.

Assumption A.1 (Almost Everywhere Continuity of A).
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(a) For every x4 € Xy, A(xq,-) is continuous almost everywhere with respect to the Lebesgue
measure LPec.

(b) For every x4 € Xgq, LP(X, j(xq)) = LP(int(Xe g (24))) for k=0,1.

A.3.1 Identification

Assumption A.2 (Local Mean Continuity). For every xq € Xg and z € {0, 1}, the conditional
expectation functions E[Y,|X; = (xg,x.)] and E[Di(2)|X; = (x4, )] are continuous in x. at
any point . € X.(xq) such that p*(zq,z.) € (0,1) and A(zq,z.) € {0,1}.

Let int.(X) = {(xg,zc) € X : z. € int(Xe(zq))}. We say that a set S C RP is open
relative to X if there exists an open set U C RP such that S = U N X. For a set S C RP, let
X7 = {zq € Xy : (vq,7.) € S for some z, € RP} and X (z4) = {z. € X, : (w4,2.) € S} for
each x4 € Xf.

Proposition A.3. Under Assumptions A.1 and A.2:

(a) E[Y1; — Y0i|Xi = 2| and E[D;(1) — D;(0)|X; = x| are identified for every x € int.(X) such
that p“(z) € (0,1).

(b) Let S be any subset of X open relative to X such that p*(x) exists for allz € S. Then either
E[Y1; —Yoi|X; € S] or E[D;(1) — D;(0)| X; € S, or both are identified only if p*(x) € (0,1)
for almost every x. € X7 (xq) for every zq € X7

Proof. See Appendix C.7. O

A.3.2 Estimation

For each z4 € Xy, let Q*(xq) = {2, € RP* : A(zg,z.) = 1}. Also, let X = {zq € Xy :
Var(A(X;)|Xai = z4) > 0}, and let fx, |x, denote the probability density function of X.; condi-
tional on Xy;. In addition, for each x4 € Xy, let

C*(xq) = {x. € RP¢ : A(zq, ) is continuously differentiable at z.},
and let D*(zq) = RPe \ C*(z4).
Assumption A.3.
(a) (Finite Moments) E[Y;!] < cc.

(b) (Nonzero First Stage) There exists a constant ¢ > 0 such that E[D;(1) — D;(0)|X; = x] > ¢
for every x € X such that p*(z) € (0,1).

(c) (Nonzero Conditional Variance) If Pr(A(X;) € (0,1)) > 0, then Var(A(X;)|A(X;) €
(0,1)) > 0.

If Pr(A(X;) € (0,1)) = 0, then the following conditions (d)-(g) hold.
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(d) (Nonzero Variance) X7 # (.

(e) (C* Boundary of Q*(z4)) For each x4 € X, there exists a partition {Qf(2q), ..., Vi (wa)}
of V*(xq) such that
(i) dist($%,,(xq), 2 (xq)) > 0 for any m,m' € {1,..., M} such that m # m/;
(ii) U (zq) is nonempty, bounded, open, connected and twice continuously differentiable
for each m € {1,..., M}.
(f) (Regularity of Deterministic A)

(i) For each x4 € X}, HP-~1(0Q*(24)) < 00, and faﬂ*(xd) Ixox, (Te|wa)dHP (xc) > 0.
(i1) There exists 6 > 0 such that A(zq,xc) = 0 for almost every x. € N(Xc(xq), )\ *(zq).

(g9) (Conditional Means and Density near 0Q2*(x4)) For each xq € X, there exists § > 0 such
that

(1) EY1lXi = (z4,-)], EYoilXi = (w4,-)], E[Di(1)|Xs = (2a,-)], E[D:(0)|Xi = (24,-)]
and fx. x,(:|Ta) are continuously differentiable and have bounded partial derivatives

on N(0Q*(xq),0);

(i1) E[Y12i|Xi = (zg4,")], E[YZ)21|XZ = (2q4,-)], E[Y1:D;(1)|X; = (24,-)] and E[Yy; D;(0)|X; =
(x4, -)] are continuous on N(0Q*(x4),0);

(iii) E[Y3|X; = (z4,-)] is bounded on N(9Q*(z4),6).
Assumption A.4. If Pr(A(X;) € (0,1)) > 0, then the following conditions (a)-(c) hold.

(a) (Probability of Neighborhood of D*(x4)) For each x4 € X, Pr(X; € N(D*(zq),0)) =
0(9).

(b) (Bounded Partial Derivatives of A) For each x4 € X, the partial derivatives of A(xg,-)
are bounded on C*(xq).

(c¢) (Bounded Conditional Mean) For each xq € X, E[Y;|X; = (24,-)] is bounded on X.(xq).

Theorem A.1. Suppose that Assumptions A.1 and A.8 hold, and that 6, — 0, nd, — oo and
Sn — 00 asn — co. Then the 25LS estimators Bl and Bf converge in probability to

1 = lim Bles(0) (i(1) = Yi(0)))

where
p* (X35 0)(1 — p?(Xi;6))(Di(1) — Dy(0))
E[pA(X3;6)(1 — pA(Xy36))(Di(1) — Di(0))]

Suppose, in addition, that Assumptions A.4 and 5 hold and that nd> — 0 as n — co. Then

OJZ((S) =

57 (B — pr) -5
d

N
(65)71(B5 — B1) = N(0,1).
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Proof. See Appendix C.8. O

As in the case in which all covariates are continuous, the probability limit of the 2SLS
estimators has more specific expressions depending on whether Pr(A(X;) € (0,1)) > 0 or not. If
Pr(A(X;) € (0,1)) >0,

L EJAX)(L - AX)(Di(1) — Di(0))(Yi(1) — Yi(0))]
plim fy = plim fif = E[AX) (1 - AX)(Di(1) - Di(0)]

If Pr(A(X;) € (0,1)) =0,

plim 3
= plim j3;

D gery Pr(Xai = 2a) [pg- () ELDi(1) — Di(0)(Yi(1) — Yi(0)|X; = 2] fx, | x, (welza) dHP " (c)
B Yzgexs Pr(Xai = 2a) [pqu () EIDi(1) — Di(0)|Xi = 2] fx,|x, (we|ra) dHP ! (2c) '

A.4 A Sufficient Condition for Assumption 4 (a)
We provide a sufficient condition for Assumption 4 (a).
Assumption A.5.
(a) (Twice Continuous Differentiability of D*) There exist CY,...,C%; C RP such that
(i) d(C*) = D*, where C* = UM_ C* ;
(ii) dist(Cp,, C*,) >0 for any m,m’ € {1,..., M} such that m # m/;
(i1i) CY, is nonempty, bounded, open, connected and twice continuously differentiable for
each m € {1,...,M}.
(b) (Regularity of D*) HP~1(D*) < .
(¢) (Bounded Density near D*) There exists 6 > 0 such that fx is bounded on N(D*,0).

The key condition is the twice continuous differentiability of D*. This condition holds if,
for example, the e-Greedy algorithm described in Example A.1 (a) in Appendix A.6 uses an
estimated @Q-function that is twice continuously differentiable in x.

Under Assumption A.5 (a), by Lemma B.4 in Appendix B.3 and with change of variables
v = %, for any sufficiently small § > 0,

1)
Pr(X; € N(D*,0)) = / s Fx (w4 Mg (W) I W (u, A)dHP ™ (w)dA

1
= 5/ fx (u+ dvvg, (u))JpD_*I@Z)é*(u, 50)dHP ™ (u)dv.

(See Appendix B for the notation.) If fx is bounded on N(D*,§) and HP~1(D*) < oo, the
right-hand side is O(9).
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A.5 Sampling from Uniform Distribution on p-Dimensional Ball

When we calculate fixed-bandwidth APS by simulation, we need to uniformly sample from
B(X;,d). We introduce three existing methods to uniformly sample from a p-dimensional unit
ball B(0,1). By multiplying the sampled vector by § and adding X; to it, we can sample from
a uniform distribution on B(Xj,J).

Method 1.
1. Sample 1, ..., ), independently from the uniform distribution on [—1, 1].
2. Accept the vector z = (1,...,zp) if > 0_, z7 < 1 and reject it otherwise.

Method 1 is a practical choice when p is small (e.g. p = 2,3), but is inefficient for higher
dimensions, since the acceptance rate decreases to zero quickly as p increases. The conventional
method used for higher dimensions is the following.

Method 2.
1. Sample z7,...,x, independently from the standard normal distribution, and compute the

vector s = (27, ..., 25)/1/ >y (2})2.
2. Sample u from the uniform distribution on [0, 1].

3. Return the vector x = u!/Ps.

There is yet another method efficient for higher dimensions, which is recently proposed by
Voelker, Gosmann and Stewart (2017).

Method 3.

1. Sample z7, ..., x, 5 independently from the standard normal distribution, and compute the
+2

vector s = (1, ..., x5, 9)/\/ D opey (@5)2

2. Return the Vector x = (S1,..., 5p).

A.6 Additional Examples

Example A.1 (Reinforcement Learning Algorithms). Extending bandit algorithms to dynam-
ically changing environments, reinforcement learning algorithms optimize decisions in dynamic
environments, where the state (the set of observables that the agent receives from the envi-
ronment) and action in the current period can affect the future states and outcomes. Let
{(Xti, Z1i, Yii) }72 denote the trajectory of the states, treatment assignments, and outcomes
in periods t = 0,1,2,--- for individual ¢. For simplicity, we assume that the trajectory follows
a Markov decision process.?® Let Y;;(1) and Y;;(0) represent the potential outcomes in period t.
Let @ : X x {0,1} — R be the optimal state-action value function, called the Q-function: for
(x,2) € X x{0,1},

Q,2) = max B Zv Yis()m(Xes) + Yia(0)(1 = (X)) Xoi = o, Zoi = 2

39Under a Markov decision process, the distribution of the state X;; only depends on the last state and treatment
assignment (X¢—1,;, Zt—1,;), the distribution of the outcome Y;; only depends on the current state and treatment
assignment (Xy;, Z¢;), and these distributions are stationary over periods.

A-7



where v € [0,1) is a discount factor, and 7 is a policy function that assigns the probability of
treatment to each possible state.

(a) (e-Greedy) This algorithm first uses past data to yield Q, an estimate of the Q-function.
For example, the fitted @ iteration (Ernst, Geurts and Wehenkel, 2005) is used to estimate
Q.%9 The algorithm then chooses the best treatment based on Q(Xti, z) with probability

€

1 — § and chooses the other treatment with probability §: for each t,

Ze _ | ATEmMaX._o, Q(Xyi, 2) with probability 1 — §
N argmax,_g 4 Q(Xm-, 2) with probability §,

A%(z) = { it Q1) < Q,0)
1-5 if Q(x,1) > Q(=,0).
Suppose that the function g(-) = Q(-,1) — Q(-,0) is continuous on X and is continuously

differentiable in a neighborhood of = with Vg(x) # 0 for any x € X such that g(z) = 0.
APS for this case is given by

£ if Q(z,1) < Q(x,0)
pi(x) = { 0.5 if Q(z,1) = Q(,0)
1-5  if Q(z,1) > Q(x,0).

(b) (Policy Gradient Methods) Policy gradient methods such as REINFORCE (Williams, 1992)
and Actor-Critic approximate the optimal policy function by parametrization and learn the
parameter using stochastic gradient ascent. Let m(z;6) be a parametrization of the policy
function that is differentiable with respect to 6.*1 Suppose that we have collected a set of
L trajectories { (!, 2!, yﬁ)ﬁo :1=1,...,L} by running the policy 7 (z;6°) for L individuals.
Policy gradient methods use the trajectories to update the policy parameter to ' by
stochastic gradient ascent. The algorithms then use the updated policy function 7 (z;6")
to determine the treatment assignment for new episodes. For each ¢,

1 ith probability 7(Xy;; 01

7P — with probability m(Xy;;60") ATG () = (201,
0 with probability 1 — m(Xy;60%),

Suppose that the function 7(-;0') is continuous. APS for this case is given by

p"C(x) = m(x;0").

40Suppose that we have collected a set of L four-tuples {(m,lgl , z,lgl , yil , a:ilﬂ)}f:l as a result of the agent interacting

with the dynamic environment. Given the dataset and an initial approximation Q of Q (e.g., Q(ac7 z) = 0 for all
(z,z)), we repeat the following steps until some stopping condition is reached: 1. For each [ =1, ..., L, calculate
¢ = yil + ymax.efo,1} QA(:cilH, z); 2. Use {(mil,zf“ql)}{‘:l and a supervised learning method to train a model
that predicts g from (z, z). Let the model be a new approximation O of Q. Possible supervised learning methods
used in the second step include tree-based methods, neural networks (Neural Fitted Q Iteration) and deep neural
networks (Deep Fitted @ Iteration).

“IFor example, m might be a softmax function with a linear index: (x;0) = exp(2'0)

1+exp(z’0) "
is a neural network whose input is a representation of the state x, whose output is the treatment assignment

Another example

probability, and whose weights are represented by the parameter 6.
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B Notation and Lemmas

B.1 Basic Notations

For a scalar-valued differentiable function f: S C R®* - R, let Vf : S — R"™ be a gradient of f:
for every z € S,

Vi) = (agg) , agﬁ)

Also, when the second-order partial derivatives of f exist, let D?f(z) be the Hessian matrix:

Pf(x) . 9%f(x)
02 0x10xn
D2f (z) = : . :
Pfx) . f(x)
0xy, 0z 02

for each z € S.
Let f: 5 C R™ — R” be a function such that its first-order partial derivatives exist. For
each z € S, let Jf(z) be the Jacobian matrix of f at z:

ofiz) .. Oh(z)
ox1 O0xm
Jf(z) = : - :
Ofn(x) .. Ofn(®)
axl 8xm

For a positive integer n, let I,, denote the n x n identity matrix.

B.2 Differential Geometry

We provide some concepts and facts from differential geometry of twice continuously differentiable
sets, following Crasta and Malusa (2007). Let S C RP be a twice continuously differentiable set.
For each x € 05, we denote by vg(z) € RP the inward unit normal vector of S at z, that is,
the unit vector orthogonal to all vectors in the tangent space of 3S at x that points toward the
inside of A. For a set S C RP, let d : RP — R be the signed distance function of S, defined by

ST @, 08) itz e R\ (),

where d(z, B) = infycp ||y — z|| for any € RP for a set B C RP. Note that we can write
N(0S,6) = {z € RP : =6 < di(xz) < 0} for § > 0. Lastly, let Ilgg(z) = {y € 95 : ||y — 2| =
d(x,05)} be the set of projections of = on 0S.

Lemma B.1 (Corollary of Theorem 4.16, Crasta and Malusa (2007)). Let S C RP be nonempty,
bounded, open, connected and twice continuously differentiable. Then the function dg is twice
continuously differentiable on N (0S, p) for some p > 0. In addition, for every xo € 0S, lys(zo+
tvs(zo)) = {xo} for every t € (—p,p). Furthermore, for every x € N(9S,pn), Has(x) is a
singleton, Vdg(x) = vg(y) and x =y + di(x)vs(y) for y € lps(x), and ||Vdi(x)|| = 1.
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Proof. We apply results from Crasta and Malusa (2007). Let K = {z € RP : |jz|| < 1}. K is
nonempty, compact, convex subset of R? with the origin as an interior point. The polar body
of K, defined as Ko = {y € RP : y-x < 1forall z € K}, is K itself. The gauge functions
PK s PK, : RP — [0,00] of K and Ky are given by

pr(z) =inf{t > 0:x € tK} = ||z,

pr,(z) =inf{t > 0: 2 € tKo} = |||

Given pg,, the Minkowski distance from a set S C RP is defined as
ds(z) = inf pr,(x —y), =€ RP.
yes
Note that we can write

5 () = das(x) if x € cl(5)
5 “ops(z) itz € RP\ cl(S).

It then follows from Theorem 4.16 of Crasta and Malusa (2007) that d$ is twice continuously
differentiable on N (95, u) for some p > 0, and for every zp € 95,

vs(zg)  wvs(wo)

Vd§(xo) = pr(vs(z0)) — |lvs(zo)

= vs (o),

where the last equality follows since vg(zg) is a unit vector. It then follows that ||Vdg(zo)|| =
llvs(zo)|| = 1 for every zp € 0S. Also, it is obvious that, for every xg € 95, Ilys(xo) = {zo} and
xo = 20 + d%(xo)vs(xo), since d§(xo) = 0. In addition, as stated in the proof of Theorem 4.16
of Crasta and Malusa (2007), u is chosen so that (4.7) in Proposition 4.6 of Crasta and Malusa
(2007) holds for every xzy € 9S and every t € (—u,pn). That is, Hpg(xo + tVpr(vs(xo))) =
{zo} for every xyp € 0S5 and every t € (—p,u). Since Vpg(vs(zo)) = % = vg(xp),
ps(zo + trs(zo)) = {xo} for every xp € 05 and every t € (—pu, p).

Furthermore, for every x € N(9S, ) \ 05, llpg(z) is a singleton as shown in the proof of
Theorem 4.16 of Crasta and Malusa (2007). Let mgs(x) be the unique element in IIpg(x). By
Lemma 4.3 of Crasta and Malusa (2007), for every z € N(9S, 1) \ 05,

V() = vs(mas(z))  wvs(mas(z))

" prlstras@))  Tostrast@y) ST

where the last equality follows since vg(mgs(x)) is a unit vector. It then follows that ||Vdg ()| =
lvs(mas(x))|| = 1 for every z € N(9S, ) \ 9S.
Lastly, note that

dg(x) if z € N(9S, 1) Nint(S)
dps () = { .
—dg(x) if x € N(OS, p) \ cl(.9),

and

Vdi(x) if z € N(9S, 1) Nint(S)
—Vdy(x)  if z € NS, )\ cl(S),
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50 dps(x)Vigs(x) = di(x)Vdy(x) = d§(x)vs(mas(x)) for every x € N(0S, i) \ 0S. By Proposi-
tion 3.3 (i) of Crasta and Malusa (2007), for every x € N(9S,u) \ 95,

r — mos(x)

Vpk (Vigs(z)) = 595 (@)

which implies that
z = Tos(x) + dos(2) VoK (Vios(z))

= mas(x) + 585@)% = mos () + dy(x)vs(mas(z)).

O

We say that a set S C R" is a m-dimensional C' submanifold of R™ if for every point x € S,
there exist an open neighborhood V' C R"™ of x and a one-to-one continuously differentiable
function ¢ from an open set U C R™ to R™ such that the Jacobian matrix J¢(u) is of rank m
forallu € U, and ¢(U) =V N S.

Lemma B.2. Let S C RP be nonempty, bounded, open, connected and twice continuously differ-
entiable. Then OS is a (p — 1)-dimensional C* submanifold of RP,

Proof. Fix any z* € 0S. By Lemma B.1, Vd§(z*) is nonzero. Without loss of generality, let

8(157(:*) # 0. Let ¢ : RP — RP be the function such that ¥ (z) = (21,...,xp—1,d%(x)). ¢ is

continuously differentiable, and the Jacobian matrix of ¥ at z* is given by

0 9 "
Gt e ) I
Jy(a*) = : : = - '
: . 0
9 1%} *
Be(z%) .. aTwﬁ(x ) Plix) G di)
1 Tp—1 Lp

Since &%T(w*) # 0, the Jacobian matrix is invertible. By the Inverse Function Theorem, there
exist an ogen set V containing xz* and an open set W containing ¢ (z*) such that ¢ : V. — W
has an inverse function ¥~ : W — V that is continuously differentiable. We make V small
enough so that a?xf) # 0 for every x € V. The Jacobian matrix of 1/~ ! is given by Jy~1(y) =
JY(p~L(y)) "t for ally € W,

Now note that ¢(z) = (z1,...,2p—1,0) for all z € V N 0S by the definition of d. Let U =
{(z1, ey xp_1) ERP7L 2 € VNOS} and ¢ : U — RP be a function such that ¢(u) = ¢ ~1((u,0))
for all u € U. Below we verify that ¢ is one-to-one and continously differentiable, that J¢(u) is
of rank p — 1 for all u € U, that ¢(U) = V N 9S, and that U is open.

First, ¢ is one-to-one, since ¢~! is one-to-one, and (u,0) # (u/,0) if u # «'. Second, ¢ is

continuously differentiable, since 1)1 is so. The Jacobian matrix of ¢ at u € U is by definition

WA (,0) - G ((u,0))
O .
P (w0) g ((u,0))
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Note that this is the left p x (p — 1) submatrix of Ji~!((u,0)). Since Jiy~1((u,0)) has full rank,
Jp(u) is of rank p — 1. Moreover,

o(U) = {4~ ((4,0)) : u € U}

{ ((1‘1, ...,a:p_l,())) x eV ﬂaS}
{~Y((x)) 2z € VN DS}
V

Nos.

Lastly, we show that U is open. Pick any u € U. Then, there exists T, € R such that
(w,zp) € VNOS. As (u,zp) € VNOS, di((u,z,)) = 0. Since %u;p)) # 0, it follows by the
Implicit Function Theorem that there exist an open set S C RP~! containing % and a continuously
differentiable function g : S — R such that g(u) = 7, and d&(u, g(u)) = 0 for all u € S. Since
g is continuous, (@, g(u)) € V and V is open, there exists an open set S’ C S containing % such
that (u,g(u)) € V for all u € S’. By the definition of d§, d%(x) = 0 if and only if z € 95S.
Therefore, if u € 5, (u, g(u)) must be contained by 0, for otherwise d§(u,g(u)) # 0, which is
a contradiction. Thus, (u,g(u)) € VN IS and hence u € U for all uw € S’. This implies that S’

is an open subset of U containing @, which proves that U is open. O

B.3 Geometric Measure Theory

We provide some concepts and facts from geometric measure theory, following Krantz and Parks
(2008). Recall that for a function f : S € R™ — R™ and a point = € S at which f is differentiable,
J f(x) denotes the Jacobian matrix of f at .

Lemma B.3 (Coarea Formula, Lemma 5.1.4 and Corollary 5.2.6 of Krantz and Parks (2008)).
If f:R™ — R™ is a Lipschitz function and m > n, then

[o@ans@acr@ = [ g @ac)

for every Lebesque measurable subset S of R™ and every L™-measurable function g : S — R,
where for each x € R™ at which f is differentiable,

@) = /det((J f(2))(J f(x)))-

Let S be an m-dimensional C' submanifold of R”. Let z € S and let ¢ : U C R™ — R" be
as in the definition of m-dimensional C'' submanifold. We denote by Tis(z) the tangent space of
S at x, {Jo(u)v : v € R™}, where u = ¢~ 1(x).

Lemma B.4 (Area Formula, Lemma 5.3.5 and Theorem 5.3.7 of Krantz and Parks (2008)).
Suppose m < v and f : R" — RY is Lipschitz. If S is an m-dimensional C* submanifold of R,

then
/5 o) S f(x)dH™ (x / 3 ")

z€S:f(z)=

A-12



for every H™-measurable function g : S — R, where for each x € R™ at which f is differentiable,

H"{Jf(x)y -y € P})

Tnf(@) = (D)

for an arbitrary m-dimensional parallelepiped P contained in Ts(x).

Let S C RP. For each x € R? at which dg is differentiable and for each A € R, let ¢g(x, \) =
x4+ AVd(x).

Lemma B.5. Let Q C RP, and suppose that there exists a partition {Qu, ..., Qar} of Q such that
(i) dist(Qp, Q) > 0 for any m,m’ € {1,..., M} such that m # m/;

(ii) Uy is nonempty, bounded, open, connected and twice continuously differentiable for each
me{l,...,M}.

Then there exists p > 0 such that dg, is twice continuously differentiable on N (02, u) and that

' 00 )
) = u+ Avo(u u, \)dHP ™ (u)dA
/N(m’a)g( ) /_5/399( + Ao (1)) JO% 1 (u, \)dHP ™ (u)

for every 6 € (0,u) and every function g : RP — R that is integrable on N(0S,6), where for
each fired A € (—p, p), Jaﬂlﬂ)g( A) is calculated by applying the operation Jd 1 to the function
Ya(-, \). Futhermore, Jalez/}Q( -) s continuously differentiable in A and Jg?le(LO) =1 for

) Jflewn(w-)
oA

every x € 0N), and J, 1¢Q( are bounded on 02 X (—pu, ).

Proof. Let fi = 1 min,, e{1,....M},m#ms dist (27, Q) so that {N(0Qnm, ) }M_, is a partition of

N(OQ, ). Note that for every m € {1,..., M}, d§(x) = dj, () for every x € N(9Qm, ii). By
Lemma B.1, for every m € {1,..., M}, there exists fi,, > 0 such that d¢, is twice continuously
differentiable on N (0, fip,). Letting p € (0, min{f, i1, ..., fiar}), we have that df, is twice
continuously differentiable on N (9%, ). This implies that df, is Lipschitz on N(0€, ). For
every 0 € (0,u) and every function g : R — R that is integrable on N (02, 0),

/ g()dz = / g(a)/det(| Vs, () | dz
N (99,6 {a’ €RP:d3, (') €(~6,6)}

)\ det(Vdgy (x) Vg () da

/{1’ 'eRP:dg, (x")€(=0,0)}

_ / g(x)\Jdet((Jd3y(2) (Jdiy () )de
{z’eRP:d§,(z')e(—0,6)}

:/ / g(x)dH? ™ (x)dA
R J{a'€RP:dg, (x')E€(—6,8),dE, (z') =N}

)
_ / / g(x)dHP " (z)d), (12)
= J{z'cRr:dg,(z')=N}

where the first equality follows since ||Vd§(x)|| = 1 for every z € N(052,6) by Lemma B.1, the
third equality follows from the definition of the Jacobian matrix, and the fourth equality follows

from Lemma B.3.
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Let T'(\) = { € R? : d(x) = A} for each A\ € (—p, ). Since Vdy, is differentiable on
N(OQ, ), Ya(z, ) is defined on N (99, u) x R. We show that {¢q(zo, A) : g € I} C T'(A) for
every A € (—p, u). By Lemma B.1, for every xo € 99, ¥q(zo, A) = zo + Avg(xp) and

Haa(va(wo, A)) = Haa(zo + Ava(zo)) = {zo}.

Hence,

d(a(zo, A),092) = |[Ya(wo, A) — zol| = |Ava(zo)ll = |Al-

Since vq(zo) is an inward normal vector, ¥q(xo,A) € cl(Q) if 0 < A < p, and Yqo(z, No) €
RP\ cl(Q2) if —p < A < 0. It follows that

. I\ fO<A<p
do,(Ya(zo,\)) = .
—|Al ifp<A<0
=\

so {va(zo, ) : g € 00} C T'(N\). It also holds that T'(A) C {va(zo,A) : zg € IN}, since by
Lemma B.1, for every z € I'()),

Ya(maa(r), \) = maa(x) + AVdy(Taa(r)) = maa(z) + do(z)va(raa(r)) = =,

where mpq(z) is the unique element in Iy (). Thus, {¢Ya(zo, A) : g € IN} =T'(N).

Now note that {99, }M_, is a partition of 99, since dist(Q, Q) > 0 for any m,m’ €
{1,..., M} such that m # m’. By Lemma B.2, 09, is a (p — 1)-dimensional C'* submanifold
of RP for every m € {1,..,M}, and hence 99 is a (p — 1)-dimensional C! submanifold of
RP. Furthermore, since Vdg, is continuously differentiable on N (9, i), ¥q(-, A) is continuously
differentiable on N (0€, 1), which implies that ¢q(-, A) is Lipschitz on N (0, 1) for every A € R.
Applying Lemma B.4, we have that for every A € (—pu, ),

/agﬂ(“Am<u>><f§?1¢n<u,x>d%p—l<> / 9(balu, ) T2 o (u, NVdHP ™ (u)
/R ) g(a(u, \)dHP 1 (z).  (13)

u€eo: 1/19 u,\)=x

If x ¢ {¢Ya(u,A) :u € N}, {uecd:Yo(u,\) =z} =0. Ifz € {a(u, \) : u € 9N}, there exists
u € 09 such that z = ¢q(u, A). Since Ilpo(z) = Ilpa(u + AVdE(v)) = Isa(u + Avg(u)) = {u}
by Lemma B.1, such u is unique, and hence {u € 99 : ¥q(u,\) = z} is a singleton. It follow
that

/ alvnlan N / (2)dHP " (z)
R {a(u,\) ueBQ}

puE@QwQ u,\)=
/ o) dHP " (z), (14)
(A
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where the last equality holds since {¢q(u, ) : u € 92} = T'(A). Combining (12), (13) and (14),
we obtain

5
/N(QQ(S)g(x)dx:/_(s /899(U+)\VQ( ) I e (u, \)dHP ™ (u)dA.

We next show that J;??lwg(x, -) is continuously differentiable in A and Jgﬂwg(x,()) =1
for every z € 0Q. Fix an x € 09, and let Vo(x) be an arbitrary p x (p — 1) matrix whose
columns v1(z),...,vp—1(x) € RP form an orthonormal basis of Tho(x). Let P( ) C Tha(x)
be a parallelepiped determined by vi(x),...,vp—1(z), that is, let P(z) = {Zk Lekvk(z) 1 0 <
cp < 1fork=1,...,p—1}. Since vi(x),...,vp—1(x) are linearly independent, P(z) is a (p — 1)-
dimensional parallelepiped. It follows that for each fixed A € R,

{Ja(z, Ny 1y € P(x)} = {Jya(z, \) chvk(fn) 0< ¢, <lfork=1,...,p—1}

k=1
p—1
= {Z ckJa(z, Nvk(x) :0< ¢ <1lfork=1,...,p—1}
k=1
p—1
= {chwk(m,/\) 0< ¢, <lfork=1,...,p—1},
k=1

where wi(z, \) = Jyq(z, Nvg(x) for k = 1,...,p — 1. Since Jipq(x, \)vg(z) is the k-th column
of Jyqa(z, \)Va(z), {Ja(xz, Ny : y € P(x)} is the parallelepiped determined by the columns of
Ja(xz, \)Vo(x). By Proposition 5.1.2 of Krantz and Parks (2008), we have that

J891¢Q($ )\) Hp_l“Zi; CkU]]g(fL', >‘) 0< g <lfork=1,...,p— 1})

HP=1(P(x))
_ Vdet((Jva(@, M)Va(@)) (Jda(z, \)Va(2)))
Vdet(Va(z) Va(z))
_ Ael(Va(z) + \D2g (@) Vo () (Vo (x) + AD?dg (2)Va ()
det(Ip,l)
= \Jdet(Va(a) Va(x) + 2Va(w) AD2d3 () Va(z) + Va(x) (AD2d} (x))2Va(x))

= \/det(Tp1 + AVa(z) (2D (x) + A(D2d5(2))2) V()

= \/det(lp + AVa(2)Vao(z) (2D2d§,(z) + AN(D2dg (2))?)),

where we use the fact that Vo (x)'Vo(z) = I,—1 and the fact that det(Z,, + AB) = det(l, + BA)
for an m x n matrix A and an n x m matrix B (the Weinstein-Aronszajn identity). For every
x € 09, J8911/JQ( -) is continuously differentiable in A, and Jpa?ld)g(:z:, 0) = /det(l,) = 1.

00 Yo (..
Lastly, we show that J}?&@ZJQ(-, -) and %%zﬁﬂ(’) are bounded on 9 x (—pu, p). Let f,h
90 x RP*(P—1) 5 RP*P be functions such that

f(z, A) = 244’ D*d,(x),
h(z, A) = AA'(D?d} ()%
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Also, let k : 99 x R x RP*(P~1) 5 R be a function such that

K(e, A A) = \[/det(I, + Af(x, A) + A2h(x, A)).
Observe that
o0 _
Jp—lwﬂ(xv )‘) - k($7 >\a VQ(:E))

and that
aJ, mlwﬂ(ff A)

I
_ Ok(z, A 4)

2 A=V (x)
_ 1 ddet(I, + Af(z, A) + Nh(z, A) )
 2k(z, )\, A) Z db;; (fij(z, A) + 2Xhij(xz, A)) :
Y A=Vo(z)

ddet(B)
ab;

where denotes the partial derivative of the function det : RP*P — R with respect to the

(i,7) entry of B.
Note that k(-,-,-) and % are continuous on 9N x R x RP*(—1) (except at the points
for which k(x,\, A) = 0), since det is infinitely differentiable, and f and h are continuous on
o0 x RP*P=1) Let S = {(z,\,A) € 0Q x [—p, p] x RP* P~ D (||a)|| =1fork=1,...,p—1},
nd 8168/7\,

are continuous and S is

closed and bounded, k = max, ) ajes [k(z, A, A)| and k' = max(, ) a)es |M| exist. Since

(x,\, Va(x)) € S for every (z,A) € 0Q x (—p,p), it follows that |J8911,Z)Q(x A)| < k and
|w\</~c’ for every (z,A) € 09 X (—p, ). O

where a; denotes the jth column of A. Since k(-,-,-) a

B.4 Other Lemmas

Lemma B.6. Let {V;}22, be i.i.d. random variables such that E[V?] < co. If Assumption 1
holds, then for 1 >0 and m = 0,1,

E[Vip" (Xi30)'1{p(Xi:6) € (0,1)}™] = B[V;A(X)'{A(X;) € (0,1)}"]
as 6 — 0. Moreover, if, in addition, 5, — 0 as n — oo, then for | > 0,

—Zm (Xi;00) i — E[V;A(X:)'1{A(X;) € (0,1)}]

as n — Q.

Proof. Note that E[L Y0, Vip™(Xi;6,) 3] = E[Vip™ (Xi; 6,)'1{p™ (Xi36,) € (0,1)}]. We show
that

E[Vip" (Xi;0)'1{p" (Xi50) € (0,1)}™] = B[V;A(X:) H{A(X:) € (0,1)}™]
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for I >0 and m =0,1 as § — 0, and that
1 n
Var(= ) Vip™(Xy;00) in) — 0
ar(n; P (Xi:60) Iin) =
for [ > 0 as n — oo. For the first part, we have
E[Vipt(Xy;0)1{p*(Xi;0) € (0,1)}™] = / E[Vi|X; = z]p® (x;0) 1{p™(x;6) € (0,1)}" fx (x)dz.
X

Suppose A is continuous at x and A(x) € (0,1). Then lims_,op?(x;0) = A(z) by Part 1 of
Corollary A.1, and hence p?(z; ) € (0, 1) for sufficiently small § > 0. It follows that 1{p*(xz;0) €
(0,1)} - 1 =1{A(x) € (0,1)} as 6 — 0. Suppose x € int(Xp) Uint(Ax;). Then B(z,d) C Ap or
B(z,0) C X, for sufficiently small 6 > 0 by the fact that int(&Xp) and int(AX) are open, and hence
1{pA(x;6) € (0,1)} = 0 = 1{A(z) € (0,1)} as § — 0. Therefore, lims_,qp*(z;6) = A(z) and
lims_so 1{p?(2;6) € (0,1)} = 1{A(z) € (0,1)} for almost every = € X, since A is continuous at
x for almost every x € X’ by Assumption 1 (a), and either A(z) € (0,1) or = € int(Xp) Uint(X;)
for almost every x € X by Assumption 1 (b). By the Dominated Convergence Theorem,

EVip* (Xs;6)'1{p"(Xi;6) € (0,1)}"] %/XEWXi—x]A(m)ll{A(x) € (0, 1)}" fx (w)dw
— EV;A(X)"1{A(X;) € (0,1)}™]

as § — 0. As for variance,

L Afv s ol 1 2 Afv . s N2 2
Var%;Vip (Xi300)'Lin) < —E[Vp™ (X5 00)" (1 )]
1 2
< B[]
n
-0
as n — oo. OJ

Lemma B.7. Let {(6n, Sn)}52, be any sequence of positive numbers and positive integers. Fix
r € X, and let X7,...,Xg be Sy independent draws from the uniform distribution on B(z,d,)
so that

S,
s 1 - *
p°(x;0p) = S—ZA(XS).
" s=1

Then,

Bl(p (w:6,) — p™(216,))7] < 51
Bl (w3 60)? — p (5 60)?]] < 51
Bl (a:6,)? — pA w357 < 5



Moreover, for any € > 0,

and if S, — oo, then

as n — oo.
Proof. By construction, E[A(X?)] = p®(z;6,), so

Sn

Elp (2 62) — ™ (r:60)] = Elg- 0 ACXE)] — 9 (a:00)
nos=1
= FIAXD)] - p*(x:6,)
= 0.
We have
(0" (23 0) — (13 6))%] = Var(p®(x;6,)
Sn
= Var(- >~ A(XD)
nos=1
1 *
— 5 Var(A(X)))
1 *
1
<
<o
Bl (:6,)? — p(@:60)7]] = [Var(p*(2:6,)) + (Elp* (:6,)]) — p (@16,
< g |04 s8,)) — i)
_ 1
-4
and
E[(ps(x5 511)2 - pA(x§ 5n)2)2]
= B0 (2:60) + 9 (@5 60))2(0° (23 60) — 9 (3 60))?)
< 4E((p*(x;6n) — p* (21 64))?
<4
<4

Now note that we have the following bounds on Pr(A(X}) = 0) and Pr(A(X}) = 1):

0 < Pr(A(X}) =0) <1—p?(x;6,),
=1

0 < Pr(A(X]) = 1) < p*(236,).
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It follows that

0 < Pr(p®(x;4,) € {0,1})
= Pr(A(X?) = 0)°" + Pr(A(X]) = 1)°
< (1 —p(2;00))°" + p(a;8,)°.

Lastly, for any € > 0,

E[|p*(x;6,) — p™ (23 6,)]
= B[p*(z;0n) — p™ (@ 6)|[Ip° (2300) — p™ (21 6n)| > €] Pr(|p* (w3 6n) — p*(56,)] =€)
+ Bl|p* (%;0n) — p™ (2 62)[|p° (23 0n) — p™ (23 60)| < € Pr(|p®(z;6,) — p™(2;00)] <€)

Var(p (2x;5n)) fe1

x; 0,

<1-
€

< ——=+c¢€
_Sn€2 ’

where we use Chebyshev’s inequality for the first inequality. We can make E[|p®(z;d,) —
pA(x;6,)|] arbitrarily close to zero by taking sufficiently small ¢ > 0 and sufficiently large S,
which implies that E[|p*(x;6,) — p™(z;8,)|] = o(1) if S,, — oo.

O

Lemma B.8. Let I}, = 1{p*(Xi;d,) € (0,1)}, and let {Vi}2, be i.i.d. random variables such
that E[V?] < co. If Assumption 1 holds, S, — oo, and &, — 0, then

*ZVzP (Xi;6n) — ZV,p (X3 60) L = 0p(1)

forl1=0,1,2,3,4. If, in addition, Assumption 5 holds, and E[V;|X;] is bounded, then

‘/lp X175 - ‘/zp X175 Izn—o 1
\fz )'I} \fZ ) p(1)
forl=0,1,2.

Proof. We have

n

1
=— i (Xi; nlIEs —Iin — (0 (Xi; nl X in-
n;w( 10n)' (L ,>+nZV<p( 10n)! = ™ (X33 00)')

i=1
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We first consider £ 37 | Vi(p®(Xi; 0,)" — pA(Xi;60))1; . By Lemma B.7, for [ =0, 1,2,
ZV Xza(s (Xzy(sn)l)lz,n”

= |E| z‘(P (Xi§5n) — p(Xi;60)) in) |
E[|EViIX|| Elp* (Xi;60)" — p(Xi; 6,)' 1 Xi]| i)

1
< o EllEVi[Xi] i)
= 0(s,1).
Also, by Lemma B.7,
ZV $(Xi30n) — p(Xi300)%) Lin)|

= |E] ~( (Xi§5 ) — pH(X4362)) (0% (Xis 60)% + 1° (X553 62)p™ (Xi3.0n) + p™ (X35.00)) I )|

< E[|E[Vi| Xi]||E[(p°(Xi; ) — p™(Xi300)) (0 (X33 0n)? + P (X33 )™ (X453 0n) + 0 (Xi3 60)) | X0 T ]
< 3E(|E[Vi|Xi)|E[|p*(Xi; 6n) — p™ (Xi5 00) | X)L )

= 0(1)7

and
n

;ZVZ (X3 0n)* = p™ (Xi3.60)) T
= |BIVi(p* (X3 60)? + p™ (Xi5.60)%) (0° (X35 60) + p™ (X5 60)) (0° (X33 0n) — p™ (X33 00)) Li ]|
< B[|EV;|IX|E[(p°(Xi560)% + p™ (Xi3 60)%) (0° (X5 6n) + 2 (X33 00)) (0° (X5 60) — 2 (X35 00)) | X)L )
< AE[|E[V;| X, )| Ellp®(Xi; 60) — 0™ (X33 00) || Xi] Li 0]
= o(1).

As for variance, for [ = 0,1, 2,

Var(— ZV (Xi:0n)" = p™ (Xi560) ) im) < %E[W(Z?S(Xz‘;%)l —p (X4 00)H)2; )
1
< EE[E[‘/?!Xi]E[(pS(Xz‘;%)Z — (X3 60)") |1 X)L ]
< & BIBVIX] )
= 0((nSn) ™),
and for [ = 3,4,
Var ZV Xz,é (XZ,(S ) ) zn) < iE[VQ( (Xi;dn)l (XZ,(5 ) ) zn]
1 27
s - EVieLin)
=o(1).
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Therefore, %Z?:lvi(ps(Xi;én)l —pA(Xi;én)l)Im = op(1) if S, = oo for I =0,1,2,3,4, and
T i Vilp* (Xi:6n)' = p*(Xi380) ) i = 0p(1) if n7 /28, — 00 for 1 =0,1,2.
We next show that 1 3" | Vip¥(X;; 5n)l(Iin —I;n) = 0p(1) if S;, = oo and 6,, — 0 for [ > 0.

We have

1 n
B[ Vip* (Xis 00)' (I — Tin)]| = [E[Vip* (X5 00)' (I, = Tin)|
=1
< E(|EWV;|IX)||Elp* (Xi560) (I5, — Lin) | X]]

< E[|EWVIIX| B[, — Linl| Xi]].

Note that by construction, 1{p*(X;;d,) € (0,1)} < 1{p?*(X;;4,) € (0,1)} with probability one
conditional on X; = x, so that

B}, — Linl|Xs = 2] = —E[I},, — Lin| X = ].

Suppose A is continuous at z and A(x) € (0,1). Then lims_,o p?(x;6) = A(z) € (0,1) by Part 1
of Corollary A.1, and hence pA(z;d,) € [¢,1 — €] for sufficiently small 6, > 0 for some constant
e € (0,1/2). It follows that

E[I},|X; = 2] =1—Pr(p®(z;6n) € {0,1})
> 1—(1—p*(360))° — p(w;60)%
>1—2(1—¢)n

—1

as S, — 00, where the first inequality follows from Lemma B.7. This implies that E[Ifn —
I; n| Xi = ] = 0 as n — co. Suppose z € int(Xp)Uint(X;). Then B(z,dy,) C Xy or B(z,6,) C Xy
for sufficiently small §,, > 0 by the fact that int(Xy) and int(&;) are open, and hence p?(x;d,) €
{0,1} and p*(x;d,) € {0,1} for sufficiently small 6, > 0, so that E[I7, — [; n|X; = 2] — 0 as
n — oo. Therefore, E[I7, — I; n|X; = 2] — 0 for almost every € X, since A is continuous at x
for almost every x € X by Assumption 1 (a), and either A(z) € (0,1) or z € int(Xy) U int(X;)
for almost every & € X by Assumption 1 (b). By the Dominated Convergence Theorem,

—E[|EVi| Xi||E[I},, — Linl Xi]] = 0

as n — o0.

As for variance,

1 — 1
Var(ﬁ Z Vip® (Xi; 5n)l(If,n —1Iin)) < ﬁE[prs(Xi; 5n)2’(ff,n — L)’
=1
1
< —E[V/]
n
— 0.
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Lastly, we show that, for [ > 0, ﬁ Sy Vips(Xi;én)l(Iin — I;n) = o0p(1) if Assumption 5

. logn

holds, and E[V;|X;] is bounded. Let 1, = =&
We have

, where « is the one satisfying Assumption 5.

1 n
El—=Y Vip*(Xi;0,)'(If, — Lin
| [\/ﬁ; ( ) (17 )]l

IN

VRE| EVi X E[I}, — Il Xi]

= — VnE||E[Vi|X]|E[I}, — 1|Xi]L;,]

< VRB[ B[V X((1 — pA(X5360))%" + pA (X3 8,)5)) ;. ]

= VRE[|B[ViX]|((1 — p™(Xi;80))% + p(Xi3 6,)5)) 1™ (X33 8n) € (0,70) U (1 — 10, 1)}]
+ VB[ E[ViX]| (1 — p™(X560)) 5" + p™ (X35 60)5) L{p™ (X33 0n) € 11y 1 — 0n]}]

< (sup |E[Vi|X; = all)(vn Pr(p*(Xi;6n) € (0,70) U (1 = 0w, 1)) + 2v/n(1 = 1,)""),

A

where the second equality follows from the fact that I}, < I, , with strict inequality only if

I;n = 1. By Assumption 5, /n Pr(p?(X;;6,) € (0,7,)U(1—nn, 1)) = o(1). As for /n(1—n,)%",

first observe that n, = ’ylosgn" = ’yfﬁ?ﬁ — 0, since n=1/2S,, — 0o and 1;1%’; — 0. Using the

fact that e! > 1 + ¢ for every t € R, we have

V(L = 1a)%" < V(e
= /ne MSn
_ \/ﬁe—WIOg”
=+/nn"

_ n1/27'y

— 0,

since v > 1/2. As for variance,

1 n
Var(% D Vir' (X3 80) (I — Lin)) < BV (X5380)* (1 — Lin)?]
i=1

< EV2IL, — Linll
= BBV X E( 1}, — LinllXi)]
=o(1).

C Proofs

C.1 Proof of Proposition 1

Suppose that Assumptions 1 and 2 hold. Here, we only show that

(a) E[Yy; — Yoi|X; = 2] is identified for every o € int(X) such that p?(x) € (0,1).
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(b) Let S be any open subset of X such that p?(z) exists for all 2 € S. Then E[Yy;—Yy;|X; € S]
is identified only if pA(z) € (0,1) for almost every x € S.

The results for E[D;(1) — D;(0)|X; = z] and E[D;(1) — D;(0)|X; € S] are obtained by a similar
argument.

Proof of Part (a). Pick an x € int(X) such that p(z) € (0,1). If A(z) € (0,1), E[Yy; —
Y0i| X; = 2] and E[D;(1) — D;(0)|X; = z] are trivially identified by Property 1:

EBlYi|X; =2,Z; = 1] - ElY;|X; = 2,Z; = 0] = E[Y1; — Yo, Xi = z].

We next consider the case where A(z) € {0,1}. Since x € int(X), B(x,d) C X for any
sufficiently small § > 0. Moreover, since p?(z) = lims_,o p*(x;0) € (0,1), pA(z;9) € (0,1) for
any sufficiently small 6 > 0. This implies that we can find points x5, 21,5 € B(x,0)(C X) such
that A(zos) < 1 and A(z1,5) > 0 for any sufficiently small § > 0, for otherwise p”(z;0) € {0, 1}.
Noting that x¢s — x and 215 — x as § — 0,

%LI%(E[Y”XZ' =x15,2; = 1] = E[Y;|X; = %05, Z; = 0]) = %i_%(E[K'ﬂXi = x15) — E[Y0|Xi = 20,5])

= E[Y1; — Yoi| X, = 2],

where the first equality follows from Property 1, and the second from Assumption 2. O

Proof of Part (b).
Suppose to the contrary that LP({z € S : pA(z) € {0,1}}) > 0. Without loss of generality,
assume LP({z € S : pA(x) = 1}) > 0. The proof proceeds in four steps.

Step C.1.1. LP(SN &) > 0.

Proof. By Assumption 1, A is continuous almost everywhere. Part 1 of Cororally A.1 then
implies that p4(z) = A(z) for almost every z € {z* € S : pA(a*) = 1}. Since LP({z € S :
pA(x) =1}) >0, LP({z € S : pA(x) = 1, pA(x) = A(z)}) > 0, and hence LP(S N A}) > 0. O

Step C.1.2. SNint(X;) # 0.

Proof. Suppose that S Nint(X;) = (). Then, we must have that SN A} C A \ int(AXx}). It then
follows that LP(S N AXY) < LP(AX) \ int(&Xy)) = LP(AX1) — LP(int(X))) = 0, where the last equality
holds by Assumption 1. But this is a contradiction to the result from Step C.1.1. O

Step C.1.3. pA(x) =1 for any x € int(A}).

Proof. Pick any = € int(&X}). By the definition of interior, B(x,d) C X} for any sufficiently small
§ > 0. Therefore, p?(x;6) = 1 for any sufficiently small § > 0. O

Step C.1.4. E[Yy; — Yo;|X; € S| is not identified.
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Proof. We first introduce some notation. Let Q be the set of all distributions of (Y;, Yo, X;, Z;)
satisfying Property 1 and Assumptions 1 and 2. Let P be the set of all distributions of (Y3, X;, Z;).
Let T': Q — P be a function such that, for @ € Q, T(Q) is the distribution of (Z;Y1; + (1 —
Zi)Yoi, Xi, Z;), where the distribution of (Y14, Yo, Xi, Z;) is Q. Let Qo and Py denote the true
distributions of (Y14, Yoi, X;, Z;) and (Y;, X;, Z;), respectively. Given Py, the identified set of
E[Yli — }/01|Xz € S] is given by {EQD/h — YOi‘Xi € S] Py = T(Q), Qe Q}, where EQ[] is the
expectation operator under distribution ). We show that this set contains two distinct values.
In what follows, Pr(-) and E[-] without a subscript denote the probability and expectation under
the true distributions Q¢ and Py as up until now.

Now pick any z* € S Nint(&}). Since A and int(X)) are open, there is some § > 0 such
that B(x*,0) C S Nint(X;). Let € = g, and consider a function f : X — R such that f(z) =
E[Yyi|X = 2] for all x € X'\ B(z*,¢) and f(z) = E[Yy;|X = z] — 1 for all z € B(z*,¢€). Below,
we show that f is continuous at any point x € X such that p?(z) € (0,1) and A(z) € {0,1}.
Pick any = € X such that pA(z) € (0,1) and A(z) € {0,1}. Since B(z* ) C int(X;) and
int(Xy) C {a’ € X : pA(2/) = 1} by Step C.1.3, = ¢ B(z*,6). Hence, B(z,¢) C X \ B(z*,¢). By
Assumption 2 and the definition of f, f is continuous at z.

Now take any random vector (Y5, Yy, X7, Z7) that is distributed according to the true distri-
bution Qo. Let @ be the distribution of (Y2, Y2, X2, Z9), where (V;2, X2, Z9) = (Y}, X7, ZF),
and

v - {Y(;;. if X* e X\ B(z*¢)
Y5i—1 if X € B(z*,¢)

Note first that @ € Q, since EQ[Y1?|X1Q = z] = E[Y}| X} = 2] and EQ[YO?|XZQ =z] = f(x),
where E[Y}5|X}] and f are both continuous at any point x € X such that p(z) € (0,1) and
A(z) € {0,1}. Also, Z2 = Z¥ = 1if X; € B(z*,€). It then follows that

YO =22V + (1 - 2V
_ )i+ (= 20)Yg i XT e X\ B(z7,¢)
ZrYT if X € B(x*,€)

and

Y =27V + (1= Z))Yy
_ )i+ (L= 20)Yg i XT e X\ B(z7,¢)
ZY if X € B(z*,¢).

Thus, YZQ =Y*, and hence T(Q) = T(Qo) = P.
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Using Eq[Y2|X® = 2] = B[Y{5| X7 = 2] and Eg[YZ| X2 = z] = f(z), we have

Eqlyy? — Y |X? € 9]

= Eg[EqV7IX2)|X? € 8]
— EqlEQIYIXP?)|X? € S, X{ ¢ B(a*,¢)|Pr(X[* ¢ B(z*,¢)|X{ € 8)
~ EqlEqlYgl | X1 X2 € B(a*, e)]Pro(X{ € B(a*, )| X{ € 5)

= BIBE[Y;|X;1|X; € 8] — E[f(X))|X} € S, X] ¢ B(«*,0)| Pr(X] ¢ B(z*,¢)|X] € 5)
— E[f(X))|X; € B(z",¢)] Pr(X; € B(z",¢)|X] € 5)

= E[Y}|X} € S] - E[Yg| X} € S. X} ¢ B(z", )| Pr(X] ¢ B(a",¢)|X; € 9)
— EYy, — 11X € B(z",€)| Pr(X] € B(z",¢)|X; € S)

= E[Y]; — Yol X; € S|+ Pr(X] € B(z",¢)| X € 5).

By the definition of support, Pr(X; € B(z*,¢)) > 0. Since T(Q) = T(Qo) = Py but Eg [Yli2 -
YO|X e 8] # BV — Y| X7 € 8], E[Yi — Yol X; € S] is not identified.

Ood O

C.2 Proof of Corollary 1

If PI‘(D1<1) — Dz(0> = 1‘Xz = [I}) = 1, PI‘(YM — Ygi = Y;(l) — Y;(O)’XZ = x) = 1, and hence
E[Y1; — Y| X; = z] = E[Y;(1) — Y;(0)| X; = z]. Then, Part (a) follows from Proposition 1 (a). If
Pr(D;(1) > D;(0)|X; = z) = 1, we have
E[Y1i — Yoil Xi = 2] = E[(Di(1) — D;(0))(Yi(1) — Yi(0))| X; = ]
= Pr(Di(1) # Di(0)|X; = ) E[Y;(1) = Yi(0)|Di(1) # Di(0), X; = x].

If in addition Pr(D;(1) # D;(0)|X; = x) > 0, we obtain

E[Y1; — Yoi| X; = «]
Pr(D;(1) # D;(0)|X; = z)
_ B — Yol Xi = 1

E[D;(1) — D;(0)|X; =z

Then, Part (b) follows from Proposition 1 (a). O

EYi(1) = Yi(0)[ Di(1) # Di(0), Xi = a] =

C.3 Proof of Theorem 1

We prove consistency and asymptotic normality of the following estimators without imposing
Assumption 3 (c). These estimators are aymptotically equivalent to the estimators defined in
Section 4.1 if Assumption 3 (c) holds.

First, consider the following 2SLS regression using the observations with p(X;;6,) € (0,1):

Di=v%(1-1,)+m%Z + ’YQPA(Xi§ on) + vi (15)
Yi = Bo(1 = L,) + B1D; + Bop™ (Xi; 60) + €. (16)
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Here I, is a dummy random variable which equals one if there exists a constant ¢ € (0,1) such
that A(X;) € {0,q,1} for all i € {1,...,n}. I, is the indicator that A(X;) takes on only one
nondegenerate value in the sample. If the support of A(X;) (in the population) contains only
one value in (0,1), p?(X;;6,) is asymptotically constant conditional on p4(X;;d,) € (0,1). To
avoid the multicollinearity between asymptotically constant pA(Xi; 0p) and a constant, we do not
include the constant term if I, = 1. Let I;,, = 1{p*(X;;6,) € (0,1)}, Dy, = (1, Di, pA(Xi560)),
Zin = (1,Zi,p*(Xi;6,)), D} = (Di,p*(X4560)), and Z7% = (Z;,p*(Xi;6,))'. The 2SLS
estimator ﬁ from this regression is then given by
5 [(EL 2D L) S Bl T
(7, 228 (DI ) Y0, 2P Yili, i L1,
Let 31 denote the 2SLS estimator of B1 in the above regression.
Similarly, consider the following simulation version of the 2SLS regression using the observa-
tions with p*(X;;d,) € (0,1):
D; = v(1 - 1,) +71Z; +720°(Xi;6n) + v (17)
Yi = Bo(1 — I,) + B1D; + Bop®(Xi; 6n) + €. (18)

Let Bf denote the 2SLS estimator of (1 in the simulation-based regression.
Below, we prove the following result.

Theorem C.1. Suppose that Assumptions 1 and 38 hold except Assumption 3 (c), and that
6n — 0, ndp — 00 and Sy — 00 as n — oo. Then the 2SLS estimators f1 and Bf converge in
probability to
A1 = lim Elw;(6)(Yi(1) — Y3(0))],
0—0

where
P (Xi;8)(1 — p*(Xi;8)) (Di(1) — Di(0))

~ EpA(Xi;0)(1 = pA(X4;0))(Di(1) — Di(0))]
Suppose, in addition, that Assumptions 4 and 5 hold and that nd%> — 0 as n — oo. Then
A1/ A d
O—nl(BI - 61) — N(Oa 1)7
Csn—1/ s d
(63) 1B = B) = N
where we define 6,1 and (63)7" as follows: let
s (Z?:l ZivnD;,nIi,n)il(Z?:l g%,nzlﬂzé,nll,n)(zzbzl Div”Z;,nIl‘,n)il if 1, =0
(i Z75 (D) L)~ (0T € 20 (Z75) Tin) (21 DY (Z75) Tin) ™ if In =1,

n =

. [vi-D B if I, =0
-8 L =1

Let 62 denote the estimator for the variance of Bl' That is, 62 is the second diagonal element of
3, when I, = 0 and is the first diagonal element of 3, when I, = 1. (62)?% is the analogously-

defined estimator for the variance of Bf from the simulation-based regression.
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Throughout the proof, we omit the subscript n from I; ,,, Dy, Zip, €in, ﬁ]n, 0y, etc. for
notational brevity. We provide proofs separately for the two cases, the case in which Pr(A(X;) €
(0,1)) > 0 and the case in which Pr(A(X;) € (0,1)) = 0. For each case, we first prove consistency
and asymptotic normality of Bl; and then prove consistency and asymptotic normality of ﬁf

C.3.1 Consistency and Asymptotic Normality of 3; When Pr(A(X;) € (0,1)) >0
By Lemma B.6,

lim Efp A(X556)(1 = p(Xi;0))(Di(1) — Di(0))] = E[A(X;)(1 — A(X)(Di(1) — Di(0))].
When Pr(A(X ) (0,1)) > 0, BIA(X;)(1-A(X,))(Di(1)=Di(0))] = E[p*(X;)(1-p™(X:))(Di(1)~
D;(0))], since p?(x) = A(z) for almost every z € X by Proposition A.1. Under Assumption 3
(b), Blp?(X:)(1 - p*(X:))(Di(1) = D;(0))] > 0. Again by Lemma B.6,

. ~ B[A(XG) (1 — A(X3))(Di(1) — D;(0))(Yi(1) — Y;3(0)]
s Bl @) = YO} = =P 0 A @) - D))

B0 A (DD, O)0) ¥;(0)
Let f1 = ==Fam)a-aco@m Do - et

ZZDI ZZYI

n

Bnc (Z ch Dnc -1 Z Z1mcval7

=1

and let 3¢ = (0,1,0)53¢ and 37¢ = (1,0)5™. B is given by
Bl = Bf(l - In) + B?C n:

AISO, let ]31 = (1,Di,A(XZ')),, ZZ = (1, Zl,A(XZ)),, ]5;10 = (DZ,A(Xl))/, Z?C = (Zl,A(Xz))/, and
IA = 1{A(X;) € (0,1)}.

We claim that Pr(I, = 1) — 0 when Var(A(X;)|I = 1) > 0, and that Pr(I,, = 1) — 1 when
Var(A(X;)|I* = 1) = 0. To show the first claim, observe that I, = 1 if and only if V;, = 0, where
S (A(X;) — M)UA

i=1 ? [lA

" Zz lIzA

is the sample variance of A(X;) conditional on I/! = 1. When Var(A(X;)|I# = 1) > 0,

< Pr(|V;, — Var(A(X;)| I = 1)| > Var(A(X;)| I = 1))

where the convergence follows since V,, == Var(A(X;)|IA = 1) > 0.
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To show the second claim, note that, when Var(A(X;)|I* = 1) = 0, there exists ¢ € (0,1)
such that Pr(A(X;) = ¢|I = 1) = 1. Tt follows that

Pr(I, =0) = Pr(A(X;) € {0,1} for all i = 1,...,n)
+ Pr(A(X;) = ¢ and A(X;) = ¢" for some ¢, ¢" € (0,1) with ¢’ # ¢"
for some i,j € {1,...,n})
=Pr(A(X;) € {0,1} for all i =1,...,n)
— (1 - Pr(A(X) € (0,1)",

which converges to zero as n — oo, since Pr(A(X;) € (0,1)) > 0.

The above claims imply that 3; = 3¢ with probability approaching one when Var(A(X;)|IA =
1) > 0, and that B = B{w with probability approaching one when Var(A(X,-)|IiA =1) =0.
Therefore, to prove consistency and asymptotic normality of f31, it suffices to show those of Bf
when Var(A(X;)|I* = 1) > 0 and those of 3¢ when Var(A(X;)|I =1) = 0.

Below we first show that, if Assumptions 1 and 3 hold and §, — 0 as n — oo, then
31 24 B1. We then show that, if, in addition, Assumption 4 holds and né2 — 0 as n — oo, then

67151 — B1) -5 N(0,1).

Proof of Consistency. To prove consistency of Bl, we first show that Bf SN 51 when
Var(A(X;)|I#* = 1) > 0. We then show that Bre 25 B) whether or not Var(A(X;)|IA =1) > 0.
By Lemma B.6,

n n
B°= (> ZDiL) ") | ZYiI > (B|ZDIY) B2,
=1 =1

provided that E [sz);IZA] is invertible. After a few lines of algebra, we have

det(E[Z;D/I4))
=Pr(I{! = 1)*Var(A(X;)|I]* = 1)E[Di(Z; — A(X;))I}']
=Pr(I{* = 1)*Var(A(X)|I{* = 1)E[(Z:Di(1) + (1 — Z:) Di(0))(Z; — A(X:)I{]
=Pr(I{* = 1)*Var(A(X)|I{* = V)E[(Z; — Z:A(X,))Di(1) — (1 — Z;) A(X:) D;(0)) I]
=Pr(I;* = 1)*Var(A(X)|I;* = DE[((A(X:) — A(X:)*)Di(1) — (1 — A(X:)) A(X:) Dy (0)) I}']
=Pr(I{* = 1)*Var(A(X)|I{* = 1) E[A(X)(1 = A(X:))(Di(1) = Dy(0)) 1]
=Pr(I{* = 1) Var(A(X) I = 1) E[A(X:)(1 — A(X3))(Di(1) — D;(0))],

where the fourth equality follows from Property 1. Therefore, FE [Zlﬁglf] is invertible when
Var(A(X;)|I#* = 1) > 0. Another few lines of algebra gives

T2 — R M

A-28



when Var(A(X;)[I* = 1) > 0. Therefore, when Var(A(X;)|I* = 1) > 0,

e 2, E[ZY1}'] — EIA(X))Y:I}]

! E[A(X;)(1 — A(Xy))(Di(1) — D;(0))]
_ BIZiYul{'] - B[AX)(ZiYi + (1 = Zi) Yo I

E[A(X;)(1 — A(Xy))(Di(1) — D;(0))
_ E[AXy)Yul] — BIA(X:)(A(X3) Y1 + (1 — A(X3))Yoi) I
E[A(X;)(1 — A(Xy))(Di(1) — D;(0))]
E[A(X;)(1— A(X;)) (Y — Yo) 1]

i))(Di(1) — D;(0))]
) (Di(1) — D;(0))(Y;(1) — ¥5(0))]
EIA(X;)(1 — A(X:))(Di(1) — D;i(0))]

= f,

where the third line follows from Property 1, and the second last follows from the definitions of
Y1; and Yp;.
We next consider B{LC By Lemma B.6,

e — (32 Zp(DY 1)1 S ZPViE, L (B2 1) EZiE)
=1 =1

provided that E[Z7?¢(D}¢)'I{] is invertible. After a few lines of algebra, we have
det(E[Z7*(Dy°) I{']) = BIA(X:) I/ E[Di(Z; — A(Xi)I{]
= E[A(X)* I E[A(X:) (1 — A(Xi)(Di(1) — Di(0))]
> 0.

Another few lines of algebra gives

(B(Zpe(Drey 14])~ = , S ‘ [1 1].

Therefore,

! E[A(X»(l—A(XZ-))(Di(l) —Di<o>>] -

Proof of Asymptotic Normality. Let ((3‘:)2 be the second diagonal element of
n
Z Z. DI~ Z &2,2;1,)(> DZiI)"!
=1 =1

and (6™°)? be the first diagonal element of

n

Zznc Dnc ) (Z AlQnZgLfL ch ZDnc ch

=1
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We only show that (6¢)~ (35 — B1) R N(0,1) when Var(A(X;)|I#A = 1) > 0. We can show
that (6™¢)~1(B1¢ — By) N (0,1) by an analogous argument. The proof proceeds in six steps.

Step C.3.1.1. Let 3, = (E[Zif)gli])_lE[ZiY}Ii], and let Bl,n denote the second element of By,.
Then Bl,n = B1 for any choice of é, > 0.

Proof. Note first that, for every § > 0, p?(z;8) € (0,1) for almost every = € {2/ € X : A(a') €
(0,1)}, since by almost everywhere continuity of A, for almost every z € {2/ € X : A(2') € (0,1)},
there exists an open ball B C B(z,d) such that A(2’) € (0,1) for every 2’ € B. After a few lines
of algebra, we have

det(E[Z;Dj1]) = Pr(I; = 1)*Var(A(X;)|I; = 1)E[Ds(Z; — A(X;))I]
= Pr(I; = 1)*Var(A(X;)|I; = 1) E[A(X;)(1 — A(X;))(Ds(1) — Di(0)) ;]
= Pr(I; = 1)*Var(A(X;)|I; = 1)E[A(X;)(1 — A(X;))(D;(1) — D;(0))],

where the last equality holds since p (z;6) € (0, 1) for almost every z € {2/ € X' : A(z') € (0,1)}.
By the law of total conditional variance,

Var(A(X;)|I; = 1)
= E[Var(A(X -)|I< =1, I = 1] + Var(E[A(X)|; = 1, IA]|; = 1)
> > Var(A(X)|L = 1,1} = ) Pr(I! = 4|I; = 1)
te{0,1}
> Var(A(X)| L = 1,1 = )Pr (I =11 =1)
= Var(A(X)|I? = 1) Pr(I{ = 1|I; = 1)
> 0.

Therefore, E [Z D/ '1;] is invertible. Another few lines of algebra gives

- L . * *_*
(2D = Frai — A i)~ o) | 1 *1

It follows that
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We can write

n n n n
VA B = (D) S A (S A Y
—(4)
1 e~ - 1 & o
+( z; ZzDifz)‘lﬁ Z} Z.Y:I; — (B[Z:D.L]) " "VnE|Z;Y:];]
—~(B)

We first consider (B). Let €, =Y; — ﬁ;Bn so that

E[Z:é,1;) = E|Zi(Y; — Di3,) ;] = E[Z;Y;I;] — E|Z; D)3, = 0.

Then
1 s o~ . L
(B) = (- > ZiDéfi)_lﬁ Z:(Djf + &n)li — (E[ZDL]) " VnE[Zi(D}B, + &n)li]
=1 =1
B B 1 no_ B 1 no 3 o B .
= Vn(Bn — n) + (- Z;D.I;) 17 Ziéinl; — (E|Z;DiL)) ' V/nE[Z:; n 1)
=1 =1
1 e~ =~ 1 -~ Z
= (- > ZZ-D;IZ)*l—n Ziéinl;
i=1 i=1

Step C.3.1.2.
n
— Z Zigi,nji LN N(0,E[&Z,Z;1{")).

Proof. We use the triangular-array Lyapunov CLT and the Cramér-Wold device. Pick a nonzero

A € RP and let V;,, = ﬁ)\’zié,nh. First, we have

By Lemma B.6,
By — (E[ZDiI{]) ™ E[Z:Yil{]
as n — 00. Let § = (E[Z;DiIA]) " E[Z;Y;I] and & = Y; — D)3. We have

E[&,Z;Z;1;) = E|(Y; — D3,)°Z;Z]T})

E[(& — Dj(Bn — 8))*ZiZi 1)

E[&Z;Zi1;) — 2E[&((Bon — Bo) + Di(Bin — B1) + A(Xi)(
+ E[((Bon — Bo) + Di(Brn — B1) + A(X:) (B — B2))?Zs
— E[§Z,Z;1}]
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as n — oo, where the convergence follows from Lemma B.6 and from the fact that 3, — 3.
Therefore,

> EV2] - NE[EZZIMA,
1=1

We next verify the Lyapunov condition: for some ¢ > 0,

> E[VialT 0.
i=1
We have
& 4 1 Irp ~ 4
ZEHVm’ = gEU)\ Zié; o).
i=1

We use the ¢-inequality: E[|X + Y] < 277 LE[|X|" + |Y|"] for 7 > 1. Repeating using the
cr-inequality gives

E(NZ& n1;|") = E(INZi(Y; — Bon — Br.nDi — BonA(X:)) L]
< 2°B[(INZ)(1Yi|* + |Boul* + |Binl*Di + |Bonl *A(Xi)*) 1]
< 236()‘1 + A2+ A3)4(E[}/'14] + Bg,n + Bin + Bé,n)

for some finite constant ¢, and the right-hand side converges to
2%(A + X2 + X)) (BIY'] + B + Bi + B2),

which is finite under Assumption 3 (a). Therefore,

n

> E[Vin

i=1

4 =0,

and the conclusion follows from the Lyapunov CLT and the Cramér-Wold device. 0l

We next consider (A). We can write
1< 1 « -
(A) = (=Y ZDL) ' —= > (ZYil; - Z,Y;T)
n =1 \/ﬁ =1
1< 1 & ~ 1< - - 1<
- > z,D)1)! [ﬁ > (zDi; — ZDi1)( -~ > ZDL) T =D ZYiL
=1 =1 ]

Step C.3.1.3. Let {V;}2, be i.i.d. random variables such that E[|V;|]] < co and that E[V;|X;]
is bounded on N(D*,8') N X for some & > 0. Then,

E[Vip™ (Xi;0) (0" (X3 6) — A(X:)) H{p™ (X35 6) € (0,1)}] = O(6)

forl=0,1.
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Proof. For every x ¢ N(D*,6), B(x,8) N D* =), so A is continuously differentiable on B(x,d).
By the mean value theorem, for every x ¢ N(D*,¢) and a € B(0,9),

Az +a) = A(z) + VA(y(z,a)) a
for some point y(z,a) on the line segment connecting = and x + a. For every x ¢ N(D*,0),
fB(O,l) Az + du)du
fB(O,l) du
fB(O,l)(A(x) + OV A(y(z,0u)) u)du
fB(O,l) du
fB(O,l) VA(y(z,ou)) udu

p(z;6) =

=A(z)+9

fB(o,l) du

Now, we can write

N

E[Vip™ (X;;0) (p™ (X3 6) — A(X,))1{p* (X35 6) € (0,1)}]
= E[Vip™ (Xi30)' (p?(Xi;6) — A(Xi))1{p* (X3 0) € (0, 1)}I{X; ¢ N(D*,6)}]
+ EVip™(Xi:0)! (p™ (X5;6) — A(X)1{p™ (X 0) € (0,1)}1{X; € N(D*,6)}].

N

For the first term,

[BVip! (X538)' (0 (Xi3.0) = A(X)1{p™ (Xi56) € (0. )}L{X; ¢ N(D",9)}]
fB(0,1) VA(?/(Xi, ou)) udu

= 0| E[Vip* (X;;)" 1{p"(Xi30) € (0,1)}L{X; ¢ N(D",8)}]]

fB(O 1)
|Ly 2 g | du
< 5E[|vi|pA<X,-;a>lfB<° 2 o L{p™(Xi:6) € (0,1)}1{X; ¢ N(D*,0)}]
fB(o,l) u
< SE[|Vi] zp: 7)| oo

= 0(9),

where we use the assumption that the partial derivatives of A is bounded on C*. For the second

term, for sufficiently small § > 0,

|B[Vip" (X5:8)! (0 (X3 8) — A(X0))1{p" (Xi:0) € (0,1)}1{X; € N(D",8)}|
< E[|EVi|Xi][1{X; € N(D",0)}]
< CE[{X; € N(D*,0)}]
= CPr(X; € N(D*,96))
= 0(9),
where C' is some constant, the second inequality follows from the assumption that E[V;|X;] is

bounded on N(D* ') N X for some &' > 0, and the last equality follows from Assumption 4
(a). O
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Step C.3.1.4. =371 ((Z:Yil; — Z:Y;I,) = 0p(1) and = T i (2D — Z;D1;) = o0,(1).

Proof. We only show that f S (A (X3 00)% — A(X;)?)1; = 0p(1). The proofs for the other

elements are similar. As for bias,

where the third equality follows from Step C.3.1.3 and the last from the assumption that nd2 — 0.
As for variance, by Lemma B.6,

Var( \F Z (Xi360) — A(X:)P) L)

< E[(p* (Xi§5n) — A(X;)*)?L)

= E[(p*(Xi560)* — 20 (X3560) A(X;)? + A(X:) ) I}]
— E[(A(X:)* — 2A(X)2A(X;)? + A(X)HIA

= 0.

Step C.3.1.5. n3¢ 2 (E[Z,D}11]) ' E[@Z,Z, 1 (E[D,Z; 1))~
Proof. Let ¢, =Y; — D;3. We have
— Z EZ2 1 =— Z(Yi — D/3°)2Z;Z.1;
=1
= Z(ﬁz’ — Dj(8° - 8))°ZiZ1;
=1
R I
== Z;e 7,7 I;
2 & . R R
== (i = DiB)((B5 — Bo) + Di(Bf — A1) + ™ (X5 00) (55 — B2)) ZiZi 1
=1
1<~ - . 5
+— D (55 = o) + Di(Bf = B1) + 0™ (X3 0) (B5 — $2))*ZiZ 1
=1

1 n
= > EZZiI; + 0,(1)0,(1),
=1
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where the last equality follows from the result that BC — B = 0p(1) and from Lemma B.6. Again
by Lemma B.6,

1 o 1
oY QZZT = Y (7 - 2D + f DDA ZZ;
=1 i=1

2y B(Y? - 2v;D}8 + B'D,D,B)Z:Z, 14

and

1< .
- > zDI; 5 E[Z;DiI.
=1

The conclusion then follows. O
Step C.3.1.6. (6°)~1(5¢ — B1) -5 N(0,1).

Proof. By combining the results from Steps C.3.1.2-C.3.1.4 and by Lemma B.6,

(B) == N(0,(EIZDiI{]) " E[GZZ 1) (E[DZi )71,
and therefore,
V(B = Ba) =5 N0, (BIZ.D; 1Y) BI&Z 21 (EIDZi 1) 7).

The conclusion then follows from Steps C.3.1.1 and C.3.1.5. O

C.3.2 Consistency and Asymptotic Normality of 3 When Pr(A(X;) € (0,1)) > 0
Let I7 = 1{p*(X;;0,) € (0,1)}, DS = (1, D;, p°(X;; 65,)) and Zf = (1, Z;, p*(Xi;0,)) . Let

n n
s = (Y m@) ) S Zvr
=1 =1

and
n n n
2% = () ZE DY) T Q€ ZH(Z) 1) (D _DHZ) I,
i=1 i=1 i=1
where & = Y; — (D)%%, Here, we only show that 57° -+ 8; if S, — oo and that (%)~ (35° —
B1) N N(0,1) if Assumption 5 holds when Var(A(X;)|I# = 1) > 0. For that, it suffices to
show that

BC’S - /BC = op(1)
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if S;, — oo and that
V(B = B9) = op(1
n8es 2y (B[ZDLIA p ‘B2 2:2,1)(E[DZ, 1)

if Assumption 5 holds. We have
Zzs (D$)'I3)~ ZZSYIS ZZD’I ZZYI
Zzs (D5)'I3)~ ZZSYIS——ZZYI
Zzs D3 1%)~ Zzs D3 IF — ZZiD; ZZDI ZZYI.
i:I

By Lemma B.8, 3% — 3¢ = op(1) if S, — o0, and \/ﬁ(ﬁc’s — BC) = 0p(1) under the boundedness
imposed by Assumption 4 (c) if Assumption 5 holds.
By proceeding as in Step C.3.1.5 in Section C.3.1, we have
n
*Z (€5)°Z3(Z3)' Iy = Z( 2Z3(Z3) I + 0p(1),
z:l
where €/ =Y; — (Df)'8. Then, by Lemma B.8,

n

1 — 1
I GO VAN Y VAV
n i=1 n =1
1 n 1 n
= > (7 = 2v(D}) B + D] (D) B)2;(25)'I; — — > (V7 = 2YiDifp + S'DiDiB)ZZi1; + 0p(1)
=1 =1
= 0p(1)
so that .
1 o~
=~ (&)7ZUZ) T = BRLZIT).

i=1
Also, 137" | Z3(D3)'I; 2, E[Z;D)I}] by using Lemma B.8. The conclusion then follows. [

C.3.3 Consistency and Asymptotic Normality of 3; When Pr(A(X;) € (0,1)) =0
Since Pr(A(X;) € (0,1)) = 0, I, = 0 with probability one. Hence,

B = (an Z,D;1;)"" an Z:Yi1;
=1 =1

with probability one. We use the notation and results provided in Appendix B. By Lemma B.5,
under Assumption 3 (e), there exists g > 0 such that df,. is twice continuously differentiable on
N(0Q*, u) and that

)
/ g(z)dx = / / g(u+ Avge (u)) T2 Y- (u, \)dHP ™ (w)dA
N(8Q*,6) -5 Joqr
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for every § € (0, 1) and every function g : RP — R that is integrable on N(9Q*,0).
Below we show that 31 —= B if nd,, — oo and 6, — 0 and that (}_1(31 — /1) 4, N(0,1) if
né3 — 0 in addition. The proof proceeds in eight steps.

Step C.3.3.1. There exist § > 0 and a bounded function r : 9Q* NN (X,6) x (—1,1) x (0,0) - R
such that
P (u+ Svvg- (1); 6) = k(v) + 6r(u, v, 6)

for every (u,v,0) € ON0* N N(X,5) x (—1,1) x (0,6), where

k(v) = {1 —5la)(P53)  forve(0,1)
%I(l—qﬂ)(%, 5) forv e (—1,0).

Here I,(«, B) is the regularized incomplete beta function (the cumulative distribution function of
the beta distribution with shape parameters o and (3).

Proof. By Assumption 3 (f) (i), there exists 6 € (0,%) such that A(z) = 0 for almost every
xr € N(X,30) \ Q*. By Taylor’s theorem, for every u € 9Q* N N(X,6) and a € B(0,26),

dgys (u+ a) = dgy« (u) + Vdg« (u)'a + a'R(u, a)a,

where

R(u,a) = /01(1 — t)D%d}y. (u + ta)dt.

Since D?d,. is continuous and cl(N(9Q*,26)) is bounded and closed, D?d§,. is bounded on
cl(N(99*,25)). Therefore, R(-,-) is bounded on 9Q* N N(X,d) x B(0,26). It also follows that

dé«(u+a) = vo«(u)'a+ d R(u,a)a,

since df.(u) = 0 and Vd§,. (u) = vg«(u) for every u € 9Q* N N(X,25) by Lemma B.1. For
(u,v,8) € OV* N N(X,68) x (—1,1) x (0,6),

p(u + Svvg- (u); )
fB(o,l) A(u + dvvgx(u) + dw)dw

fB(o,l) dw
fB(O’l) Hu + dvvgx (u) + dw € Q* }dw

Vol,
B fB(o,l) H{d§y (u + 6(vvg+(u) + w)) = 0)}dw
Vol,

JB(0.1) Hoves (w) (vva-(u) +w) + 8 (vva- (u) + w)' R(u, §(vvgs (u) + w)) (vves (u) + w) > 0}dw

Vol,

where Vol,, denotes the volume of the p-dimensional unit ball, and the second equality follows
since u + dvvgs(u) + dw € N(X,35) and hence A(u + dvvgs(u) + dw) = 0 for almost every
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w € B(0,1) such that u + dvvg«(u) + dw ¢ Q*. Observe that

H{ova-(u) (vvas (u) + w) + 82 (vva: (u) + w) R(u, 6 (vva- (u) + w)) (vvox (u) + w) > 0}
= v +vo(u) - w + 6(vvgs(u) + w) R(u, §(vvgx(u) + w)) (vvgs (u) + w) > 0}
= {v+vg(u) - w >0}

— H{v+va(u) - w>0,v+vo-(u) - w~+ 0(vvg

)+ w) R(u, 6 (vvgs (u) + w))(vvas (u) +w) < 0}

(u
=a(u,v,w,d)
+ H{v+ v (u) - w < 0,v+ vo(u) - w+ §(vvg- (u

) +w) R(u, 6(vvo- (u) + w)) (vrg-(u) + w) =0

\——

= (u,v,w,é)

Note that the set {w € B(0,1) : v + v(u) - w > 0} is a region of the p-dimensional unit ball cut
off by the plane {w € RP : v 4+ v(u) - w = 0}. The distance from the center of the unit ball to

the plane is |v]. Using the formula for the volume of a hyperspherical cap (see e.g. Li (2011)),
we have

Vol, — 1Vol, I io(1 v (1_v2) (B2, L for v € [0, 1
/ 1{v+u(u)-w20}dw:{10p 2 Volpl2(1—v) (1+1v>21>( 7 3) forvelf01)
1) 3 Vol L(a(1) ~(140)2) (737 3) for v € (=1,0).
Therefore, for every (u,v,d) € O2* N N(X,5) x (—1,1) x (0,9),

JB(0.1)(—a(u,v,w, 6) + b(u, v, w, d))dw

(w4 Svvg- (u); 6) = k(v) + Vo,

Now let 7(u,v,8) = 6~ (p™(u + dvvg:(u);§) — k(v)). Since R(-,-) is bounded on 9Q* N
N(X,0) x B(0,26) and |lvg(u)|| = 1, there exists 7 > 0 such that
|(vvgx (1) + w) R(u, §(vvgs (u) + w)) (vvgs (u) + w)| < T
for every (u,v,w,d) € 90* N N(X,d) x (—1,1) x B(0,1) x (0,68). Therefore,
0 <a(u,v,w,d) < 1{0 < v+ vo«(u) - w < §7}
and
0 < b(u,v,w,d) < H{—07 <v+vo«(u) w < 0}.
It then follows that
S0y HO < v +voe(u) - w < 6r}dw _ Jp(0.1)(—a(u,v,w, 6) + b(u, v, w, d))dw
B Vol, = Vol,

I (0.1 H=07 < v+ vo-(u) - w < O}dw
< .
- Vol,

The set {w € B(0,1) : 0 < v+ vo=(u) - w < 07} is a region of the p-dimensional unit ball cut
off by the two planes {w € RP : v + vg«(u) - w = 0} and {w € RP : v + vg-(u) - w = §7}. Its
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Lebesgue measure is at most the volume of the (p — 1)-dimensional unit ball times the distance
between the two planes, so

—6Vol,_17 < —/ 1{0 < v+ v+ (u) - w < I7 }dw.
B(0,1)

Likewise,
/ {07 <v+vo«(u) - w < 0}dw < §Vol,_17.
B(0,1)

Therefore,

_ (5V01p_1f < fB(()’l) (_a’(u7 v, w, 5) + b(ua v,w, 6))dw < 5V01p_1f
Vol, ~— Vol, - Vol,
It follows that

(u, v, 6) = 6= Jp(0.1)(—alu, v,w,8) + b(u, v, w, ))dw
rlu,v, —

Vol,
c [_Volp_lf Volp_lf]
Vol, ’ Vol, 7
and hence r is bounded on 9Q* N N(X,§) x (—1,1) x (0,46). O

Step C.3.3.2. For every (u,v,6) € 00NN (X,0) x (—1,1) x (0,9), p? (u+dvvg«(u);§) € (0,1).

Proof. Fix (u,v,0) € 00* N N(X,d) x (=1,1) x (0,5). Suppose v = 0. By Step C.3.3.1,
p?(u) = limy_op?(u;6’) = k(0) = 5. This implies that there exists &’ € (0,0) such that
pH(u;6") € (0,1). Tt then follows that 0 < LP(B(u,d') N Q*) < LP(B(z,8) N Q*) and that
0 < LP(B(x,0")\ Q*) < LP(B(x,0) \ ). Therefore, p*(u; ) = %)mg) € (0,1).

Suppose v # 0 and let € € (0,5(1 — |v|)). Note that B(u,e) C B(u + dvvg=(u),d), since for
any = € B(u,€), |u+ dvvgs(u) — 2| < ||dvvgs(w)|| + |u — 2| < 6v| + € < §. Since pA(u) = %
there exists ¢ € (0,¢) such that p?(u;¢’) € (0,1). It then follows that 0 < £LP(B(u,¢) N Q*) <
LP(B(u, €)NQ*) < LP(B(utdvvgs(u),§)NN*) and that 0 < LP(B(xz, € )\Q*) < LP(B(z,€)\Q*) <

L7(B(u+Svvae (u), 6)\ ). Therefore, p(u+dov- (u); §) = BUEwa-WIND) ¢ (o 1),

[y

O

Step C.3.3.3. Let g : RP — R be a function that is bounded on N(9Q*,8') N N (X, ) for some
8" > 0. Then, for >0, there exist § > 0 and constant C > 0 such that

67 Ep?(Xi:0) g(X)1{p* (Xi;0) € (0,1)}]| < C
for every 6 € (0,8). If g is continuous on N(8Q*,8') N N(X,d") for some & > 0, then
5L B (X 0)g(X0) 1{p™ (X,8) € (0,1)}] = / Yao [ gla) fele)dir @) +ol1)
o0*
SB[ Zip (X4 0) g(X)1{p? (Xi;0) € (0,1)}] = / ldv/ g(x) fx (x)dHP~(x) + o(1)
oN*
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for 1 > 0. Furthermore, if g is continuously differentiable and Vg is bounded on N(9Q*,§") N
N(X,8) for some &' > 0, then

1
0 Ep™ (Xi:6)'g(Xi)1{p* (Xi:6) € (0,1)}] =/ k(v)ldv/w 9() fx (x)dH ™ (z) + O(6)
1
0 E[Zip™ (X3 6) g(Xi)1{p™ (Xi:6) € (071)}]=/0 k(v)ldvfa 9(x) fx (2)dHP " (z) + O(6)

for1>0.

Proof. Let 6 be given in Step C.3.3.1. Under Assumption 3 (g), there exists 0 € (0,48) such that
fx is bounded, is continuously differentiable, and has bounded partial derivatives on N (0Q*, 25)0
N(X,20). Let & € (0,6) be such that both g and fx are bounded on N(9Q*,25) N N(X,20).
We first show that p?(2;6) € {0,1} for every @ € X \ N(9Q*,6) for every 6 € (0,6). Pick
z € X\ NOQ 6) and § € (0,0). Since B(x,8) N IN* = O, either B(x,d) C int(Q*) or
B(z,6) C int(RP\Q*). If B(x,6) C int(Q*), pA(z;6) = 1. If B(x,6) C int(RP\Q*), pA(x;6) =
since A(2') = 0 for almost every 2’ € B(x,8) C N(X,35) \ Q* by the choice of 6. Therefore,
{x € X : pMx;0) € (0,1)} € N(9Q*,6) for every § € (0,0). By this and Lemma B.5, for
d €(0,9),

-lE[pA<Xz-;5>l (X)1p™ (X::6) € (0, 1))
s / (:6) g () L{p™ (2 8) € (0, 1)} fx ()
P (23 6)g(@) 1 {p (2:6) € (0,1)} fx (2)de

N (90, 5)
é
_ 5! /5 /BQ A+ M (u); 8)'g(u + e () 1{p™ (1 + Avo- (u); 6) € (0,1)}
< fx (u+ Avge (u)) JO% s (u, \)dHP~ (w)dA.
With change of variables v = %, we have
0 Elp(X5;6)'9(Xi)1{p" (Xi36) € (0,1)}]
1
:/ / (w4 Svvg- (u); 0) 1{p™ (u + dvvg«(u); 6) € (0,1)}
-1 JoQ*
g(u + dvvg«(u)) fx (u + dvvgs (u))JI‘??; Yo (u, 0v)dHP ™ (u)dv.
For every (u,v,0) € 90 \ N(X,0) x (—1,1) x (0,6), u + dvvg-(u) ¢ X, so
0 Ep*(Xi;0)'9(Xi)1{p* (Xi36) € (0,1)}]
/ / Au + dvvg- (u); 6) 1{p™ (u 4 dvvg- (u); 6) € (0,1)}
OV NN (X
(u + dvvge () fx (u + Svvgs (u)) JOY o (u, Sv)dHP ! (u)dv

/ / )+ 0r(u, v,0) g(u + dvvg-(w)) fx (u + dvvg: (u))Jﬁ?l* Yo (u, 0v)dHP ™ (u)dv,
O NN (X 5)

A-40



where the second equality follows from Steps C.3.3.1 and C.3.3.2. By Lemma B.5, J[‘??1*¢Q* ()
is bounded on 9Q* x (—5, 5) Since r, g and fx are also bounded, for some constant C' > 0,

67 Bl (X:8)'g (X L{p™ (X4 8) € (0,1)}]] < C / 1 / dHP (),
—1Jaq NN (x,9)

which is finite by Assumption 3 (f) (i). Moreover, if g and fx are continuous on N (9Q*,25) N
N(X,26), by the Dominated Convergence Theorem,

1
5B (X 8) g (XU (Xi8) € 0.0} [ K)'do [ gt f(wire ),

where we use the fact from Lemma B.5 that J;??l* a+(u, A) is continuous in A and Jpa?f Yax(u,0) =
1.

Note that A(z) = 1 for every z € Q* and A(z) = 0 for almost every z € N(X,20)\ Q*.
Also, for every (u,v,d) € dQ* N N(X,8) x (=1,1) x (0,8), u + dvva(u) € Q* if v € (0,1) and
u+ dvvg-(u) € N(X,26) \ Q* if v € (—1,0]. Therefore,

5 E[Zip™ (Xi56)'g(Xi) 1{p" (X5 6) € (0,1)}]
= 0 E[AX)p!(Xi;0) 9(Xi) L{p" (Xi36) € (0,1)}]

1
= A S (@) () + 0, 6) g+ v (1)
—1.JonN(x,5)
X fx(u+ dvvg- (u))JZ??; Yo (u, 5v)dHP ™ (u)dv

1
_ / / (k) + 8r(u, 0, 6))'g(u + Svvge () i (u + Svvee (u) T s (u, 50)dHP~ (u)du
0 JornN(x.3)

1
. ~1
H/O k(v)ldv /39* g(u) fx (u)dHP™ (u).

Now suppose that g and fx are continuously differentiable on N (992, 20) N N (X, 25) and
that Vg and Vf are bounded on N(9Q*,26) N N(X,26). Using the mean-value theorem, we
obtain that, for any (u,v,0) € 9Q* N N(X,0) x (—1,1) x (0,9),

9(u+ dvva-(u)) = g(u) + Vg(yg(u, dvva- (u))) dvva: (u),
Ix(u+ dvvgs(u)) = fx(u) + V fx(ys(u, dvvg-(u))) dvvg- (u)

for some y,(u, Svvox(u)) and y¢(u, Svvg-(u)) that are on the line segment connecting u and
u + dvvg«(u). In addition,

* * 8Ja?* * 3 76
T2 o . 80) = 0% e (u,0) 4 oo P (0 00)

0JY% Y- (u,y.(u, 6v)) 5o
oA

ov

=1+
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a0* .
for some y(u, dv) that is on the line segment connecting 0 and Jv. By Lemma B.5, %_1871{)\9*(’)
is bounded on dQ* x (—4,8). We then have

0 Ep(Xi:0) 9(Xi)1{p? (Xi36) € (0,1)}]

/ / )+ 6r(u,0,8)) (g(u) + Vg g (w, Sovie (1)) Sovg ()
O NN ( X§

DI hyu u,y g (u,0v _
X (fx () + V fx (g (u, dvvis (u))) dvve (u)) (1 + 2=t Cva 000 5y g o1 (1) gy

/ / (w) fx () + S, v, 6))dHP~ (u)d
VNN (X,9) 5

_/ k()dv/ g(u) fx (w)dHP " (w) +5/ / B, v, 6)dHP~ (u)dv
1 09+ QNN (X,5)
for some function h bounded on Q* N N(X,0) x (—1,1) x (0,4). It then follows that

1
5 Elp™(Xi;:0)'g(Xi)1{p(Xi;0) € (0,1)}] = /_1 k(v)dv /m* g9(w) fx (u)dHP~ (u) + O(9).
Also,

0 E[Zip™ (Xi56) g (Xi)1{p™ (Xi:8) € (0,1)}]

/ / v) + 0r(u,v,8)) g(u + dvvg-(u)) fx (u + dvvg-(u ))Jaﬂlwg (u, 60)dHP~ (u)dv
0*NN (X, 5)

- / k(v)!dv / 9(u) fx (w)dH? ™ (u) + O(5).
0 o0*
1

Step C.3.3.4. Let Sp = lims_,0 6 1 E[Z;D!1{p*(X;; ) € (0,1)}] and Sy = lims_,q 6 L F[Z;Y;1{p?(Xi;0) €
(0,1)}]. Then the second element of Sg'Sy is f.
Proof. Note that D; = Z;D;(1) + (1 — Z;)D;(0) and Y; = Z;Y1; + (1 — Z;)Yo;. By Step C.3.3.3,

Sp

2/x Joor E[D< >+D< )IX; = o) fx (x)dHP () 2, k(w)vx
=| K Jogr EIDAVX, = al fx ()~ (z) o kw)dvfx |
S k()dvofx [y () K()dvE[D ()\X—xw k() dvE[D,(0)|X; = o)) fx (2)dHr— (@) [, k(v)2dvfx

where fx = [,o. fx(x)dHP~(z), and

Joor EV1i + Yoil X; = @] fx (z)dHP~ (2)
Joa- BNl Xi = ] fx (z)dHP~ ! (x) .
Joa- Uy k@)dvEY|X; = 2] + [ k(v)dvE[Yo| X; = ]) fx (2)dHP~ (x)

After a few lines of algebra, we have

Sy =

det(Sp) =fx* | E[Di(1) = Dy(0)|X; = ] fx (x)dH? ()

on*
« (/_i(k(v)—/j k(s)ds)zdv—s—/ol(k(v)—/ol k(s)ds)2dv),
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which is nonzero under Assumption 3 (b) and (f) (i). After another few lines of algebra, we
obtain that the second element of SBISY is

Joor EI(Di(1) — Di(0))(Yi(1) — Y5(0))|X; = a] fx (x)dHP ! (2)
Joqr EIDi(1) — Di(0)|X; = z]fx (x)dHP~ (2) '

On the other hand, by Step C.3.3.3,

1 = lim Bl (0) (Vi(1) = ¥i(0))]

o 5B 0)(1— p (X ) (Di(1) — Di(0)) (Yi(1) — Yi(0)1{p* (Xi39) € (0, )}
o0 0-1Elp (Xu5)( pA(Xi;8))(Di(1) — 20))1{1? (X5:0) € (0, )]
_ SR - k) >dvfam D;(1) — Di(0))(Yi(1) — Y;(0))|X; = 2] fx (w)dHP " (x)

f—ll k() (1 = k(v))dv faQ* E[D;(1) — Di(0)|X; = z]fx (v)dHP~ (z)
oo EDI(1) - Dz-<o>><Y< ) VO)I = i)
Joo- E[Di(1) = Di(0)|X; = a] fx (x)dHP~! () '

Step C.3.3.5. If nd,, — co as n — oo, then Bl LN B1-

Proof. It suffices to verify that the variance of each element of % St Z;DI; and - > i ZiY;
is 0o(1). Here, we only verify that Var(% S pM X3 6,)Yilh) = 0(1) Note that

ElY?|X;] = E[Z:Y], + (1 — Z)Yg| Xs] < E[Y]; + Y | X

Under Assumption 3 (g), there exists &' > 0 such that E[Y2+YZ|X;] is continuous on N (9Q*,§").
Since cl(N (0%, 16")) is closed and bounded, E[Y2 + Y| X;] is bounded on cl(N(9Q*, 36)). We
have

1
(Xi:60)YiL;) < —67 E[p™ (X3 6,)%Y2,
Varnnin ;0n) )_n5n5n (0™ (X3 00) 7Y 1]

- %@ZlE[pA(Xi; S0 EIY?|X 1]
n

<
_néc

for some C > 0, where the last inequality follows from Step C.3.3.3. The conclusion follows since
nod, — 0. O

Now let 3 = (Bo, B1, B2)' = Sp' Sy and let ¢; = V; — D}3. We can write

F(ﬁ ﬁ 715 ZZD,I mzzezz

- (T% ; A \/7 ;{ (Zieil; — EZie;I;]) + E[Z;e; 1]}

A-43



Step C.3.3.6.

\/WZ (Zie:I; — E|Zie:Il]) % N(0,V),

where V = limy, o0 8, L E[2Z;Z;1;).
Proof. We use the triangular-array Lyapunov CLT and the Cramér-Wold device. Pick a nonzero

A ERP, and let V;,, = \/%X(Zieili — E[Zie;1]). First,

> EVZ) =6, N(E[6Z:Z; L] — E|Zie; ;] E[Zje; )\
By Step C.3.3.3,

SO

6, E|Zie; | E|Ze; ;] = o(1).
We have
E[ZZ,Z.1;) = E((Yi — Bo — B1Di — Bap™ (X4300))* Zi Z 1)
= E[Zi(Y1i — Bo — B1Di(1) — Bop™(X;;6,))*Z: Z, 1)
+ E[(1 = Z:)(Yoi — Bo — B1Di(0) — Bap™(Xi;00))° Zi ZL 1),

Since E[Yy;|X;], E[Yoi|Xil, E[D;(1)|X;], E[D:(0)|X], E[Y{}|Xi], E[YgXi], E[Y1:Di(1)|X;] and
E[Y0;D;(0)| X;] are continuous on N (9%, §') for some ¢’ > 0 under Assumption 3 (g), lim,, o0 8, ' E[62Z; Z1;]
exists and finite. Therefore,

> EVZ] - XVA<O.

We next verify the Lyapunov condition: for some ¢ > 0,

Y E[Vial**] =0
i=1

We have

& 1
> EVial') = 6, BN (ZieiLi — ElZies i])|*
i=1 "

1
< 72365;1{E[|)\,ZZ€ZIZ‘4] + |)\,E[Z1,GZIZ]|4}

by the c,-inequality. Repeating using the c¢,-inequality gives

S E(INZie: I|Y) = 6, ' E[NZi(Yi — Bo — B1.D; — Bap™ (Xi;62)) [ I1]
< 2% E[(INZi| ) (1Yi]* + 8ol + 181" Di + | Ba|*p™ (Xi3 6n) "))
< 2°(A1 4 A2+ A3)*6,  E[(Y; + 85 + BT + B3) 1]
=2%0(1)
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for some finite constant ¢, where the last equality holds by Step C.3.3.3 under Assumption 3 (g).
Moreover,

SUNE[Zie )| = 63N 6, E|Zie; 1) |*
= 0,0(1)
= o(1).

Therefore, when nd,, — oo,

> E[Vinl'l =0,
i=1
and the conclusion follows from the Lyapunov CLT and the Cramér-Wold device. O

Step C.3.3.7. n3, 2 2+ S5V (Sp)~ 1.

Proof. We have

— Z EZ2 T =—— Z(n — D!$)%2Z,ZI;

=1

- ol Dl )2z

:E Z;efzizgfi

- % (Y; = D}B)((Bo — Bo) + Di(B1 — B1) + p™ (X3 0n) (B2 — B2)) Zi Zi I
=1
- nlén ;((BO - ﬁ()) + Dz(Bl - 51) +pA(X7;; (571)(&2 _ ﬁ?))ZZZZ;IZ

1 n
=5 > GZZT; + 0,(1)0p(1),
[t

where the last equality follows from the result that B — B op(1) and from application of
Step C.3.3.3 as in Steps C.3.3.5 and C.3.3.6. To show n5 S 2ZZI L5 V, it suffices

i=1%

to verify that the variance of each element of .5 Ly~ 2Z Z:1; is o(1). We only verify that

i=16;
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Var(% S €2pA(Xi50,)21;) = o(1). Using the ¢,-inequality, we have that for some constant c,
1< 1
Var(—— > ept(Xi360)°L) < TéglE[em
ni_q NOop,

= 5, BI(Y; — fo — D1~ Bar (X)) T

1
< —-2%6, E(Y;" + B3 + BLDi + Byt (XM I

Non

1 _
< W?”"%Sn YE[(Y + By + B+ B3) 1]
= i2360(1)

ndy,
=o(1),

where the second last equality holds by Step C.3.3.3 under Assumption 3 (g). Therefore,
1 - ~2 / p
— Z E7,71;, 25 V.

It follows that

n

. 1 & 1
nb, % = (— > zz-[);ji)—l(W S @7,z (= ZD Z.1;)t 2 Spv(Sp) L
n =] n " i=1

i=1
O
Step C.3.3.8. 67L(B1 — B1) -5 N(0,1).
Proof. Let 8, = 5715_1E[Z1YJ¢]. We then have
FZE i€ili] = \/nbn0 ' E[Zi(Y; — D'B) 1]
= /16,0, E[Z;(Y; — DB, + Di(B, — B)) 1]
= /ndnd, {E[Z;Y;I;] — E|Z;D,I;) 3, + E[Z;D,L] (5, — B)}
= /nd,{(Sp — 6, E[Z;D,I;))Sp 6, ' B[Z;Y;1;]
+ 6, E(Z;D;L) S5 (6, ' E[Z;Y;I;] — Sy)}
1, (0(6,)0(1) + O(1)O(dy))
= O(\/ndy0y),
where we use Step C.3.3.3 for the second last equality. Thus, when nd2 — 0,
V n(sn(ﬂ - /8> = (E ; ZzDiIz> \/7 Zl{ Z i€l [ZzezIZ]) + E[Zzezjz]}
Ly N(0, 55V (Sp) ).
The conclusion then follows from Step C.3.3.7. O
O
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C.3.4 Consistency and Asymptotic Normality of 3 When Pr(A(X;) € (0,1)) =0
Let I = 1{p*(Xi;6,) € (0,1)}, D§ = (1, Dy, p* (X35 6,)) and Z3 = (1, Z;, p* (X3 6,))". f° and X°

are given by

Zzs (D3)'I3)~ Zz VI3
and

=z D)) Q&) 232 1) (Y _DIZ) 1)
i=1

i=1 i=1

where € = Y; — (D?)/3°. Tt is sufficient to show that

if S;, = oo and that

\% nén(BS - B) = Op(l)v
n6,3° 2+ S5V (Sp)

if Assumption 5 holds.

Step C.3.4.1. Let {V;}°; be i.i.d. random variables. If E[V;|X;] and E[V?|X;] are bounded on
N(OQ*,0"YNN(X,d") for some § >0, and S,, — oo, then

1 n
nénZ;VipS(Xi;a )\rs ——szp (Xi300) I = 0p(1)

forl1=0,1,2,3,4. If, in addition, Assumption 5 holds, then

1
Vip®* (Xi560)'I7 — m (X3 0n)'1; = 0p(1
forl=0,1,2.
Proof. We have
” Zmp (X3 6n) Zmp (X5 6n)
= iSXi'nlIfs —_— Xz inlll
mn;vm 10n)! (I — L) + ZV 10n)! = (X3 6n)")
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We first consider ﬁ S Vi (Xi; 00)t — pA(X4;60)) ;. By using the argument in the proof of
Step C.3.3.3 in Section C.3.3, we have
Xz Xi;0n ! I;
Pl Z Vi (X2 0,)' — (X120,
=4,'|E[E [W!Xi] [0°(Xi580)" — p (X33 60)' | X ]|
< 6, E(| V| Xl Elp®(Xi3 80)' — p (X35 60)'| ] | 1]
1
:/ / BV X, = u+ Spvvgs (]| Elp® (u + Snvvax (u); 6,)! — p™ (u 4 Spvvgs (u); 6,)|
—1Joo*nN(x.5)
x fx (u+ Spvvge (u)) J2Y o (u, 5,v)dHP ™ (u)dv,

where the choice of é is as in the proof of Step C.3.3.3. By Lemma B.7, for { = 0, 1,2,
*(Xi; 05) Xi;00)") I
Bl Z Vil (X::6)! — (X5 8)) 1)

<1 / / EVIIX; = u+ Snovee ()] f (u+ Syvvar (1)).12% e (1, 6,0) AHP~ (u) o
Sn J-1 Joarnn(x.9)

= 0(S;Y).

n

Also, by Lemma B.7,

n5 Z Vi(p®(Xy:6,)° — p(X4;6,)3) L]

= |5, ' E| i<p (Xi56n) — p™ (X33 00)) (0° (X3 60)? + 1° (X3 6)p™ (X33 0n) + 0™ (Xi5.60)%) L]
< 0, BBV X || E[(0°(X43 0n) — p™ (X33 60)) (0°(X43 0n)? + 15 (X45 0n)p™ (Xi3 60) + p™ (X33 6,)%) | X0) | 1]
(

< 36, 'E[|E[Vi| X,]| Ellp* (X3 0n) — p™(X4360)|| X4 L4)

/ / EVIIX: = u+ Spovee (| Elp* (u + Snvvee (w); 6) — p™ (4 + Syvvee (u); 50)]
OV NN (X 6
X fx (u+ Spvvas (u)) J2Y o (u, 6,v)dHP ™ (w)dv
1
< (@ +€)0(1)
for every ¢ > 0. We can make the right-hand side arbitrarily close to zero by taking suffi-

ciently small € > 0 and sufficiently large S,, which implies that |E[ﬁ S Vilp® (Xi; 60)2 —
pM(Xi;6,)2) ]| = o(1) if S, — oco. Likewise,

n5 Z Vi(p® (X5 00)* — p(Xi5 0,)M) ]|

=16, ' E| z-<p (Xi30n)% + 0™ (X4300)%) (0° (X3 0n) + p™ (X35 60)) (0° (X5 60) — p™ (Xi3.6,)) L]

< 6, E[|E[Vi| X]l| E[(p* (X35 60)? + p™(Xi: 6n)2) (0 (X35 60) + p™ (X4360)) (p <Xz,6> P (X33 00))| X I
< 85, 'B[|E[Vi| X3 | E(|p* (X3 6) — p™ (X4; 0n) || X))

= o(1).
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As for variance, for [ = 0,1, 2,

1
v ZV (X X 5 V) < —LEIV2 (05 ( X 6.)! ACx 52T
a‘r ’]’7,5 176 ( 1767’1) )I’L) — nénén [ 1 (p ( 17571) p ( 17671)) I’J

1 - S
— 0, \EEVEXIE[(p* (Xi;00)' — p™(Xi560) )| Xi] 1]

4
nopSn
= 0((nd,S,)7 1Y),

IN

IN

5, ' E[E[V?|X,]1]

and for [ = 3,4,

(X; AXe 5 ) < ——0 B[V (5 (Xi: 60)! — p™(Xs3 60)) 2T,
Varnn;V 0)! = (X 0) V1) < -6 BIVE(0° (X 0)' — p* (X5 0)')° ]

IN

—5‘1E 27
1., on (Vi°L]
=o0(1).

Therefore, 5= > Vi(p®*(Xi; 6,)" — p(Xi500)") i = 0p(1) if S, — oo for [ = 0,1,2,3,4, and
\/%Tn Z?:l V;(ps(Xi§ 5n)l - pA(Xi§ 5n)l)Ii = Op(l) if n71/2sn — oo for 1 =0,1,2.
We next show that % S Vit (X4 8)H I — 1) = 0p(1) if S, — oo for [ > 0. We have

1 n
E[—Y Vip*(Xi;8,)'(IF — L)) = 6, | E[Vip® (Xi; 8,)'(If — I
gy 2o Vi (i)' (02 = ) = 6, BV (X 0,1 = 1)
< 8, ' BlIEVi| Xl Blp* (Xi; 60) (I} — L)1 X]l]
= &, B[ B[Vi|Xi]|E[| I} — L]| Xi]].
Since I} — I; < 0 with strict inequality only if I; =1,
E(|I} = LX) = —E[I} — LI Xill; = (1 = E[I7|Xi])I; = Pr(p®(Xy;0n) € {0, 1} X3)1;

We then have

B[ LS a0 - 1)
" oi=1
< 6, 'E[|E[Vi| X3]| Pr(p®(Xi;6n) € {0, 1} X,) ;]
< 5, "B EVAX3)|(1 — p™(Xi36))" + p™(Xy560) ") 1]
1
</} gy VA = ot v (IH(L = (o o (1) 0,)

+ p(u+ Spovgs (1) 6,)°" ) fx (U + Spvvgs (U))Jpagl*wﬂ* (u, 6,0)dHP ™ (u)dv

where the second inequality follows from Lemma B.7. Note that for every (u,v) € 9Q* N
N(X,8) x (—1,1), lims_o p™ (u + dpvvge (u); 6,) = k(v) € (0,1) by Step C.3.3.1 in Section C.3.3.
Since E[V;|X; ] x and J, 891 1o+ are bounded, by the Bounded Convergence Theorem,

E[n; Z Vip® (X3 6,)1(I — I,)]| = o(1)
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if S, — oo.
As for variance,

]' - S S ]' - S S
Var(—— S Vip* (X 6) (I = 1)) < —— 6, BV (Xi36)* (17 = 1)
(Cr— n

)
_ 1
" ndy,

= o(1).

1
< 0, EVAL; - I

0n E[BIVZIX B[] — LX)

Lastly, we show that, for [ > 0, ﬁz:?zl Vip® (Xi; 00) (I — I;) = o0p(1) if Assumption 5

holds. Let 7, = yl‘ggn”, where 7y is the one satisfying Assumption 5. We have

|E]

1 n
ZVz’ps(Xz';(Sn)l(If —1;)]|
i1

nop
ndn "B E[V;| X]| (1 — p™(Xi;00)) % + p™ (Xy380)5") L]
= \/nd: "B E[Vi X3)|(1 — p™ (X3 60)) 5" + p™ (X453 60) ")) 1{p™ (Xi560) € (0,7) U (1 — 1, 1)}]
ndn ' B E[Vi| Xi]|((1 — p*(Xi360))°" 4 p™ (X33 60) %)) 1H{p™ (X1 0n) € (110, 1 — 1) }]

<( sup |E[Vi|X; = 2]])(/ndn ' Pr(p®(Xi;6,) € (0,7,) U (1 = 1, 1))
zEN (8% ,26)NN (X ,26)

+2y/ndn (1 — nn)sn‘sr:lE[l{pA<Xi; 6n) € (Mny 1 —1mn) }]).
By Assumption 5, v/nd, ' Pr(p?(Xy;6,) € (0,7,) U (1 —1,,1)) = o(1). For the second term,

23/n6,(1 = 00) 56, E[U{p™ (X33 60) € (1 = 1)}] < 2/n0 (1 = 1) %6, B[]
= 2/nd, (1 — 1) O(1).

logn
nl/2

Observe that 7, = Vl?nn = %g el ﬁ

that e! > 1+t for every t € R, we have

Vndp (1 — nn)S” < nén(e_"")S”
= /nd,e M

= \/nd,e e

— 0, since n~1/28,, — oo and — 0. Using the fact

= \/né,n""7
_ n1/277571L/2

— 0,
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since v > 1/2. As for variance,

-1 2 L2l N2
wﬂvaTXH@.&ﬁ>< 1) < 8 BV (X 0220 — 1))

gé‘ E[E[V?| X E(|I} — L|| X,] 1]

We have

~ ~

BS—,B
n(5 ZZSDS )'I7) 11 Zn:zws nnZZDI ZZYI
M ZZS (D318~ Zz YiIF — 5nZZiYiIi)
n5 Zzs (D3)'I3)~ n(5 Zzs (D3) IS—M;ZDI ZZD’ nn;zw.

By Step C.3.4.1, B — B = op(1) if S;, — o0, and \/nén(BS — B) = 0p(1) if Assumption 5 holds.
By proceeding as in Step C.3.3.7 in Section C.3.3, we have

n(gZAs Zszs Is_néz ZSZS Is+0p()

where €/ =Y; — (Df)'8. Then, by Step C.3.4.1,

o Z (69)2Z3(Z3) I} — ZeQZZI

n

1

= m; Z —2Yi(D;)'8 + B'D; (D7) B)Z; (Z3)'I; — b, 2 1<Yf — 2Y;D)3 + B'D;DB)Z,Z}I; + 0,(1)
= Op(l)
so that .
%;@%@fﬁv
Also, % S ZE(D3)' T3 25 Sp by using Step C.3.4.1. The conclusion then follows. O
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C.4 Proof of Proposition A.2

With change of variables u = "E*g’”, we have

A fB(w,é) A(z*)dx*
p*(x;6) = e
fB(z,&) x
5P fB(OJ) Az + ou)du
oP fB(o,l) du
_ quEQuz,q Az + du)du + fB(o,l)\uquuz,q Az + du)du
fB(o,l) du
quQ fuw Az + ou)du
fB(o,l) du

Y

where the last equality follows from the assumption that £P(UgeqUy,q) = LP(B(0,1)). By the
definition of U, 4, for each ¢ € Q, lims_,g A(x + du) = ¢ for any u € U, 4. By the Dominated

Convergence Theorem,
p*(x) = lim p* (2; 6)
6—0

22ge 15" U g)
Lr(B(0,1))

The numerator exists, since ¢ <1 for all ¢ € Q and >_ o LP(Us,q) = LP(B(0,1)). O

C.5 Proof of Corollary A.1

1. Suppose that A is continuous at = € X, and let ¢ = A(x). Then, by definition, U, ; =
B(0,1). By Proposition A.2, p(z) exists, and p*(z) = q. O

2. Pick any z € int(&;). A is continuous at z, since there exists § > 0 such that B(z,d) C X,
by the definition of interior. By the previous result, p(z) exists, and pA(z) = q. O

3. Let N be the neighborhood of x on which f is continuously differentiable. By the mean
value theorem, for any sufficiently small § > 0,

flz+du) = f(z) + Vf(Zs) - du
= Vf(Z5) - du

for some Zs which is on the line segment connecting x and x + du. Since Zs = x as § — 0
and V[ is continuous on N, Vf(Zs) -u — Vf(z)-u as 6 — 0. Therefore, if Vf(z) u > 0,
then f(z + ou) = Vf(Z5) - du > 0 for any sufficiently small § > 0, and if Vf(x)-u < 0,
then f(z + du) = Vf(Zs) - du < 0 for any sufficiently small § > 0. We then have

U ={ue B(0,1): Vf(x) u>0} Clsg

U, ={ue B(0,1): Vf(z) u <0} CUpg,-
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Let V be the Lebesgue measure of a half p-dimensional unit ball. Since V = LP(U}) <
L/Ung). V = LPU) < LPWUsgy), and L7Upg,) + L (Usgy) < LP(B(0,1)) = 2V, it
follows that £P(Uyq, ) = LP(Uyq,) = V. By Proposition A.2, p?(z) exists, and p?(x) =
3@+ a2). O

—

4. We have that Up 4 = {(u1,u2) € B(0,1) : ug < 0oruy < 0} and Up g, = {(u1,u2)" €

2 2
B(0,1) : u; > 0,us > 0}. By Proposition A.2, p(x) exists, and p*(z) = DL (M(Z;“(;giﬁ))(uo’”) =

301+ 1. 0

C.6 Proof of Proposition A.1

Since A is a LP-measurable and bounded function, A is locally integrable with respect to the
Lebesgue measure, i.e., for every ball B C RP, fB A(zx)dx exists. An application of the Lebesgue
differentiation theorem (see e.g. Theorem 1.4 in Chapter 3 of Stein and Shakarchi (2005)) to the
function A shows that

(s Alz")da”

li =A
550 fB(ﬂM) dx* (z)

for almost every x € RP. O

C.7 Proof of Proposition A.3

We can prove Part (a) using the same argument in the proof of Proposition 1 (a). For Part (b),
suppose to the contrary that there exists x4 € X7 such that £P({z, € X5 (zq) : pH(zg,2c) €
{0,1}}) > 0. Without loss of generality, assume L£P<({x, € X2 (xq) : p* (x4, 7.) = 1}) > 0. The
proof proceeds in five steps.

Step C.7.1. LP<(X5(zq) N Xe1(zq)) > 0.
Step C.7.2. X2 (x4) Nint(X.1(zq)) # 0.
Step C.7.3. pA(z4,2) = 1 for any x. € int(X.1(24)).

Step C.7.4. For every zi € X2 (xq) Nint(X.1(zq)), there exists 6 > 0 such that B(z%,8) C
Xcs(xd) N int(qu(xd)).

Step C.7.5. E[Y1; — Yy,|X; € S| is not identified.

Following the argument in the proof of Proposition 1 (b), we can prove Steps C.7.1-C.7.3. Once
Step C.7.4 is established, we prove Step C.7.5 by following the proof of Step C.1.4 in Proposition
1 (b) with B(z},0) and B(z},€) in place of B(z*,d) and B(z*,¢€), respectively, using the fact
that Pr(X.; € B(x},€)|Xa = x4) > 0 by the definition of support. Here, we provide the proof
of Step C.7.4.

Proof of Step C.7.4. Pick an z¥ € X(z4) Nint(X.1). Then, 2* = (z4,2%) € S. Since S is
open relative to X, there exists an open set U € RP such that S = U N X. This implies that
for any sufficiently small § > 0, B(z*,0)N X C UNX = S. It then follows that {x. € RPe :
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(g, ) € B(x*,0) N X} C {x, € RP : (24,2.) € S}, equivalently, B(x*,0) N Xu(xq) C XS (xq).
By choosing a sufficiently small § > 0 so that B(z},0) C int(X.1(zq)) C X.(zq), we have
B(Z’Z, (5) C Xcs(xd) N int(X071($d>). O

O

C.8 Proof of Theorem A.1

The proof is analogous to the proof of Theorem 1. The only difference is that, when we prove the
convergence of expectations, we show the convergence of the expectations conditional on Xy;,
and then take the expectations over X;. O

D Machine Learning Simulation: Details

Parameter Choice. For the variance-covariance matrix X of X;, we first create a 100 x 100
symmetric matrix V such that the diagonal elements are one, V;; is nonzero and equal to
Vj; for (i,7) € {2,3,4,5,6} x {35,66,78}, and everything else is zero. We draw values from
Unif(—0.5,0.5) independently for the nonzero off-diagonal elements of V. We then create matrix
3 =V x V, which is a positive semidefinite matrix.

For ag and ay, we first draw a&g;, j = 51, ..., 100, from Unif(—100, 100) independently across
J, and draw &y, j = 1,...,100, from Unif(—150,200) independently across j. We then set
Qoj = Gy for j =1, ..., 50, and calculate ag and oy by normalizing &g and &1 so that Var(X/ap) =
Var(X/ap) = 1.

Training of Prediction Model. We construct 7,,q using an independent sample {(ffz, X, D;, Zi)}?zl
of size n = 2,000. The distribution of (571, X, D;, Z) is the same as that of (Y;, X;, D;, Z;) except
(1) that Y;(1) is generated as Y;(1) = Y;(0) + 0.5X}a + 0.5¢1;, where e1; ~ N'(0,1) and (2) that
Z; ~ Bernoulli(0.5). This can be viewed as data from a past randomized experiment conducted
to construct the algorithm.

We then use random forests separately for the subsamples with Z; = 1 and Z; = 0 to predict
Y; from X;. Let pu.(x) be the trained prediction model. Set Tpqeq(z) = pi(z) — po(x). We
generate the sample {(f/“ X, Di, ZZ)}?:l and construct 7,,.q only once, and we use it for all of
the 1,000 simulation samples. The distribution of the sample {(Y;, X;, D;, Z;)}7_; is thus held
fixed for all simulations.

When training p,, we first randomly split the sample {(Y/Z,X“ D;, ZZ)}?:I into train (80%)
and test datasets (20%). We use random forests on the training sample to obtain the prediction
model p, and validate its performance on the test sample. The trained algorithm has an accuracy
of 97% on the test data.
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E Empirical Policy Application: Details

E.1 Hospital Cost Data

We use publicly available Healthcare Cost Report Information System (HCRIS) data,*? to
project®? funding eligibility and funding amounts for all hospitals in the dataset. This data
set contains information on various hospital characteristics including utilization, number of em-
ployees, medicare cost data and financial statement data.

The data is available from financial year 1996 to 2019. As the coverage is higher for 2018
(compared to 2019), we utilize the data corresponding to the 2018 financial year. Hospitals are
uniquely identified in a financial year by their CMS (Center for Medicaid and Medicare Services)
Certification Number. We have data for 4,705 providers for the 2018 financial year. We focus
on 4,648 acute care and critical access hospitals that are either located in one of the 50 states or
Washington DC.

Disproportionate patient percentage. Disproportionate patient percentage is equal to
the percentage of Medicare inpatient days attributable to patients eligible for both Medicare
Part A and Supplemental Security Income (SSI) summed with the percentage of total inpatient
days attributable to patients eligible for Medicaid but not Medicare Part A.** In the data, this
variable is missing for 1560 hospitals. We impute the disproportionate patient percentage to 0
when it is missing.

Uncompensated care per bed. Cost of uncompensated care refers to the care provided by
the hospital for which no compensation was received from the patient or the insurer. It is the sum
of a hospital’s bad debt and the financial assistance it provides.*> The cost of uncompensated
care is missing for 86 hospitals, which we impute to 0. We divide the cost of uncompensated
care by the number of beds in the hospital to obtain the cost per bed. The data on bed count
is missing for 15 hospitals, which we drop from the analysis, leaving us with 4,633 hospitals in
2,473 counties.

Profit Margin. Hospital profit margins are indicative of the financial health of the hospitals.
We calculate profit margins as the ratio of net income to total revenue where total revenue is
the sum of net patient revenue and total other income. After the calculation, profit margins are
missing for 92 hospitals, which we impute to 0.

Funding. We calculate the projected funding using the formula on the CARES ACT website.
Hospitals that do not qualify on any of the three dimensions are not given any funding. Each
eligible hospital is assigned an individual facility score, which is calculated as the product of dis-
proportionate patient percentage and number of beds in that hospital. We calculate cumulative
facility score as the sum of all individual facility scores in the dataset. Each hospital receives

42We use the RAND cleaned version of this dataset, which can be accessed https://www.hospitaldatasets.
org/
43We use the methodology detailed in the CARES ACT website to project funding based on 2018 financial year

cost reports.

“For the precise definition, see https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/
AcuteInpatientPPS/dsh.

45The precise definition can be found at https://www.aha.org/fact-sheets/2020-01-06-fact-sheet-

uncompensated-hospital-care-cost.
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a share of $10 billion, where the share is determined by the ratio of individual facility score of
that hospital to the cumulative facility score. The amount of funding received by hospitals is
bounded below at $5 million and capped above at $50 million.

E.2 Hospital Utilization Data

We use the publicly available COVID-19 Reported Patient Impact and Hospital Capacity by
Facility dataset for our outcome variables. This provides facility level data on hospital utilization
aggregated on a weekly basis, from July 31st onwards. These reports are derived from two
main sources — (1) HHS TeleTracking and (2) reporting provided directly to HHS Protect by
state/territorial health departments on behalf of health care facilities.*6

The hospitals are uniquely identified for a given collection week (which goes from Friday to
Thursday) by their CMS Certification number. All hospitals that are registered with CMS by
June 1st 2020 are included in the population. We merge the hospital cost report data with the
utilization data using the CMS certification number. According to the terms and conditions of
the CARES Health Care Act, the recipients may use the relief funds only to “prevent, prepare
for, and respond to coronavirus” and for “health care related expenses or lost revenues that
are attributable to coronavirus”. Therefore, for our analysis we focus on 4 outcomes that were
directly affected by COVID-19, for the week spanning July 31st to August 6th 2020. The outcome

measures are described below.4?

1. Total reports of patients currently hospitalized in an adult inpatient bed who have laboratory-
confirmed or suspected COVID-19, including those in observation beds reported during the
7-day period.

2. Total reports of patients currently hospitalized in an adult inpatient bed who have laboratory-
confirmed COVID-19 or influenza, including those in observation beds. Including patients
who have both laboratory-confirmed COVID-19 and laboratory confirmed influenza during
the 7-day period.

3. Total reports of patients currently hospitalized in a designated adult ICU bed who have
suspected or laboratory-confirmed COVID-19.

4. Total reports of patients currently hospitalized in a designated adult ICU bed who have

laboratory-confirmed COVID-19 or influenza, including patients who have both laboratory-

confirmed COVID-19 and laboratory-confirmed influenza.8

“Source:  https://healthdata.gov/Hospital/COVID-19-Reported-Patient- Impact-and-Hospital-Capa/
anag-cw7u.

4"We conduct sanity checks and impute observations to missing if they fail our checks. For example, we impute
the value # Confirmed/ Suspected COVID Patients and # Confirmed COVID Patients to missing when the
latter is greater than the former. # Confirmed/ Suspected COVID Patients should be greater than or equal to
# Confirmed COVID Patients as the former includes the latter. Similarly, we impute # Confirmed,/ Suspected
COVID Patients in ICU and # Confirmed COVID Patients in ICU to be missing when the latter is greater than
the former.

48In the dataset, when the values of the 7 day sum are reported to be less than 4, they are replaced with
-999,999. We recode these values to be missing. The results in Table 4 remain almost the same even if we impute
the suppressed values (coded as -999,999) with Os. Results are available upon request.
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E.3 Computing Fixed-Bandwidth Approximate Propensity Score

As the three determinants of funding eligibility are continuous variables, we can think of this
setting as a multi-dimensional regression discontinuity design and a suitable setting to apply our
method. In this setting, the X; are disproportionate patient percentage, uncompensated care
per bed and profit margin. Funding eligibility (Z;) is determined algorithmically using these 3
dimensions. D; is the amount of funding received by hospital ¢, which depends on both funding
eligibility status Z;, number of beds in the hospital, and disproportionate patient percentage.
Before calculating fixed-bandwidth APS, we normalize each characteristic of X; to have mean 0
and variance 1. For each hospital and every ¢ € {0.01,0.025,0.05,0.075,0.1,0.25,0.5}, we draw
10,000 times from a dé-ball around the normalized covariate space and calculate fixed-bandwidth
APS by averaging funding eligibility Z; over these draws.

E.4 Additional Empirical Results

Figure A.2: Fixed-bandwidth APS Estimation with Varying Simulations S

Approximate Propensity Score by # of Simulations (6 =0.5)
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Notes: The above figure plots the fixed-bandwidth APS estimates for 10 randomly selected hospitals along the eligibility
margin for varying numbers of simulations S. Each line represents a different hospital. The dotted line at 10* indicates the
number of simulations we use for our main analysis.
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Table A.1: Differential Attrition

Our Method with Approximate Propensity Score Controls
Ineligible No

Hospitals Controls § = 0= 6= 6= o= 6= 6=
0.01 0.025 0.05 0.075 0.1 0.25 0.5
(1) (2 (3) (4) (5) (6) (7) (8) 9)
#Confirmed /Suspected .745 38.19%** -15.51 -24.80 -44.34 -57.95 -40.34 2.05 -4.08
Covid Patients (8.55) (85.67) (70.81) (70.09) (63.06) (48.58) (22.20) (15.67)
N=3532 N=73 N=195 N=392 N=547 N=719 N=1389 N=1947
#Confirmed Covid Patients 754 33.97**%* (.85 -30.81 21.32 1.96 -0.39 -1.28 -8.25

(7.44)  (73.28) (55.22) (33.46) (29.41) (25.14) (15.75) (12.56)
N=3558 N=70 N=191 N=385 N=539 N=709 N=1366 N=1923

#Confirmed/Suspected 728 13.18%**  13.68 9.54 5.71 -0.83 2.34 -0.46 -4.21
Covid Patients in ICU (2.74)  (23.41) (17.74)  (11.91) (10.68) (9.01)  (5.78)  (4.64)
N=3445 N=T72 N=186 N=374 N=520 N=678 N=1314 N=1846
#Confirmed Covid Patients 744 12.16***  7.97 -1.54 2.79 0.65 1.87 -1.94 -4.66
in ICU (2.58)  (25.63) (18.89) (11.25) (9.97)  (852)  (5.57)  (4.43)

N=3503 N=67 N=181 N=370 N=514 N=671 N=1321 N=1868

Notes: This table reports differential safety net eligibility effects on the availability of outcome data at the hospital level.
Column 1 presents the average of the availability indicators of the outcome variables for the ineligible hospitals. In column
2, we regress the availability indicator on dummy for safety net eligibility without any controls. In columns 3-9, we run
this regression controlling for the Approximate Propensity Score with different values of bandwidth § on the sample with
nondegenerate Approximate Propensity Score. All Approximate Propensity Scores are computed by averaging 10,000
simulation draws. The outcome variables are the 7 day totals for the week spanning July 31st, 2020 to August 6th, 2020.
Confirmed or Suspected COVID patients refer to the sum of patients in inpatient beds with lab-confirmed /suspected
COVID-19. Confirmed COVID patients refer to the sum of patients in inpatient beds with lab-confirmed COVID-19,
including those with both lab-confirmed COVID-19 and influenza. Inpatient bed totals also include observation beds.
Similarly, Confirmed/Suspected COVID patients in ICU refer to the sum of patients in ICU beds with lab-confirmed or
suspected COVID-19. Confirmed COVID patients in ICU refers to the sum of patients in ICU beds with lab-confirmed
COVID-19, including those with both lab-confirmed COVID-19 and influenza. Robust standard errors are reported in

parenthesis.
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