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Abstract

Algorithms produce a growing portion of decisions and recommendations both in pol-
icy and business. Such algorithmic decisions are natural experiments (conditionally quasi-
randomly assigned instruments) since the algorithms make decisions based only on observable
input variables. We use this observation to develop a treatment-effect estimator for a class
of stochastic and deterministic decision-making algorithms. Our estimator is shown to be
consistent and asymptotically normal for well-defined causal effects. A key special case of
our estimator is a multidimensional regression discontinuity design. We apply our estimator
to evaluate the effect of the Coronavirus Aid, Relief, and Economic Security (CARES) Act,
where hundreds of billions of dollars worth of relief funding is allocated to hospitals via an
algorithmic rule. Our estimates suggest that the relief funding has little effect on COVID-
19-related hospital activity levels. Naive OLS and IV estimates exhibit substantial selection
bias.
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1 Introduction

Today’s society increasingly resorts to algorithms for decision-making and resource allocation.
For example, judges in the US make legal decisions aided by predictions from supervised ma-
chine learning algorithms. Supervised learning is also used by governments to detect potential
criminals and terrorists, and by banks and insurance companies to screen potential customers.
Tech companies like Facebook, Microsoft, and Netflix allocate digital content by reinforcement
learning and bandit algorithms. Retailers and e-commerce platforms engage in algorithmic pric-
ing. Similar algorithms are encroaching on high-stakes settings, such as in education, healthcare,
and the military.

Other types of algorithms also loom large. School districts, college admissions systems,
and labor markets use matching algorithms for position and seat allocations. Objects worth
astronomical sums of money change hands every day in algorithmically run auctions. Many
public policy domains like Medicaid often use algorithmic rules to decide who are eligible.

All of the above, diverse examples share a common trait: a decision-making algorithm makes
decisions based only on its observable input variables. Thus conditional on the observable vari-
ables, algorithmic treatment decisions are (quasi-)randomly assigned. That is, they are indepen-
dent of any potential outcome or unobserved heterogeneity. This property turns algorithm-based
treatment decisions into instrumental variables (IVs) that can be used for measuring the causal
effect of the final treatment assignment. The algorithm-based instrument may produce stratified
randomization, regression-discontinuity-style local variation, or some combination of the two.

This paper shows how to use data obtained from algorithmic decision-making to identify and
estimate causal effects. In our framework, the analyst observes a random sample {(Yi, Xi, Di, Zi)}ni=1,
where Yi is the outcome of interest, Xi ∈ Rp is a vector of pre-treatment covariates used as the al-
gorithm’s input variables, Di is the binary treatment assignment, possibly made by humans, and
Zi is the binary treatment recommendation made by a known algorithm. The algorithm takes Xi

as input and computes the probability of the treatment recommendation A(Xi) = Pr(Zi = 1|Xi).
Zi is then randomly determined based on the known probability A(Xi) independently of every-
thing else conditional on Xi. The algorithm’s recommendation Zi may influence the final treat-
ment assignment Di, determined as Di = ZiDi(1) + (1− Zi)Di(0), where Di(z) is the potential
treatment assignment that would be realized if Zi = z. Finally, the observed outcome Yi is
determined as Yi = DiYi(1) + (1−Di)Yi(0), where Yi(1) and Yi(0) are potential outcomes that
would be realized if the individual were treated and not treated, respectively. This setup is an
IV model where the IV satisfies the conditional independence condition but may not satisfy the
overlap (full-support) condition. To our knowledge, there is no standard estimator for this setup.

Within this framework, we first characterize the sources of causal-effect identification for
a class of data-generating algorithms. This class includes all of the aforementioned examples,
nesting both stochastic and deterministic algorithms. The sources of causal-effect identification
turn out to be summarized by a suitable modification of the Propensity Score (Rosenbaum and
Rubin, 1983). We call it the Approximate Propensity Score (APS). For each covariate value x,
the Approximate Propensity Score is the average probability of a treatment recommendation in
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a shrinking neighborhood around x, defined as

pA(x) ≡ lim
δ→0

∫
B(x,δ)A(x∗)dx∗∫

B(x,δ) dx
∗ ,

where B(x, δ) is a p-dimensional ball with radius δ centered at x. The Approximate Propensity
Score provides an easy-to-check condition for what causal effects the data from an algorithm
allow us to identify. In particular, we show that the conditional local average treatment effect
(LATE; Imbens and Angrist, 1994) at covariate value x is identified if and only if the Approximate
Propensity Score is nondegenerate, i.e., pA(x) ∈ (0, 1).

The identification analysis suggests a way of estimating treatment effects using the algorithm-
produced data. The treatment effects can be estimated by two-stage least squares (2SLS) where
we regress the outcome on the treatment with the algorithm’s recommendation as an IV. To
make the algorithmic recommendation a conditionally independent IV, we propose to control for
the Approximate Propensity Score. A more precise definition is as follows.

1. For small bandwidth δ > 0 and a large number of simulation draws S, compute

ps(Xi; δ) =
1

S

S∑
s=1

A(X∗i,s),

where X∗i,1, ..., X
∗
i,S are S independent simulation draws from the uniform distribution on

B(Xi, δ).1 This ps(Xi; δ) is a simulation-based approximation to the Approximate Propen-
sity Score pA(x).

2. Using the observations with ps(Xi; δ) ∈ (0, 1), run the following 2SLS IV regression:

Di = γ0 + γ1Zi + γ2p
s(Xi; δ) + νi (First Stage)

Yi = β0 + β1Di + β2p
s(Xi; δ) + εi (Second Stage).

Let β̂s1 be the estimated coefficient on Di.

As the main theoretical result, we prove the 2SLS estimator β̂s1 is a consistent and asymp-
totically normal estimator of a well-defined causal effect (weighted average of conditional lo-
cal average treatment effects). We also show that inference based on the conventional 2SLS
heteroskedasticity-robust standard errors is asymptotically valid as long as the bandwidth δ goes
to zero at an appropriate rate. There appears to be no existing estimator with these asymp-
totic properties even for the multidimensional RDD, a special case of our framework where the
decision-making algorithm is deterministic and uses multiple input (running) variables for as-
signing treatment recommendations. Moreover, our result applies to much more general settings
with stochastic algorithms, deterministic algorithms, and combinations of the two. We prove the

1To make common δ for all dimensions reasonable, we standardize each characteristic Xij (j = 1, ..., p) to have
mean zero and variance one, where p is the number of input characteristics. For the bandwidth δ, we suggest that
the analyst considers several different values and check if the 2SLS estimates are robust to bandwidth changes,
as we often do in regression discontinuity design (RDD) applications.
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asymptotic properties by exploiting results from differential geometry and geometric measure
theory, which may be of independent interest.

The practical performance of our estimator is demonstrated through simulation and an origi-
nal application. We first conduct a Monte Carlo simulation mimicking real-world decision-making
based on machine learning algorithms. We consider a data-generating process combining stochas-
tic and deterministic algorithms. Treatment recommendations are randomly assigned for a small
experimental segment of the population and are determined by a high-dimensional, deterministic
machine learning algorithm for the rest of the population. Our estimator is shown to be feasible
in this high-dimensional setting and have smaller mean squared errors relative to alternative
estimators.

Our empirical application is an analysis of COVID-19 hospital relief funding. The Coronavirus
Aid, Relief, and Economic Security (CARES) Act and Paycheck Protection Program designated
$175 billion for COVID-19 response efforts and reimbursement to health care entities for expenses
or lost revenues (Kakani, Chandra, Mullainathan and Obermeyer, 2020). This policy intended
to help hospitals hit hard by the pandemic, as “financially insecure hospitals may be less capable
of investing in COVID-19 response efforts” (Khullar, Bond and Schpero, 2020). We ask whether
this problem is alleviated by the relief funding to hospitals.

We identify the causal effects of the relief funding by exploiting the funding eligibility rule.
The government employs an algorithmic rule to decide which hospitals are eligible for funding.
This fact allows us to apply our method to estimate the effect of relief funding. Specifically, our
2SLS estimators use eligibility status as an instrumental variable for funding amounts, while con-
trolling for the Approximate Propensity Score induced by the eligibility-determining algorithm.

The resulting estimates suggest that COVID-19 relief funding has little to no effect on out-
comes, such as the number of COVID-19 patients hospitalized at each hospital. The estimated
causal effects of relief funding are much smaller and less significant than the naive ordinary least
squares (OLS) (with and without controls) or 2SLS estimates with no controls. Our finding pro-
vides causal evidence for the concern that funding in the CARES Act might not be well targeted
to the clinics and hospitals with the greatest needs.2

Related Literature

Theoretically, our framework integrates the classic propensity-score (selection-on-observables)
scenario with a multidimensional extension of the RDD. We analyze this integrated setup in
the IV world with noncompliance. This general setting appears to have no prior established
estimator. Armstrong and Kolesár (2020) provide an estimator for a related setting with perfect
compliance.3

2See, for example, Kakani et al. (2020) as well as Forbes’s article, “Hospital Giant HCA To Return $6 Billion in
CARES Act Money,” at https://www.forbes.com/sites/brucejapsen/2020/10/08/hospital-giant-hca-to-
return-6-billion-in-cares-act-money, retrieved September 2021.

3Building on their prior work (Armstrong and Kolesár, 2018), Armstrong and Kolesár (2020) consider esti-
mation and inference on average treatment effects under the assumption that the final treatment assignment is
independent of potential outcomes conditional on observables. Their estimator is not applicable to the IV world we
consider. Their method and our method also achieve different goals; their goal lies in finite-sample optimality and
asymptotically valid inference while our goal is to obtain consistency, asymptotic normality, and asymptotically
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When we adapt our estimator to the multidimensional RDD case, our estimator has three
features. First, it is a consistent and asymptotically normal estimator of a well-interpreted causal
effect (average of conditional treatment effects along the RDD boundary) even if treatment
effects are heterogeneous. Second, it uses observations near all the boundary points as opposed
to using only observations near one specific boundary point, thus avoiding variance explosion
even when Xi has many elements. Third, it can be easily implemented even in cases with many
covariates and complex algorithms (RDD boundaries). Our method circumvents the difficulty
of identifying the decision boundary from a complicated decision-making algorithm. No prior
estimator appears to have all of these properties (Papay, Willett and Murnane, 2011; Zajonc,
2012; Keele and Titiunik, 2015; Cattaneo, Titiunik, Vazquez-Bare and Keele, 2016; Imbens and
Wager, 2019). Appendix A.1 provides a detailed review of the most closely related papers on
the multidimensional RDD.

The Approximate Propensity Score developed in this paper shares its spirit with the local
random assignment interpretation of the RDD, discussed by Frölich (2007), Cattaneo, Frandsen
and Titiunik (2015), Cattaneo, Titiunik and Vazquez-Bare (2017), Frandsen (2017), Sekhon
and Titiunik (2017), Frölich and Huber (2019), Abdulkadiroğlu, Angrist, Narita and Pathak
(Forthcoming) and Eckles, Ignatiadis, Wager and Wu (2020). These papers consider settings
that fit into this paper’s framework.

Our estimator is applicable to a class of data-generating algorithms that includes stochastic
and deterministic algorithms used in practice. Our results thus nest existing insights on quasi-
experimental variation in particular algorithms, such as surge pricing (Cohen, Hahn, Hall, Levitt
and Metcalfe, 2016), bandit (Li, Chu, Langford and Schapire, 2010), reinforcement learning
(Precup, 2000), supervised learning (Cowgill, 2018; Bundorf, Polyakova and Tai-Seale, 2019), and
market-design algorithms (Abdulkadiroğlu, Angrist, Narita and Pathak, 2017; Abdulkadiroğlu
et al., Forthcoming; Abdulkadiroğlu, 2013; Kawai, Nakabayashi, Ortner and Chassang, 2020;
Narita, 2020, 2021). Our framework also reveals new sources of identification for algorithms
that, at first sight, do not appear to produce a natural experiment.4

Our empirical application uses the proposed method to study hospitals receiving CARES Act
relief funding. Our empirical finding contributes to emerging work on how health care providers
respond to financial shocks (Duggan, 2000; Adelino, Lewellen and Sundaram, 2015; Dranove,
Garthwaite and Ody, 2017; Adelino, Lewellen and McCartney, 2021). Our empirical setting

valid inference.
4A focal group of decision-making algorithms are machine learning algorithms, as illustrated in our machine-

learning simulation. While we are interested in machine learning as a data-production tool, the existing literature
(except the above mentioned strand) focuses on machine learning as a data-analysis tool. For example, a set of
predictive studies applies machine learning to make predictions important for social policy questions (Kleinberg,
Lakkaraju, Leskovec, Ludwig and Mullainathan, 2017; Einav, Finkelstein, Mullainathan and Obermeyer, 2018).
Another set of causal and structural work repurposes machine learning to aid with causal inference and structural
econometrics (Athey and Imbens, 2017; Belloni, Chernozhukov, Fernández-Val and Hansen, 2017; Bonhomme,
Lamadon and Manresa, 2019; Mullainathan and Spiess, 2017). We supplement these studies by highlighting the
role of machine learning as a data-production tool. This paper also has a conceptual connection to the heated
conversation about whether algorithmic decisions are better than human decisions. Here “better” is in terms of
fairness and efficiency (Hoffman, Kahn and Li, 2017; Horton, 2017; Kleinberg et al., 2017). In this study, we take
a complementary perspective in that we take a decision algorithm as given, no matter whether it is good or bad,
and study how to use its produced data for impact evaluation.
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is a healthcare crisis, complementing prior work on more normal situations. Our analysis also
exploits rule-based locally random assignment of cash flows to hospitals. This feature provides
our estimates with additional confidence in their causal interpretation.

2 Framework

Our framework is a mix of the conditional independence, multidimensional RDD, and instru-
mental variable scenarios. In the setup in the introduction, we are interested in the effect of
some binary treatment Di ∈ {0, 1} on some outcome of interest Yi ∈ R. As is standard in the
literature, we impose the exclusion restriction that the treatment recommendation Zi ∈ {0, 1}
does not affect the observed outcome other than through the treatment assignment Di. This
allows us to define the potential outcomes indexed against the treatment assignment Di alone.5

We consider algorithms that make treatment recommendations based solely on individual i’s
predetermined, observable covariates Xi = (Xi1, ..., Xip)

′ ∈ Rp. Let the function A : Rp → [0, 1]

represent the decision algorithm, where A(Xi) = Pr(Zi = 1|Xi) is the probability that the treat-
ment is recommended for individual i with covariates Xi. The central assumption is that the
analyst knows function A and is able to simulate it. That is, the analyst is able to compute the
recommendation probability A(x) given any input value x ∈ Rp. The treatment recommenda-
tion Zi for individual i is then randomly determined with probability A(Xi) independently of
everything else. Consequently, the following conditional independence property holds.

Property 1 (Conditional Independence). Zi⊥⊥(Yi(1), Yi(0), Di(1), Di(0))|Xi.

Note that the codomain of A contains 0 and 1, allowing for deterministic treatment assign-
ments conditional on Xi. Our framework therefore nests the RDD as a special case. Another
special case of our framework is the classic conditional independence scenario with the common
support condition (A(Xi) ∈ (0, 1) almost surely). In addition to these simple settings, this
framework nests many other situations, such as multidimensional RDDs and complex machine
learning and market-design algorithms, as illustrated in Section 7.

In typical machine-learning scenarios, an algorithm first applies machine learning on Xi to
make some prediction and then uses the prediction to output the recommendation probability
A(Xi), as in the following example.

Example. Automated disease detection algorithms use machine learning, in particular deep
learning, to detect various diseases and to identify patients at risk (Gulshan et al., 2016). Using
our framework described above, a detection algorithm predicts whether an individual i has a
certain disease (Zi = 1) or not (Zi = 0) based on a digital image Xi ∈ Rp of a part of the
individual’s body, where each Xij ∈ R denotes the intensity value of a pixel in the image. The
algorithm uses training data to construct a binary classifier A : Rp → {0, 1}. The classifier takes
an image of individual i as input and makes a binary prediction of whether the individual has

5Formally, let Yi(d, z) denote the potential outcome that would be realized if i’s treatment assignment and
recommendation were d and z, respectively. The exclusion restriction assumes that Yi(d, 1) = Yi(d, 0) for d ∈ {0, 1}
(Imbens and Angrist, 1994).
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the disease:
Zi ≡ A(Xi).

The algorithm’s diagnosis Zi may influence the doctor’s treatment decision for the individual,
denoted by Di ∈ {0, 1}. We are interested in how the treatment decision Di affects the individ-
ual’s outcome Yi.

Let Yzi be defined as Yzi ≡ Di(z)Yi(1) + (1 − Di(z))Yi(0) for z ∈ {0, 1}. Yzi is the poten-
tial outcome when the treatment recommendation is Zi = z. It follows from Property 1 that
Zi⊥⊥(Y1i, Y0i)|Xi.

We put a few assumptions on the covariates Xi and the algorithm A. To simplify the
exposition, the main text assumes that the distribution ofXi is absolutely continuous with respect
to the Lebesgue measure. Appendix A.3 extends the analysis to the case where some covariates in
Xi are discrete. Let X be the support ofXi, X0 = {x ∈ X : A(x) = 0}, X1 = {x ∈ X : A(x) = 1},
Lp be the Lebesgue measure on Rp, and int(S) denote the interior of a set S ⊂ Rp.

Assumption 1.

(a) (Almost Everywhere Continuity of A) A is continuous almost everywhere with respect to
the Lebesgue measure.

(b) (Measure Zero Boundaries of X0 and X1) Lp(Xk) = Lp(int(Xk)) for k = 0, 1.

Assumption 1 (a) allows the function A to be discontinuous on a set of points with the
Lebesgue measure zero. For example, A is allowed to be a discontinuous step function as long
as it is continuous almost everywhere. Assumption 1 (b) holds if the Lebesgue measures of the
boundaries of X0 and X1 are zero.

3 Identification

What causal effects can be learned from data (Yi, Xi, Di, Zi) generated by the algorithm A? A
key step toward answering this question is what we call the Approximate Propensity Score (APS).
To define it, we first define the fixed-bandwidth Approximate Propensity Score as follows:

pA(x; δ) ≡

∫
B(x,δ)A(x∗)dx∗∫

B(x,δ) dx
∗ ,

where B(x, δ) = {x∗ ∈ Rp : ‖x−x∗‖ < δ} is the (open) δ-ball around x ∈ X .6 Here, ‖ · ‖ denotes
the Euclidean norm on Rp. To make a common bandwidth δ for all dimensions reasonable, we

6Whether we use an open ball or closed ball does not affect pA(x; δ). We use a ball for simplicity. When
we instead use a rectangle, ellipsoid, or any standard kernel function to define pA(x; δ), the limit limδ→0 p

A(x; δ)

may be different at some points (e.g., at discontinuity points of A), but the same identification results hold under
suitable conditions.
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normalize Xij to have mean zero and variance one for each j = 1, ..., p.7 We assume that A is a
Lp-measurable function so that the integrals exist. We then define APS as follows:

pA(x) ≡ lim
δ→0

pA(x; δ).

APS at x is the average probability of a treatment recommendation in a shrinking ball around x.
We call this the Approximate Propensity Score, since this score modifies the standard propensity
score A(Xi) to incorporate local variation in the score. APS exists for most covariate points and
algorithms (see Appendix A.2).

Figure 1 illustrates APS. In the example, Xi is two dimensional, and the support of Xi is
divided into three sets depending on the value of A. For the interior points of each set, APS is
equal to A. On the border of any two sets, APS is the average of the A values in the two sets.
Thus, pA(x) = 1

2(0+0.5) = 0.25 for any x in the open line segment AB, pA(x) = 1
2(0.5+1) = 0.75

for any x in the open line segment BC, and pA(x) = 1
2(0 + 1) = 0.5 for any x in the open line

segment BD.
We say that a causal effect is identified if it is uniquely determined by the joint distribution

of (Yi, Xi, Di, Zi). Our identification analysis uses the following continuity condition.

Assumption 2 (Local Mean Continuity). For z ∈ {0, 1}, the conditional expectation functions
E[Yzi|Xi] and E[Di(z)|Xi] are continuous at any point x ∈ X such that pA(x) ∈ (0, 1) and
A(x) ∈ {0, 1}.

Assumption 2 is a multivariate extension of the local mean continuity condition that is
frequently assumed in the RDD.8 A(x) ∈ {0, 1} means that the treatment recommendation Zi
is deterministic conditional on Xi = x. If APS at the point x is nondegenerate (pA(x) ∈ (0, 1)),
however, there exists a point close to x that has a different value of A from x’s, which creates
variation in the treatment recommendation near x. For any such point x, Assumption 2 requires
that the points close to x have similar conditional means of the outcome Yzi and treatment
assignment Di(z).9 Note that Assumption 2 does not require continuity of the conditional
means at x for which A(x) ∈ (0, 1), since the identification of the conditional means at such
points follows from Property 1 without continuity.

Under the above assumptions, APS provides an easy-to-check condition for whether an algo-
rithm allows us to identify causal effects.

7This normalization is without loss of generality in the following sense. Take a vector X∗i of any continuous
random variables and A∗ : Rp → [0, 1]. The normalization induces the random vector Xi = T (X∗i − E[X∗i ]),
where T is a diagonal matrix with diagonal entries 1

Var(X∗i1)1/2
, ..., 1

Var(X∗ip)1/2
. Let A(x) = A∗(T−1x + E[X∗i ]).

Then (X∗i , A
∗) is equivalent to (Xi, A) in the sense that A(Xi) = A∗(X∗i ) for any individual i.

8In the RDD with a single running variable, the point x for which pA(x) ∈ (0, 1) and A(x) ∈ {0, 1} is the cutoff
point at which the treatment probability discontinuously changes.

9In the context of the RDD with a single running variable, one sufficient condition for continuity of E[Yzi|Xi] is
a local independence condition in the spirit of Hahn, Todd and van der Klaauw (2001): (Yi(1), Yi(0), Di(1), Di(0))

is independent of Xi near x. A weaker sufficient condition, which allows such dependence, is that E[Yi(d)|Di(1) =

d1, Di(0) = d0, Xi] and Pr(Di(1) = d1, Di(0) = d0|Xi) are continuous at x for every d ∈ {0, 1} and (d1, d0) ∈
{0, 1}2 (Dong, 2018). This assumes that the conditional means of the potential outcomes for each of the four
types determined based on the potential treatment assignment Di(z) and the conditional probabilities of those
types are continuous at the cutoff. These two sets of conditions are sufficient for continuity of E[Yzi|Xi] regardless
of the dimension of Xi, accommodating multidimensional RDDs.
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Proposition 1 (Identification). Under Assumptions 1 and 2:

(a) E[Y1i − Y0i|Xi = x] and E[Di(1)−Di(0)|Xi = x] are identified for every x ∈ int(X ) such
that pA(x) ∈ (0, 1).10

(b) Let S be any open subset of X such that pA(x) exists for all x ∈ S. Then either E[Y1i −
Y0i|Xi ∈ S] or E[Di(1) − Di(0)|Xi ∈ S] or both are identified only if pA(x) ∈ (0, 1) for
almost every x ∈ S (with respect to the Lebesgue measure).11

Proof. See Appendix C.1.

Proposition 1 characterizes a necessary and sufficient condition for identification. Part (a)
says that the average effects of the treatment recommendation Zi on the outcome Yi and on
the treatment assignment Di for the individuals with Xi = x are both identified if APS at x is
neither 0 nor 1. Non-degeneracy of APS at x implies that there are both types of individuals
who receive Zi = 1 and Zi = 0 among those whose Xi is close to x. Assumption 2 ensures that
these individuals are similar in terms of average potential outcomes and treatment assignments.
We can therefore identify the average effects conditional on Xi = x. In Figure 1, pA(x) ∈ (0, 1)

holds for any x in the shaded region (the union of the minor circular segment made by the chord
AC and the line segment BD).

Part (b) provides a necessary condition for identification. It says that if the average effect
of the treatment recommendation conditional on Xi being in some open set S is identified, then
we must have pA(x) ∈ (0, 1) for almost every x ∈ S. If, to the contrary, there is a subset of S
of nonzero measure for which pA(x) = 1 (or pA(x) = 0), then Zi has no variation in the subset,
which makes it impossible to identify the average effect for the subset.

Proposition 1 concerns causal effects of treatment recommendation, not of treatment assign-
ment. The proposition implies that the conditional average treatment effects and the conditional
local average treatment effects (LATEs) are identified under additional assumptions.

Corollary 1 (Perfect and Imperfect Compliance). Under Assumptions 1 and 2:

(a) The average treatment effect conditional on Xi = x, E[Yi(1) − Yi(0)|Xi = x], is identified
for every x ∈ int(X ) such that pA(x) ∈ (0, 1) and Pr(Di(1) > Di(0)|Xi = x) = 1 (perfect
compliance).

(b) The local average treatment effect conditional on Xi = x, E[Yi(1)−Yi(0)|Di(1) 6= Di(0), Xi =

x], is identified for every x ∈ int(X ) such that pA(x) ∈ (0, 1), Pr(Di(1) ≥ Di(0)|Xi = x) =

1 (monotonicity), and Pr(Di(1) 6= Di(0)|Xi = x) > 0 (existence of compliers).

Proof. See Appendix C.2.
10The causal effects may not be identified at a boundary point x of X for which pA(x) ∈ (0, 1). For example,

if A(x∗) = 1 for all x∗ ∈ B(x, δ) ∩ X and A(x∗) = 0 for all x∗ ∈ B(x, δ) \ X for any sufficiently small δ > 0,
pA(x) ∈ (0, 1) but the causal effects are not identified at x since Pr(Zi = 0|Xi ∈ B(x, δ)) = 0.

11We assume that pA is a Lp-measurable function so that {x ∈ S : pA(x) = 0} and {x ∈ S : pA(x) = 1} are
Lp-measurable.
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Non-degeneracy of APS pA(x) therefore summarizes what causal effects the data from A

identify. Note that the key condition (pA(x) ∈ (0, 1)) holds for some points x for every standard
algorithm except trivial algorithms that always recommend a treatment with probability 0 or 1.
Therefore, the data from almost every algorithm identify some causal effect.

4 Estimation

The sources of quasi-random assignment characterized in Proposition 1 suggest a way of estimat-
ing causal effects of the treatment. In view of Proposition 1, it is possible to nonparametrically
estimate conditional average causal effects E[Y1i − Y0i|Xi = x] and E[Di(1)−Di(0)|Xi = x] for
points x such that pA(x) ∈ (0, 1). This approach is hard to use in practice, however, when Xi

has many elements.
We instead seek an estimator that aggregates conditional effects at different points into a sin-

gle average causal effect.12 Proposition 1 suggests that conditioning on APS makes algorithm-
based treatment recommendation quasi-randomly assigned. This motivates the use of an al-
gorithm’s recommendation as an instrument conditional on APS, which we operationalize as
follows.

4.1 Two-Stage Least Squares Meets APS

Suppose that we observe a random sample {(Yi, Xi, Di, Zi)}ni=1 of size n from the population
whose data generating process is as described in the introduction and Section 2. Consider the
following 2SLS regression using the observations with pA(Xi; δn) ∈ (0, 1):

Di = γ0 + γ1Zi + γ2p
A(Xi; δn) + νi (1)

Yi = β0 + β1Di + β2p
A(Xi; δn) + εi, (2)

where bandwidth δn shrinks toward zero as the sample size n increases. Let Ii,n = 1{pA(Xi; δn) ∈
(0, 1)}, Di,n = (1, Di, p

A(Xi; δn))′, and Zi,n = (1, Zi, p
A(Xi; δn))′. The 2SLS estimator β̂ is then

given by

β̂ = (

n∑
i=1

Zi,nD
′
i,nIi,n)−1

n∑
i=1

Zi,nYiIi,n.

Let β̂1 denote the 2SLS estimator of β1 in the above regression.13

12If the analyst is interested in heterogeneity in terms of covariates, it is also possible to split the sample into
subgroups based on covariates and apply our method separately to different subgroups.

13For the standard RDD with a single running variable Xi ∈ R and cutoff c, pA(Xi; δn) = Xi−c
2δn

+ 1
2

if
Xi ∈ [c − δn, c + δn] and pA(Xi; δn) ∈ {0, 1} otherwise. In this special case, the estimator β̂1 from the 2SLS
regression (1) and (2) is numerically equivalent to a version of the RD local linear estimator (Hahn et al., 2001)
which uses a box kernel and places the same slope coefficient of Xi on both sides of the cutoff. It is possible
to allow for slope changes at the cutoff by viewing pA(Xi; δn) as a running variable with cutoff 1

2
and applying

standard RD local linear estimators (i.e., adding interaction terms Di(pA(Xi; δn)− 1
2
) and Zi(pA(Xi; δn)− 1

2
) to

(1) and (2), respectively). However, it is not straightforward to extend this approach to the multidimensional
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The above regression uses true fixed-bandwidth APS pA(Xi; δn), but it may be difficult to
analytically compute if A is complex. In such a case, we propose to approximate pA(Xi; δn)

using brute force simulation. We draw a value of x from the uniform distribution on B(Xi, δn)

a number of times, compute A(x) for each draw, and take the average of A(x) over the draws.14

Formally, let X∗i,1, ..., X
∗
i,Sn

be Sn independent draws from the uniform distribution on B(Xi, δn),
and calculate

ps(Xi; δn) =
1

Sn

Sn∑
s=1

A(X∗i,s).

We compute ps(Xi; δn) for each i = 1, ..., n independently across i so that ps(X1; δn), ..., ps(Xn; δn)

are independent of each other. For fixed n and Xi, the approximation error relative to true
pA(Xi; δn) has a 1/

√
Sn rate of convergence.15 This rate does not depend on the dimension of

Xi, so the simulation error can be made negligible even when Xi has many elements.
Now consider the following simulation version of the 2SLS regression using the observations

with ps(Xi; δn) ∈ (0, 1):

Di = γ0 + γ1Zi + γ2p
s(Xi; δn) + νi (3)

Yi = β0 + β1Di + β2p
s(Xi; δn) + εi. (4)

Let β̂s1 denote the 2SLS estimator of β1 in the simulation-based regression. This regression is the
same as the 2SLS regression (1) and (2) except that it uses the simulated fixed-bandwidth APS
ps(Xi; δn) in place of pA(Xi; δn).16

4.2 Consistency and Asymptotic Normality

We establish the consistency and asymptotic normality of the 2SLS estimators β̂1 and β̂s1. Our
consistency and asymptotic normality result uses the following assumptions.

Assumption 3.

(a) (Finite Moment) E[Y 4
i ] <∞.

(b) (Nonzero First Stage) There exists a constant c > 0 such that E[Di(1)−Di(0)|Xi = x] > c

for every x ∈ X such that pA(x) ∈ (0, 1).

RDD, since the value of pA(Xi; δn) no longer determines whether Zi = 1 or Zi = 0 unless the RD boundary is
linear, which may invalidate the use of pA(Xi; δn) as a single running variable. We leave to future research how
to allow for more flexible 2SLS specifications in the general multi-dimensional setting.

14See Appendix A.5 for how to efficiently sample from the uniform distribution on a p-dimensional ball.
15More precisely, we have |ps(Xi; δn) − pA(Xi; δn)| = Ops(1/

√
Sn), where Ops indicates the stochastic bound-

edness in terms of the probability distribution of the Sn simulation draws.
16In many industry and policy applications, the analyst is only able to change the algorithm’s recommendation

Zi by redesigning the algorithm. In this case, the effect of recommendation Zi on outcome Yi may also be of
interest. We can estimate the effect of recommendation by running the following ordinary least squares (OLS)
regression using the observations with ps(Xi; δ) ∈ (0, 1):

Yi = α0 + α1Zi + α2p
s(Xi; δ) + ui.

The estimated coefficient on Zi, α̂s1, is our preferred estimator of the recommendation effect.

10



(c) (Nonzero Conditional Variance) If Pr(A(Xi) ∈ (0, 1)) > 0, then Var(A(Xi)|A(Xi) ∈
(0, 1)) > 0.

If Pr(A(Xi) ∈ (0, 1)) = 0, then the following conditions (d)–(g) hold.

(d) (Nonzero Variance) Var(A(Xi)) > 0.

For a set S ⊂ Rp, let cl(S) denote the closure of S and let ∂S denote the boundary of S,
i.e., ∂S = cl(S) \ int(S).

(e) (C2 Boundary of Ω∗) There exists a partition {Ω∗1, ...,Ω∗M} of Ω∗ = {x ∈ Rp : A(x) = 1}
(the set of the covariate points whose A value is one) such that

(i) dist(Ω∗m,Ω
∗
m′) > 0 for any m,m′ ∈ {1, ...,M} such that m 6= m′. Here dist(S, T ) =

infx∈S,y∈T ‖x− y‖ is the distance between two sets S and T ⊂ Rp;

(ii) Ω∗m is nonempty, bounded, open, connected and twice continuously differentiable for
each m ∈ {1, ...,M}. Here we say that a bounded open set S ⊂ Rp is twice continuously
differentiable if for every x ∈ S, there exists a ball B(x, ε) and a one-to-one mapping
ψ from B(x, ε) onto an open set D ⊂ Rp such that ψ and ψ−1 are twice continuously
differentiable, ψ(B(x, ε) ∩ S) ⊂ {(x1, ..., xp) ∈ Rp : xp > 0} and ψ(B(x, ε) ∩ ∂S) ⊂
{(x1, ..., xp) ∈ Rp : xp = 0}.

Let fX denote the probability density function of Xi and let Hk denote the k-dimensional
Hausdorff measure on Rp.17

(f) (Regularity of Deterministic A)

(i) Hp−1(∂Ω∗) <∞, and
∫
∂Ω∗ fX(x)dHp−1(x) > 0.

(ii) There exists δ > 0 such that A(x) = 0 for almost every x ∈ N(X , δ) \ Ω∗, where
N(S, δ) = {x ∈ Rp : ‖x− y‖ < δ for some y ∈ S} for a set S ⊂ Rp and δ > 0.

(g) (Conditional Moments and Density near ∂Ω∗) There exists δ > 0 such that

(i) E[Y1i|Xi], E[Y0i|Xi], E[Di(1)|Xi], E[Di(0)|Xi] and fX are continuously differentiable
and have bounded partial derivatives on N(∂Ω∗, δ);

(ii) E[Y 2
1i|Xi], E[Y 2

0i|Xi], E[Y1iDi(1)|Xi] and E[Y0iDi(0)|Xi] are continuous on N(∂Ω∗, δ);

(iii) E[Y 4
i |Xi] is bounded on N(∂Ω∗, δ).

Assumption 3 is a set of conditions for establishing consistency. Assumption 3 (b) assumes
that, conditional on each value of Xi for which APS is nondegenerate, more individuals would
change their treatment assignment status from 0 to 1 in response to treatment recommendation

17The k-dimensional Hausdorff measure on Rp is defined as follows. Let Σ be the Lebesgue σ-algebra on Rp

(the set of all Lebesgue measurable sets on Rp). For S ∈ Σ and δ > 0, let Hkδ (S) = inf{
∑∞
j=1 d(Ej)

k : S ⊂
∪∞j=1Ej , d(Ej) < δ,Ej ⊂ Rp for all j}, where d(E) = sup{‖x − y‖ : x, y ∈ E}. The k-dimensional Hausdorff
measure of S on Rp is Hk(S) = limδ→0Hkδ (S).
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than would change it from 1 to 0.18 Under this assumption, the estimated first-stage coefficient on
Zi converges to a positive quantity. Note that, if there exists c < 0 such that E[Di(1)−Di(0)|Xi =

x] < c for every x ∈ X with pA(x) ∈ (0, 1), changing the labels of treatment recommendation
makes Assumption 3 (b) hold.

Assumption 3 (c) rules out potential multicollinearity. If the support of A(Xi) contains only
one value in (0, 1), pA(Xi; δn) is asymptotically constant and equal to A(Xi) conditional on
pA(Xi; δn) ∈ (0, 1), resulting in the multicollinearity between pA(Xi; δn) and the constant term.
Although dropping the constant term from the 2SLS regression solves this issue, Assumption 3
(c) allows us to only consider the regression with a constant for the purpose of simplifying the pre-
sentation. In Appendix C.3, we provide 2SLS estimators that are consistent and asymptotically
normal even if we do not know whether Assumption 3 (c) holds.

Assumption 3 (d)–(g) are a set of conditions we require for proving consistency and asymptotic
normality of β̂1 when A is deterministic and produces only multidimensional RD variation.
Assumption 3 (d) says that A produces variation in the treatment recommendation.

Assumption 3 (e) imposes the differentiability of the boundary of Ω∗ = {x ∈ Rp : A(x) =

1}. The conditions are satisfied if, for example, Ω∗ = {x ∈ Rp : f(x) ≥ 0} for some twice
continuously differentiable function f : Rp → R such that ∇f(x) = (∂f(x)

∂x1
, ..., ∂f(x)

∂xp
)′ 6= 0 for all

x ∈ Rp with f(x) = 0. Ω∗ takes this form, for example, when the conditional treatment effect
E[Yi(1)−Yi(0)|X] is predicted by supervised learning based on smooth models such as lasso and
ridge regressions, and treatment is recommended to individuals who are estimated to experience
nonnegative treatment effects.

In general, the differentiability of Ω∗ may not hold. For example, if tree-based algorithms
such as Classification And Regression Tree (CART) and random forests are used to predict the
conditional treatment effect, the predicted conditional treatment effect function is not differen-
tiable at some points. Although the resulting Ω∗ does not exactly satisfy Assumption 3 (e), the
assumptions approximately hold in that Ω∗ is arbitrarily well approximated by a set that satisfies
the differentiability condition.19

Part (i) of Assumption 3 (f) says that the boundary of Ω∗ is (p − 1) dimensional and that
the boundary has nonzero density.20 Part (ii) puts a weak restriction on the values A takes on
outside the support of Xi. It requires that A(x) = 0 for almost every x /∈ Ω∗ that is outside
X but is in the neighborhood of X . A(x) may take on any value if x is not close to X . These
conditions hold in practice. Assumption 3 (g) imposes continuity, continuous differentiability
and boundedness on the conditional moments of potential outcomes and the probability density

18At the cost of making the presentation more complex, the assumption can be relaxed so that the sign of
E[Di(1)−Di(0)|Xi = x] is allowed to vary over x with pA(x) ∈ (0, 1).

19For example, suppose that p = 2, A(x) = 1 if x1 > 0 and x2 > 0, and A(x) = 0 otherwise. In this case,
Ω∗ = {x ∈ R2 : x1 > 0, x2 > 0}. Let {Ωk}∞k=1 be a sequence of subsets of R2, where Ωk = {x ∈ R2 : x2 ≥

1
kx1

, x1 > 0} for each k. Ωk is twice continuously differentiable for all k, and well approximates Ω∗ for a large k
in that dH(Ω∗,Ωk) → 0 as k → ∞, where dH(S, T ) = max{supx∈S infy∈T ‖x − y‖, supy∈T infx∈S ‖x − y‖} is the
Hausdorff distance between two sets S and T ⊂ Rp.

20The boundary of Ω∗ may fail to be (p − 1) dimensional in trivial cases where the Lebesgue measure of Ω∗

is zero and hence A(Xi) = 0 with probability one. For example, when the covariate space is three dimensional
(p = 3) and Ω∗ is a straight line, not a set with nonzero volume nor even a plane, the boundary of Ω∗ is the same
as Ω∗, and its two-dimensional Hausdorff measure is zero.
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near the boundary of Ω∗.
When A is stochastic, asymptotic normality requires additional assumptions. Let

C∗ = {x ∈ Rp : A is continuously differentiable at x},

and let D∗ = Rp \ C∗ be the set of points at which A is not continuously differentiable.

Assumption 4. If Pr(A(Xi) ∈ (0, 1)) > 0, then the following conditions (a)–(c) hold.

(a) (Probability of Neighborhood of D∗) Pr(Xi ∈ N(D∗, δ)) = O(δ).

(b) (Bounded Partial Derivatives of A) The partial derivatives of A are bounded on C∗.

(c) (Bounded Conditional Mean) E[Yi|Xi] is bounded on X .

Assumption 4 is required for proving asymptotic normality of β̂1 when A is stochastic. To
explain the role of Assumption 4 (a), consider a path of covariate points xδ ∈ N(D∗, δ) ∩
C∗ indexed by δ > 0. Since A is continuous at xδ, pA(xδ) = A(xδ) (as formally implied by
Proposition A.2 in Appendix A.2). However, pA(xδ; δ) does not necessarily get sufficiently close
to A(xδ) even as δ → 0, since xδ is in the δ-neighborhood of D∗ and hence A may discontinuously
change within the δ-ball B(xδ, δ). Assumption 4 (a) requires that the probability of Xi being
in the δ-neighborhood of D∗ shrink to zero at the rate of δ, which makes the points in the
neighborhood negligible.

Assumption 4 (a) often holds in practice. If A is continuously differentiable on X , then
D∗∩X = ∅, so this condition holds. If, for example, the treatment recommendation is randomly
assigned based on a stratified randomized experiment or on the ε-Greedy algorithm (see Example
A.1 (a) in Appendix A.6), D∗ is the boundary at which the recommendation probability changes
discontinuously. For any boundary of standard shape, the probability of Xi being in the δ-
neighborhood of the boundary vanishes at the rate of δ, and the required condition is satisfied.
We provide a sufficient condition for this condition in Appendix A.4. Assumption 4 (b) and (c)
are regularity conditions, imposing the boundedness of the partial derivatives of A and of the
conditional mean of the outcome.

The following assumption is the key to proving asymptotic normality of the simulation-based
estimator β̂s1.

Assumption 5 (The Number of Simulation Draws). n−1/2Sn → ∞, and Pr(pA(Xi; δn) ∈
(0, γ logn

Sn
) ∪ (1− γ logn

Sn
, 1)) = o(n−1/2δ

1/2
n ) for some γ > 1

2 .

Assumption 5 says that we need to choose the number of simulation draws Sn so that it
grows to infinity faster than n1/2, and that the probability that pA(Xi; δn) lies on the tails
(0, γ logn

Sn
) ∪ (1− γ logn

Sn
, 1) vanishes faster than n−1/2δ

1/2
n . This condition makes the bias caused

by using ps(Xi; δn) instead of pA(Xi; δn) asymptotically negligible. To illustrate how the second
part of this assumption restricts the rate at which Sn goes to infinity, consider an example where
Pr(pA(Xi; δn) ∈ (0, 1)) = O(δn), and pA(Xi; δn) is approximately uniformly distributed on the
tails (0, γ logn

Sn
) ∪ (1 − γ logn

Sn
, 1). In this case, Pr(pA(Xi; δn) ∈ (0, γ logn

Sn
) ∪ (1 − γ logn

Sn
, 1)) =

O(δn
logn
Sn

), and the second part of Assumption 5 requires that Sn grow sufficiently fast so that
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n1/2δ
1/2
n logn
Sn

= o(1). One choice of Sn satisfying this is Sn = αnκδ
1/2
n for some α > 0 and κ > 1

2 ,

in which case n1/2δ
1/2
n logn
Sn

= logn
αnκ−1/2 = o(1).

Under the above conditions, the 2SLS estimators β̂1 and β̂s1 are consistent and asymptotically
normal estimators of a weighted average treatment effect.

Theorem 1 (Consistency and Asymptotic Normality). Suppose that Assumptions 1 and 3 hold,
and that δn → 0, nδn → ∞ and Sn → ∞ as n → ∞. Then the 2SLS estimators β̂1 and β̂s1
converge in probability to

β1 ≡ lim
δ→0

E[ωi(δ)(Yi(1)− Yi(0))],

where

ωi(δ) =
pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))

E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))]
.

Suppose, in addition, that Assumptions 4 and 5 hold and that nδ2
n → 0 as n→∞. Then

σ̂−1
n (β̂1 − β1)

d−→ N (0, 1),

(σ̂sn)−1(β̂s1 − β1)
d−→ N (0, 1),

where we define σ̂−1
n and (σ̂sn)−1 as follows. Let

Σ̂n = (

n∑
i=1

Zi,nD
′
i,nIi,n)−1(

n∑
i=1

ε̂2i,nZi,nZ
′
i,nIi,n)(

n∑
i=1

Di,nZ
′
i,nIi,n)−1,

where
ε̂i,n = Yi −D′i,nβ̂.

Σ̂n is the conventional heteroskedasticity-robust estimator for the variance of the 2SLS estimator.
σ̂2
n is the second diagonal element of Σ̂n. (σ̂sn)2 is the analogously-defined estimator for the

variance of β̂s1 from the simulation-based regression.

Proof. See Appendix C.3.

Theorem 1 says that the 2SLS estimators converge to the limit of a weighted average of causal
effects for the subpopulation whose fixed-bandwidth APS is nondegenerate (pA(Xi; δ) ∈ (0, 1))
and who would switch their treatment status in response to the treatment recommendation
(Di(1) 6= Di(0)).21 The limit limδ→0E[ωi(δ)(Yi(1)−Yi(0))] always exists under the assumptions
of Theorem 1. It also shows that inference based on the conventional 2SLS heteroskedasticity-
robust standard errors is asymptotically valid if δn goes to zero at an appropriate rate. The
convergence rate of β̂1 is Op(1/

√
n) if Pr(A(Xi) ∈ (0, 1)) > 0 and is Op(1/

√
nδn) if Pr(A(Xi) ∈

(0, 1)) = 0.
Our consistency result requires that δn go to zero slower than n−1. The rate condition

ensures that, when Pr(A(Xi) ∈ (0, 1)) = 0, we have sufficiently many observations in the δn-
neighborhood of the boundary of Ω∗. Importantly, the rate condition does not depend on the

21In principle, it is possible to estimate other weighted averages and the unweighted average by reweighting
different observations appropriately. For example, we can estimate the unweighted average treatment effect by
weighting observations by the inverse of fixed-bandwidth APS.
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dimension of Xi, unlike other bandwidth-based estimation methods such as kernel methods. This
is because we use all the observations in the δ-neighborhood of the boundary, and the number
of those observations is of order nδn regardless of the dimension of Xi if the dimension of the
boundary is one less than the dimension of Xi, i.e., (p− 1).

The asymptotic normality result requires that δn go to zero sufficiently quickly so that
nδ2

n → 0. When Pr(A(Xi) ∈ (0, 1)) > 0, we need to use a small enough δn so that pA(Xi; δn)

converges to pA(Xi) fast enough and δn-neighborhood of D∗ is asymptotically small enough.
When Pr(A(Xi) ∈ (0, 1)) = 0, the asymptotic normality is based on undersmoothing, which
eliminates the asymptotic bias by using the observations sufficiently close to the boundary of
Ω∗. In both cases, the bias of our estimator is O(δn). The standard deviation is O(1/

√
n) when

Pr(A(Xi) ∈ (0, 1)) > 0 and is O(1/
√
nδn) when Pr(A(Xi) ∈ (0, 1)) = 0. The condition that

nδ2
n → 0 ensures that the bias converges to zero faster than the standard deviation in either

case.22

Whether or not Pr(A(Xi) ∈ (0, 1)) = 0, when we use simulated fixed-bandwidth APS, the
consistency result requires that the number of simulation draws Sn go to infinity as n increases.
The asymptotic normality result requires a sufficiently fast growth rate of Sn given by Assumption
5 to make the bias caused by using ps(Xi; δn) negligible.23

Finally, note that the weight ωi(δ) given in Theorem 1 is negative if Di(1) < Di(0), so
E[ωi(δ)(Yi(1) − Yi(0))] may not be a causally interpretable convex combination of treatment
effects Yi(1) − Yi(0). This can happen because the treatment effect of those whose treatment
assignment switches from 1 to 0 in response to the treatment recommendation (defiers) negatively
contributes to E[ωi(δ)(Yi(1) − Yi(0))]. Additional assumptions prevent this problem. If the
treatment effect is constant, for example, the 2SLS estimators are consistent for the treatment
effect.

Corollary 2. Suppose that Assumptions 1 and 3 hold, that the treatment effect is constant, i.e.,
Yi(1) − Yi(0) = b for some constant b, and that δn → 0, nδn → ∞, and Sn → ∞ as n → ∞.
Then the 2SLS estimators β̂1 and β̂s1 converge in probability to b.

Another approach is to impose monotonicity (Imbens and Angrist, 1994). Let LATE(x) =

E[Yi(1)−Yi(0)|Di(1) 6= Di(0), Xi = x] be the local average treatment effect (LATE) conditional
on Xi = x.

Corollary 3. Suppose that Assumptions 1 and 3 hold, that Pr(Di(1) ≥ Di(0)|Xi = x) = 1 for
any x ∈ X with pA(x) ∈ (0, 1) (monotonicity), and that δn → 0, nδn → ∞ and Sn → ∞ as
n→∞. Then the 2SLS estimators β̂1 and β̂s1 converge in probability to

lim
δ→0

E[ω(Xi; δ)LATE(Xi)],

22In the special case of the univariate RDD, standard RD local linear estimators are shown to have the same
convergence rate under our assumptions (the smoothness of regression functions, in particular).

23To sum up, the asymptotic normality result for the simulation-based estimator β̂s1 requires the sequence
(δn, Sn) to satisfy nδn → ∞, nδ2

n → 0, and Assumption 5. In the preceding example where Pr(pA(Xi; δn) ∈
(0, 1)) = O(δn) and pA(Xi; δn) is approximately uniformly distributed on the tails (0, γ logn

Sn
)∪ (1− γ logn

Sn
, 1), one

appropriate choice of (δn, Sn) that satisfies all conditions is δn = α1n
−κ1 and Sn = α2n

κ2 for some α1, α2 > 0,
κ1 ∈ ( 1

2
, 1) and κ2 >

1
2
.

15



where

ω(x; δ) =
pA(x; δ)(1− pA(x; δ))E[Di(1)−Di(0)|Xi = x]

E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))]
.

The 2SLS estimators are consistent for the limit of a weighted average of conditional LATEs
over all values of Xi with nondegenerate fixed-bandwidth APS pA(Xi; δn). The weights are pro-
portional to pA(Xi; δn)(1−pA(Xi; δn)), and to the proportion of compliers, E[Di(1)−Di(0)|Xi].

4.3 Intuition and Challenges

The result in Theorem 1 holds whether A is stochastic (Pr(A(Xi) ∈ (0, 1)) > 0) or deterministic
(Pr(A(Xi) ∈ (0, 1)) = 0). If we consider these two underlying cases separately, the probability
limit of the 2SLS estimators has a more specific expression. If Pr(A(Xi) ∈ (0, 1)) > 0,

plim β̂1 = plim β̂s1 =
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)− Yi(0))]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]
. (5)

The 2SLS estimators converge to a weighted average of treatment effects for the subpopulation
with nondegenerate A(Xi), as shown in the proof of Theorem 1 in Appendix C.3.

To relate this result to existing work, consider the following 2SLS regression with the (stan-
dard) propensity score A(Xi) control:

Di = γ0 + γ1Zi + γ2A(Xi) + νi (6)

Yi = β0 + β1Di + β2A(Xi) + εi. (7)

Under conditional independence, the 2SLS estimator from this regression converges in probability
to the treatment-variance weighted average of treatment effects in (5) (Angrist and Pischke, 2008;
Hull, 2018).24 Not surprisingly, for this selection-on-observables case, our result shows that the
2SLS estimator is consistent for the same treatment effect whether we control for the propensity
score, fixed-bandwidth APS, or simulated fixed-bandwidth APS.

Importantly, using fixed-bandwidth APS as a control allows us to consistently estimate a
causal effect even if A is deterministic and produces multidimensional regression-discontinuity
variation. If Pr(A(Xi) ∈ (0, 1)) = 0,

plim β̂1 = plim β̂s1 =

∫
∂Ω∗ E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]fX(x)dHp−1(x)∫

∂Ω∗ E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)
. (9)

The 2SLS estimators converge to a weighted average of treatment effects for the subpopulation
who are on the boundary of the treated region.

24Precisely speaking, Angrist and Pischke (2008) consider the OLS regression of Yi (or Di) on Zi controlling a
dummy variable for every value taken on by Xi (i.e., the model is saturated in Xi) when Xi is a discrete variable:

Yi = α1Zi +
∑
x∈X

α2,x1{Xi = x}+ ui. (8)

By the Frisch-Waugh Theorem, the population coefficient on Zi from (8) is given by α1 = E[(Zi−E[Zi|Xi])Yi]

E[(Zi−E[Zi|Xi])2]
.

Angrist and Pischke (2008) show that this expression is reduced to the treatment-variance weighted average
of treatment effects E[A(Xi)(1−A(Xi))(Y1i−Y0i)]

E[A(Xi)(1−A(Xi))
under the conditional independence assumption. Their derivation

follows even when Xi is continuous and we control the propensity score linearly.
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Proving this result requires a technique that may be useful for other problems. Recall that
the 2SLS regression uses the observations with pA(Xi; δn) ∈ (0, 1) (or ps(Xi; δn) ∈ (0, 1) when
we use simulated fixed-bandwidth APS) only. By definition, if pA(Xi; δ) ∈ (0, 1), Xi must be
in the δ-neighborhood of the boundary of Ω∗. Therefore, to derive the probability limit of β̂1,
it is necessary to derive the limits of the integrals of relevant variables over the δ-neighborhood
(e.g.,

∫
N(∂Ω∗,δ)E[Yi|Xi = x]fX(x)dx) as δ shrinks to zero. We take an approach drawing on

change of variables techniques from differential geometry and geometric measure theory.25 In
this approach, we first use the coarea formula (Lemma B.3 in Appendix B.3) to write the integral
of an integrable function g over N(∂Ω∗, δ) in terms of the iterated integral over the levels sets of
the signed distance function of Ω∗:∫

N(∂Ω∗,δ)
g(x)dx =

∫ δ

−δ

∫
{x′∈Rp:ds

Ω∗ (x′)=λ}
g(x)dHp−1(x)dλ, (10)

where dsΩ∗ is the signed distance function of Ω∗ (see Appendix B.2 for the definition). The set
{x′ ∈ Rp : dsΩ∗(x

′) = λ} is a level set of dsΩ∗ , which collects the points in Ω∗ when λ > 0 and
the points in Rp \Ω∗ when λ < 0 whose distance to the boundary ∂Ω∗ is |λ|. Figure 2a shows a
visual illustration of the level set.

We then use the area formula (Lemma B.4 in Appendix B.3) to write the integral over each
level set in terms of the integral over the boundary ∂Ω∗:∫

{x′∈Rp:ds
Ω∗ (x′)=λ}

g(x)dHp−1(x) =

∫
∂Ω∗

g(x∗ + λνΩ∗(x
∗))J∂Ω∗

p−1ψΩ∗(x
∗, λ)dHp−1(x∗), (11)

where νΩ∗(x
∗) is the inward unit normal vector of ∂Ω∗ at x∗ (the unit vector orthogonal to all

vectors in the tangent space of ∂Ω∗ at x∗ that points toward the inside of Ω∗), and J∂Ω∗
p−1ψΩ∗(x

∗, λ)

is the Jacobian of the transformation ψΩ∗(x
∗, λ) = x∗+λνΩ∗(x

∗). Figure 2b illustrates this change
of variables formula. Finally, combining (10) and (11) and proceeding with further analysis, we
prove in Appendix C.3.3 that when g is continuous,∫

N(∂Ω∗,δ)
g(x)dx = δ

(∫
∂Ω∗

g(x)dHp−1(x) + o(1)

)
.

Thus, the integral over the δ-neighborhood of ∂Ω∗ scaled up by δ−1 converges to the integral
over boundary points with respect to the (p− 1)-dimensional Hausdorff measure. This result is
used to derive the expression of the probability limit of β̂1 given by (9).

25Our approach using geometric theory shows that β̂1 converges to an integral of the conditional treatment
effect over boundary points with respect to the Hausdorff measure. In constrast, prior studies on multidimensional
RDDs express treatment effect estimands in terms of expectations conditional on Xi being in the boundary like
E[Y1i − Y0i|Xi ∈ ∂Ω∗] (Zajonc, 2012). However, those conditional expectations are, formally, not well-defined,
since Lp(∂Ω∗) = 0 and hence Pr(Xi ∈ ∂Ω∗) = 0. We therefore prefer our expression in terms of an integral with
respect to the Hausdorff measure to any expressions in terms of conditional expectations on the boundary. Arias,
Rubio-Ramírez and Waggoner (2018), Bornn, Shephard and Solgi (2019), and Qiao (2021) use similar tools from
differential geometry and geometric measure theory, but for different purposes.
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5 Machine Learning Simulation

This section assesses the feasibility and performance of our method, by conducting a Monte Carlo
experiment motivated by high-dimensional decision making by machine learning. Consider a
tech company that applies a machine-learning-based deterministic decision algorithm to a large
segment of the population. At the same time, the company conducts a randomized controlled
trial (RCT) using the rest of the population. They are interested in estimating treatment effects
using data from both segments. Our approach offers a way of exploiting not only the RCT
segment but also the deterministic algorithm segment.

We simulate 1, 000 hypothetical samples from the following data-generating process. Each
sample {(Yi, Xi, Di, Zi)}ni=1 is of size n = 10, 000. There are 100 covariates (p = 100), and Xi ∼
N (0,Σ). Yi(0) is generated as Yi(0) = 0.75X ′iα0 + 0.25ε0i, where α0 ∈ R100, and ε0i ∼ N (0, 1).
We consider two models for Yi(1), one in which the treatment effect Yi(1)−Yi(0) does not depend
on Xi and one in which the treatment effect depends on Xi.

Model A. Yi(1) = Yi(0) + ε1i, where ε1i ∼ N (0, 1).

Model B. Yi(1) = Yi(0) +X ′iα1, where α1 ∈ R100.

The choice of parameters Σ, α0 and α1 is explained in Appendix D.Di(0) andDi(1) are generated
as Di(0) = 0 and Di(1) = 1{Yi(1)− Yi(0) > ui}, where ui ∼ N (0, 1).

To generate Zi, let q0.495 and q0.505 be the 49.5th and 50.5th (empirical) quantiles of the first
covariate Xi1. Let τpred(Xi) be a real-valued function of Xi, which we regard as a prediction
of the effect of recommendation on the outcome for individual i obtained from past data. We
construct τpred by random forests using an independent sample (see Appendix D for the details).
Zi is then generated as

Zi =


Z∗i ∼ Bernoulli(0.5) if Xi1 ∈ [q0.495, q0.505]

1 if Xi1 /∈ [q0.495, q0.505] and τpred(Xi) ≥ 0

0 if Xi1 /∈ [q0.495, q0.505] and τpred(Xi) < 0.

The first case corresponds to the RCT segment while the latter two cases to the deterministic
algorithm segment. The function A is given by

A(x) =


0.5 if x1 ∈ [q0.495, q0.505]

1 if x1 /∈ [q0.495, q0.505] and τpred(x) ≥ 0

0 if x1 /∈ [q0.495, q0.505] and τpred(x) < 0.

Finally, Di and Yi are generated asDi = ZiDi(1)+(1−Zi)Di(0) and Yi = DiYi(1)+(1−Di)Yi(0),
respectively.

Estimators and Estimands. We use the data {(Yi, Xi, Di, Zi)}ni=1 to estimate treatment
effect parameters. Our main approach is 2SLS with fixed-bandwidth APS controls in Theorem
1. To compute fixed-bandwidth APS, we use S = 400 simulation draws for each observation.

We compare our approach with two naive alternatives. The first alternative is OLS of Yi on
a constant and Di (i.e., the difference in the sample mean of Yi between the treated group and
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untreated group) using all observations. The second alternative is 2SLS with A(Xi) controls.
This method uses the observations with A(Xi) ∈ (0, 1) to run the 2SLS regression of Yi on a
constant, Di, and A(Xi) using Zi as an instrument for Di (see (6) and (7) in Section 4.3) and
reports the coefficient on Di.

We consider four parameters as target estimands: ATE ≡ E[Yi(1) − Yi(0)], ATE(RCT) ≡
E[Yi(1)−Yi(0)|Xi1 ∈ [q0.495, q0.505]], LATE ≡ E[Yi(1)−Yi(0)|Di(1) 6= Di(0)], and LATE(RCT) ≡
E[Yi(1)− Yi(0)|Di(1) 6= Di(0), Xi1 ∈ [q0.495, q0.505]]. In the case where the treatment effect does
not depend on Xi (Model A), ATE and LATE are the same as ATE(RCT) and LATE(RCT),
respectively. In the case where the treatment effect depends on Xi (Model B), ATE and LATE
differ from ATE(RCT) and LATE(RCT), respectively. However, since the RCT segment is a
randomly selected subpopulation, the average effect for the RCT segment is close to the uncon-
ditional average effect. As a result, ATE is similar to ATE(RCT) and LATE is to LATE(RCT).

For both models, the 2SLS estimator converges in probability to LATE(RCT) (equivalently,
the right-hand side of equation (5)) whether we control for fixed-bandwidth APS or A(Xi).
However, 2SLS with A(Xi) controls uses only the individuals for the RCT segment while 2SLS
with fixed-bandwidth APS controls additionally uses the individuals near the decision boundary
of the deterministic algorithm (i.e., the boundary of the region for which τpred(x) ≥ 0). Therefore,
2SLS with fixed-bandwidth APS controls is expected to produce a more precise estimate than
2SLS with A(Xi) controls if the conditional effects for those near the boundary are not far from
the target estimand.

Results. Table 1 reports the bias, standard deviation (SD), and root mean squared error
(RMSE) of each estimator. Panels A and B present the results for the cases where the conditional
effects are homogeneous and heterogeneous, respectively. Note first that OLS with no controls is
significantly biased, showing the importance of correcting for omitted variable bias. 2SLS with
fixed-bandwidth APS achieves this goal, as demonstrated by its smaller biases across all possible
treatment effect models, target parameters, and values of the bandwidth δ. 2SLS with fixed-
bandwidth APS controls shows a consistent pattern; as the bandwidth δ grows, the bias increases
while the variance declines. For several values of δ, 2SLS with fixed-bandwidth APS controls
outperforms 2SLS with A(Xi) controls in terms of the RMSE. This finding implies that exploiting
individuals near the multidimensional decision boundary of the deterministic algorithm can lead
to better performance than using only the individuals in the RCT segment.

We also evaluate our inference procedure based on Theorem 1. Table 1 reports the coverage
probabilities of the 95% confidence intervals for LATE(RCT) constructed from the 2SLS esti-
mates and their heteroskedasticity-robust standard errors. The confidence intervals offer nearly
correct coverage when δ is small, which supports the implication of Theorem 1 that the inference
procedure is valid when we use a sufficiently small δ. Overall, Table 1 shows that our estimator
works well in this high-dimensional setting and performs better than alternative estimators.
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6 Empirical Policy Application

6.1 Hospital Relief Funding during the COVID-19 Pandemic

Here we provide our real-world empirical application. As part of the 3-phase Coronavirus Aid,
Relief, and Economic Security (CARES) Act, the US government has distributed tens of billions
of dollars of relief funding to hospitals since April 2020. This funding intended to help health
care providers hit hardest by the COVID-19 outbreak and at a high risk of closing. The bill spec-
ified that providers may (but are not required to) use the funds for COVID-19-related expenses,
such as construction of temporary structures, leasing of properties, purchasing medical supplies
and equipment (including personal protective equipment and testing supplies), increased work-
force utilization and training, establishing emergency operation centers, retrofitting facilities and
managing the surge in capacity, among others.

We are interested in whether this funding had a causal impact on hospital operation and
activities in dealing with COVID-19 patients. We focus on an initial portion of this funding
($10 billion), which was allocated to hospitals that qualified as “safety net hospitals” according
to a specific eligibility criterion. This eligibility criterion intends to direct funding towards hos-
pitals that “disproportionately provide care to the most vulnerable, and operate on thin margins.”
Specifically, an acute care hospital was deemed eligible for funding if the following conditions
hold:

• Medicare Disproportionate Patient Percentage (DPP) of 20.2% or greater. DPP is equal
to the sum of the percentage of Medicare inpatient days attributable to patients eligible
for both Medicare Part A and Supplemental Security Income (SSI), and the percentage of
total inpatient days attributable to patients eligible for Medicaid but not Medicare Part
A.26

• Annual Uncompensated Care (UCC) of at least $25, 000 per bed. UCC is a measure of
hospital care provided for which no payment was received from the patient or insurer. It
is the sum of a hospital’s bad debt and the financial assistance it provides.27

• Profit Margin (Net income/(Net patient revenue + Total other income)) of 3.0% or less.

Hospitals that do not qualify on any of the three dimensions are funding ineligible. Figure 3
visualizes how the three dimensions determine funding eligibility. As the bottom two-dimensional
planes show, eligibility discontinuously changes as hospitals cross the eligibility boundary in the
space of the three characteristics. This setting is a three-dimensional RDD, falling under our
framework.

The final funding amount is calculated as follows. Each eligible hospital is assigned an
individual facility score, which is calculated as the product of DPP and the number of beds in
that hospital. This facility score determines the share of funding allocated to the hospital, out
of the total $10 billion. The share received by each hospital is determined by the ratio of the

26Source: https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/dsh
27Source: https://www.aha.org/fact-sheets/2020-01-06-fact-sheet-uncompensated-hospital-care-

cost
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hospital’s facility score to the sum of facility scores across all eligible hospitals. The amount of
funding that can be received is bounded below at $5 million and capped above at $50 million.
Figure 4 shows the distribution of funding amounts received by eligible hospitals. A majority of
eligible hospitals receive the minimum amount of $5 million. A small mass of hospitals receive
amounts close to the maximum of $50 million. We replicate the funding eligibility status as well
as the amount of funding received, by using publicly available data from the Healthcare Cost
Report Information System (HCRIS) for the 2018 financial year.28

To obtain outcome measures of interest, we use the publicly available COVID-19 Reported
Patient Impact and Hospital Capacity by Facility dataset. This provides facility-level data on
hospital utilization aggregated on a weekly basis, from July 31st 2020 onwards.29 Summary
statistics about hospital outcomes and characteristics are documented in Table 2. Eligible hos-
pitals have higher fractions of inpatient and ICU beds occupied by COVID-19 patients. Eligible
hospitals also have a higher disproportionate patient percentage, higher uncompensated care per
bed, lower profit margins, more employees and beds, and shorter lengths of inpatient stay. These
patterns are consistent with the funding’s goal of helping struggling hospitals.

6.2 Covariate Balance Estimates

We first evaluate the balancing property of fixed-bandwidth APS conditioning using fixed-
bandwidth-APS-controlled differences in covariate means for hospitals who are and are not
deemed eligible for funding. Specifically, we run the following OLS regression of hospital-level
characteristics on the eligibility status using observations with ps(Xi; δn) ∈ (0, 1):

Wi = γ0 + γ1Zi + γ2p
s(Xi; δn) + ηi,

where Wi is one of the predetermined characteristics of the hospital, Zi is a funding eligibility
dummy, Xi is a vector of the three input variables (DPP, UCC, and profit margin) that determine
the funding eligibility, and ps(Xi; δn) is the simulated fixed-bandwidth APS. We compute fixed-
bandwidth APS using S = 10, 000 simulation draws.30 The estimated coefficient on Zi is the
fixed-bandwidth-APS-controlled difference in the mean of the covariate between eligible and
ineligible hospitals. For comparison, we also run the OLS regression of hospital characteristics
on the eligibility status with no controls using the whole sample.

Table 3 reports the covariate balance estimates. Column 1 shows that, without controlling for
fixed-bandwidth APS, eligible hospitals are significantly different from ineligible hospitals. We
find that all the relevant hospital eligibility characteristics are strongly associated with eligibility.
Once we control for fixed-bandwidth APS with small enough bandwidth δ, eligible and ineligible
hospitals have similar financial and utilization characteristics, as reported in columns 2–6 of

28We use the methodology detailed in the CARES ACT website to project funding based on 2018 financial
year cost reports. We use the RAND cleaned version of the dataset which can be accessed at https://www.
hospitaldatasets.org/

29Source: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/
anag-cw7u

30Figure A.2 in Appendix E.4 reports fixed-bandwidth APS for several hospitals with varying numbers of
simulation draws. We find that S = 10, 000 is sufficient for well stabilizing fixed-bandwidth APS simulation.
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Table 3. These estimates are consistent with our theoretical results, establishing the empirical
relevance of fixed-bandwidth APS controls.

6.3 2SLS Estimates

The balancing performance of fixed-bandwidth APS motivates us to estimate causal effects of
funding by 2SLS using funding eligibility as an instrument for the amount of funding received.
We study the effect of funding on relevant hospital outcomes, such as the number of inpatient
beds occupied by adult COVID patients between July 31st 2020 and August 6th 2020. We run
the following 2SLS regression on four different hospital-level outcome variables, using hospitals
with ps(Xi; δ) ∈ (0, 1):

Di = γ0 + γ1Zi + γ2p
s(Xi; δ) + vi

Yi = β0 + β1Di + β2p
s(Xi; δ) + εi,

where Yi is a hospital-level outcome and Di is the amount of relief funding received.31 We also
run the OLS and 2SLS regressions with no controls, as well as OLS regression controlling for
the three eligibility determinants (disproportionate patient percentage, uncompensated care per
bed and profit margin).32 These alternative regressions are computed using the sample of all
hospitals, as benchmark estimators.

The first stage effects of funding eligibility on funding amount (in millions), shown in columns
3–10 of Table 4, suggest that funding eligibility boosts the amount of funding significantly.
For example, in column 3 of Table 4, we can see that funding eligibility increases funding by
approximately 15 million dollars on average.

OLS estimates of funding effects, reported as the benchmark in column 1 of Table 4, indicate
that funding is associated with a higher number of adult inpatient beds and higher number of
staffed ICU beds utilized by patients who have lab-confirmed or suspected COVID. The estimates
indicate that a million dollar increase in funding is associated with 5.58 more adult inpatient
beds occupied by patients with lab-confirmed or suspected COVID. The corresponding increase

31This specification uses a continuous treatment, unlike our theoretical framework with a binary treatment.
We obtain similar results when the treatment is a binary transformation of the amount of relief funding received
(e.g., a dummy indicating whether the amount exceeds a certain value). Results are available upon request.

32Precisely speaking, we run the following specification of each alternative estimator for each hospital-level
outcome variable Yi. For the OLS regression without any controls, we estimate:

Yi = β0 + β1Di + εi.

For the 2SLS regression without any controls, we run:

Di = γ0 + γ1Zi + vi

Yi = β0 + β1Di + εi.

For the OLS regression controlling for disproportionate patient percentage, uncompensated care per bed and
profit margin, we estimate:

Yi = β0 + β1Di + β2Xi1 + β3Xi2 + β4Xi3 + εi,

where Xi1 is disproportionate patient percentage, Xi2 is uncompensated care per bed, and Xi3 is profit margin.
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in total adult inpatient beds occupied by those who have lab-confirmed COVID is 4.53 and the
increase in staffed ICU beds occupied by those who have lab-confirmed or suspected COVID is
1.67. The estimated increase in staffed ICU beds occupied by lab-confirmed COVID patients is
1.51. These uncontrolled OLS estimates show a similar picture as the descriptive statistics in
Table 2. Naive 2SLS estimates with no controls and OLS with covariate controls produce similar
significantly positive associations of funding with outcomes.

However, the OLS or uncontrolled 2SLS estimates turn out to be an artifact of selection
bias. In contrast with these naive estimates, our preferred 2SLS estimates with fixed-bandwidth
APS controls show a different picture (columns 4–10). The gains in the number of inpatient
beds and staffed ICU beds occupied by suspected and lab-confirmed COVID patients become
much smaller and lose significance across all bandwidth specifications. These results suggest that
fixed-bandwidth APS reveals important selection bias in the estimated effects of funding. Once
we control for fixed-bandwidth APS to eliminate the bias, funding has little to no effect on the
hospital utilization level by COVID-19 patients.33

The above analysis looks at the immediate effects of relief funding. However, the effects of
relief funding might kick in after a time lag, given that expansion in capacity and staff takes
time. To investigate the relevance of this concern, we finally measure the evolving effects of
relief funding. We estimate our main 2SLS specification on the 7-day average of each hospital
outcome for each week from July 31st, 2020 to April 2nd, 2021. We plot the results in Figure
5. The estimated dynamic effects are similar to the initial null effects in Table 4, even several
months after the distribution of relief funding. This dynamic analysis suggests that funding has
no substantial effect even in the long run.

We further extend this analysis by estimating the heterogeneous effects of funding for different
types of hospitals. Figure 6 plots the resulting estimates by repeating the same dynamic analysis
as in Figure 5, but for different groups of hospitals defined by hospital size and ownership type.
Overall, hospitals with different characteristics sometimes face different trends of funding effects,
but none of the differences is statistically significant at the 5% level. We do not find any strong
evidence of heterogeneity in the funding effects at any point in time.

Having said that, there is some suggestive indication of potential heterogeneity. In Panel 6a,
for example, the estimated funding effect spiked among the hospitals in the lowest quartile of
revenue from December 2020 to February 2021. This trend may suggest that the funding was
able to alleviate the financial burden faced by struggling hospitals in this strata and allowed
them to take on new patients during the winter surge.

There is also a sizable dip in the funding effect of for-profit hospitals around the same period.
This could be due to regional differences in the distribution of hospital ownership. Nonprofits
and government-managed hospitals tend to be in rural areas, which both received more funding
and experienced a worse surge during the winter. On the other hand, the for-profits that received
funding tend to be in urban areas and experienced a less extreme winter wave.

The overall insignificance of the estimates suggests that funding by the CARES Act had
33The 2SLS estimates in Table 4 are unlikely to be compromised by differential attrition. Estimates reported

in Table A.1 in Appendix E.4 show little difference in outcome availability rates between eligible and ineligible
hospitals once we control for fixed-bandwidth APS.
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largely no effect on hospital utilization trends during the pandemic. This finding is consistent
with policy and media arguments that CARES Act funding was not well targeted toward needy
providers. Unlike the previous arguments and descriptive analyses, the analysis here provides
causal evidence supporting the concern.

7 Other Examples

Here we give real-world examples of other algorithms and discuss the applicability of our frame-
work.

Example 1 (Bandit Algorithms). We are constantly exposed to digital information (movie,
music, news, search results, advertisements, and recommendations) through a variety of devices
and platforms. Tech companies allocate these pieces of content by using bandit algorithms.
Our method is applicable to many popular bandit algorithms. For simplicity, assume a perfect-
compliance scenario where the company perfectly controls the treatment assignment (Di = Zi).
The algorithms below first use past data and supervised learning to estimate the conditional
means and variances of potential outcomes, E[Yi(z)|Xi] and Var(Yi(z)|Xi), for each z ∈ {0, 1}.
Let µz and σ2

z denote the estimated functions. The algorithms use µz(Xi) and σ2
z(Xi) to deter-

mine the treatment assignment for individual i.

(a) (Thompson Sampling Using Gaussian Priors) The algorithm first samples potential out-
comes from the normal distribution with mean (µ0(Xi), µ1(Xi)) and variance-covariance
matrix diag(σ2

0(Xi), σ
2
1(Xi)). The algorithm then chooses the treatment with the highest

sampled potential outcome:

ZTSi ≡ arg max
z∈{0,1}

y(z), ATS(Xi) = E[arg max
z∈{0,1}

y(z)|Xi],

where y(z) ∼ N (µz(Xi), σ
2
z(Xi)) independently across z. These algorithms often induce

quasi-experimental variation in treatment assignment, as a strand of the computer science
literature has observed (Precup, 2000; Li et al., 2010; Narita, Yasui and Yata, 2019; Saito,
Aihara, Matsutani and Narita, 2021). Suppose that the functions µ0, µ1, σ2

0 and σ2
1 are

continuous. The function A and APS have an analytical expression:

ATS(x) = pTS(x) = 1− Φ

(
µ0(x)− µ1(x)√
σ2

0(x) + σ2
1(x)

)
,

where Φ is the cumulative distribution function of a standard normal distribution. This
APS is nondegenerate, meaning that the data from the algorithm allow for causal-effect
identification.

(b) (Upper Confidence Bound, UCB) Unlike the above stochastic algorithm, the UCB algo-
rithm (Li et al., 2010) is a deterministic algorithm, producing a less obvious example of
our framework. This algorithm chooses the treatment with the highest upper confidence
bound for the potential outcome:

ZUCBi ≡ arg max
z=0,1

{µz(Xi) + ασz(Xi)}, AUCB(x) = arg max
z=0,1

{µz(x) + ασz(x)},
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where α is chosen so that |µz(x)−E[Yi(z)|Xi = x]| ≤ ασz(x) at least with some probability,
for example, 0.95, for every x. Suppose that the function g = µ1 − µ0 + α(σ1 − σ0) is
continuous on X and is continuously differentiable in a neighborhood of x with ∇g(x) 6= 0

for any x ∈ X such that g(x) = 0. APS for this case is given by

pUCB(x) =


0 if µ1(x) + ασ1(x) < µ0(x) + ασ0(x)

0.5 if µ1(x) + ασ1(x) = µ0(x) + ασ0(x)

1 if µ1(x) + ασ1(x) > µ0(x) + ασ0(x).

This means that the UCB algorithm produces potentially complicated quasi-experimental
variation along the boundary in the covariate space where the algorithm’s treatment rec-
ommendation changes from one to the other. It is possible to identify and estimate causal
effects across the boundary.

Example 2 (Unsupervised Learning). Customer segmentation is a core marketing practice that
divides a company’s customers into groups based on their characteristics and behavior so that
the company can effectively target marketing activities at each group. Many businesses today
use unsupervised learning algorithms, clustering algorithms in particular, to perform customer
segmentation. Using our notation, assume that a company decides whether it targets a campaign
at customer i (Zi = 1) or not (Zi = 0). The company first uses a clustering algorithm such as
K-means clustering or Gaussian mixture model clustering to divide customers into K groups,
making a partition {S1, ..., SK} of the covariate space Rp. The company then conducts the
campaign targeted at some of the groups:

ZCLi ≡ 1{Xi ∈ ∪k∈TSk}, ACL(x) = 1{x ∈ ∪k∈TSk},

where T ⊂ {1, ..,K} is the set of the indices of the target groups.
For example, suppose that the company uses K-means clustering, which creates a partition

in which a covariate value x belongs to the group with the nearest centroid. Let c1, ..., cK be the
centroids of the K groups. Define a set-valued function C : Rp → 2{1,...,K}, where 2{1,...,K} is the
power set of {1, ...,K}, as C(x) ≡ arg mink∈{1,...,K} ‖x− ck‖. If C(x) is a singleton, x belongs to
the unique group in C(x). If C(x) contains more than one indices, the group to which x belongs
is arbitrarily determined. APS for this case is given by

pCL(x) =


0 if C(x) ∩ T = ∅
0.5 if |C(x)| = 2, x ∈ ∂(∪k∈TSk)
1 if C(x) ⊂ T

and pCL(x) ∈ (0, 1) if |C(x)| ≥ 3 and x ∈ ∂(∪k∈TSk), where |C(x)| is the number of elements in
C(x).34 Thus, it is possible to identify causal effects across the boundary ∂(∪k∈TSk).

34If |C(x)| = 2 and x ∈ ∂(∪k∈TSk), x is on a linear boundary between one target group and one non-target
group, and hence APS is 0.5. If |C(x)| ≥ 3 and x ∈ ∂(∪k∈TSk), x is a common endpoint of several group
boundaries, and APS is determined by the angles at which the boundaries intersect.
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Example 3 (Supervised Learning). Millions of times each year, judges make jail-or-release
decisions that hinge on a prediction of what a defendant would do if released. Many judges
now use proprietary algorithms (like COMPAS criminal risk score) to make such predictions
and use the predictions to support jail-or-release decisions. Using our notation, assume that a
criminal risk algorithm recommends jailing (Zi = 1) or releasing (Zi = 0) for each defendant i.
The algorithm uses defendant i’s observable characteristics Xi, including criminal history and
demographics. The algorithm first translates Xi into a risk score r(Xi), where r : Rp → R is
a function estimated by supervised leaning based on past data and assumed to be fixed. For
example, Kleinberg et al. (2017) construct a version of r(Xi) using gradient boosted decision
trees. The algorithm then uses the risk score to make the final recommendation:

ZSLi ≡ 1{r(Xi) > c}, ASL(x) = 1{r(x) > c},

where c ∈ R is a constant threshold that is set ex ante.35 A similar procedure applies to
the screening of potential borrowers by banks and insurance companies based on credit scores
estimated by supervised learning (Agarwal, Chomsisengphet, Mahoney and Stroebel, 2017).

A widely-used approach to identifying and estimating treatment effects in these settings is
to use the score r(Xi) as a continuous univariate running variable and apply a univariate RDD
method (Cowgill, 2018). However, whether r(Xi) is continuously distributed or not depends on
how the function r is constructed. For example, suppose that r is constructed by a tree-based
algorithm and is the following simple regression tree with three terminal nodes:

r(x) =


r1 if x1 ≤ 0

r2 if x1 > 0, x2 ≤ 0

r3 if x1 > 0, x2 > 0,

where r1 < r2 < c < r3. In this case, the score r(Xi) is a discrete variable, and hence it may not
be suitable to apply a standard univariate RDD method.

Our approach is applicable to this case as long as at least one of the original multi-dimensional
covariates Xi are continuously distributed. Since ASL(x) = 1{r(x) > c} = 1{x1 > 0, x2 > 0},
APS for this case is given by

pSL(x) =


0 if x1 < 0 or x2 < 0

0.25 if x1 = x2 = 0

0.5 if (x1 = 0, x2 > 0) or (x1 > 0, x2 = 0)

1 if x1 > 0, x2 > 0.

It is therefore possible to identify causal effects across the boundary {x ∈ X : (x1 = 0, x2 ≥
0) or (x1 > 0, x2 = 0)}.

35The algorithm sometimes discretizes the original risk score r(Xi) into d(r(Xi)), where d : R → N (Cowgill,
2018). In this case, the algorithm uses the discretized risk score to make the final recommendation: ZSLi ≡
1{d(r(Xi)) > c}.
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Example 4 (Policy Eligibility Rules). Medicaid and other welfare policies often decide who
are eligible based on algorithmic rules, as studied by Currie and Gruber (1996) and Brown,
Kowalski and Lurie (2020).36 Using our notation, the state government determines whether each
individual i is eligible (Zi = 1) or not (Zi = 0) for Medicare. The state government’s eligibility
rule AMedicaid maps individual characteristics Xi (e.g. income, family composition) into an
eligibility decision ZMedicare

i . A similar procedure also applies to bankruptcy laws (Mahoney,
2015). These policy eligibility rules produce quasi-experimental variation as in Example 3.

Example 5 (Mechanism Design: Matching and Auction). Centralized economic mechanisms
such as matching and auction are also suitable examples, as summarized below (Abdulkadiroğlu
et al., 2017, Forthcoming; Abdulkadiroğlu, 2013; Kawai et al., 2020; Narita, 2020, 2021):

Matching (e.g., School Choice) Auction

i Student Bidder
Xi Preference/Priority/Tie-breaker Bid

Zi
Whether student i is

assigned treatment school
Whether bidder i
wins the good

Di
Whether student i

attends treatment school
Same as Zi

Yi
Student i’s

future test score
Bidder i’s future

economic performance

In mechanism design and other algorithms with capacity constraints, the treatment recommen-
dation for individual i may depend not only on Xi but also on the characteristics of others.
These interactive situations can be accommodated by our framework if we consider the following
large market setting.37 Suppose that there is a continuum of individuals i ∈ [0, 1] and that the
recommendation probability for individual i with covariate Xi is determined by a function M as
follows:

Pr(Zi = 1|Xi;FX−i) = M(Xi;FX−i).

Here FX−i = Pr({j ∈ [0, 1] \ {i} : Xj ≤ x}) is the distribution of X among all individuals
j ∈ [0, 1] \ {i}. The function M : Rp × F → [0, 1], where F is a set of distributions on Rp,
gives the recommendation probability for each individual in the market. With a continuum of
individuals, for any i ∈ [0, 1], FX−i is the same as the distribution of X in the whole market,
denoted by FX . Therefore, the data generated by the mechanism M are equivalent to the data
generated by the algorithm A : Rp → [0, 1] such that A(x) ≡ M(x;FX) for all x ∈ Rp. Our
framework is applicable to this large-market interactive setting.

The above discussions can be summarized as follows.
36These papers estimate the effect of Medicaid eligibility by exploiting variation in the eligibility rule across

states and over time (simulated instrumental variable method). In contrast, our method exploits local variation
in the eligibility status across different individuals given a fixed eligibility rule.

37The approach proposed by Borusyak and Hull (2020) is applicable to finite-sample settings if the treatment
recommendation probability, which may depend on all individuals’ characteristics, is nondegenerate for multiple
individuals.
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Corollary 4. In all the above examples, there exists x ∈ int(X ) such that pA(x) ∈ (0, 1).
Therefore, a causal effect is identified under Assumptions 1 and 2.

8 Conclusion

As algorithmic decisions become the new norm, the world becomes a mountain of natural ex-
periments and instruments. We develop a general method to use these algorithm-produced
instruments to identify and estimate causal treatment effects. Our analysis of the CARES Act
hospital relief funding uses the proposed method to find that relief funding has little effect on
COVID-19-related hospital activities. OLS or uncontrolled 2SLS estimates, by contrast, show
considerably larger and more significant effects. The large estimates appear to be an artifact
of selection bias; relief funding just went to hospitals with more COVID-19 patients, without
helping hospitals accommodate additional patients.

Our analysis clarifies a few implications for policy and management practices around algorith-
mic decision-making. It is important to record the implementation of algorithms in a replicable,
simulatable way, including what input variables Xi are used to make algorithmic recommenda-
tion Zi. Another key lesson is the importance of recording an algorithm’s recommendation Zi
even if they are superseded by a human decision Di. These data retention efforts would go a
long way to exploit the full potential of algorithms as natural experiments.

An important topic for future research is estimation details, such as data-driven bandwidth
selection. This work needs to extend Imbens and Kalyanaraman (2012) and Calonico, Cattaneo
and Titiunik (2014)’s bandwidth selection methods in the univariate RDD to our setting.38

Inference on treatment effects in our framework relies on conventional large sample reasoning. It
seems natural to additionally consider permutation or randomization inference as in Imbens and
Rosenbaum (2005). It will also be challenging but interesting to develop finite-sample optimal
estimation and inference strategies such as those recently introduced by Armstrong and Kolesár
(2018, 2020) and Imbens and Wager (2019). Finally, we look forward to empirical applications
of our method in a variety of business, policy, and scientific domains.

38For univariate RDDs, Imbens and Kalyanaraman (2012) and Calonico et al. (2014) estimate the bandwidth
that minimizes the asymptotic mean squared error (AMSE). It is not straightforward to estimate the AMSE-
optimal bandwidth in our setting with many running variables and complex IV assignment, since it requires
nonparametric estimation of functions on the multidimensional covariate space such as conditional mean functions,
their derivatives, the curvature of the RDD boundary, etc.
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Figure 1: Example of the Approximate Propensity Score

Figure 2: Illustration of the Change of Variables Techniques

(a)

(b)
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Table 1: Bias, SD, and RMSE of Estimators and Coverage of 95% Confidence Intervals

Our Method: 2SLS with Approximate Propensity Score Controls 2SLS OLS
δ = 0.01 δ = 0.05 δ = 0.1 δ = 0.25 δ = 0.5 δ = 1 with

A(Xi)

Controls

with No
Controls

Panel A: Homogeneous Conditional Effects (Model A)
Estimand: ATE = ATE(RCT) = 0
Bias .603 .634 .644 .659 .684 .740 .572 .754
SD .304 .205 .157 .110 .078 .061 .372 .024
RMSE .675 .667 .663 .668 .689 .842 .683 .754

Estimand: LATE = LATE(RCT) = 0.564

Bias .039 .070 .080 .095 .120 .176 .008 .190
SD .304 .205 .157 .110 .078 .061 .372 .024
RMSE .306 .217 .176 .145 .143 .186 .372 .191

Coverage 94.8% 92.8% 92.9% 84.6% 69.6% 18.6% — —

Avg N 235 727 1275 2567 3995 5561 100 10000

Panel B: Heterogeneous Conditional Effects (Model B)
Estimand: ATE = ATE(RCT) = 0

Bias .568 .587 .589 .604 .636 .709 .545 1.192
SD .331 .222 .170 .118 .083 .063 .399 .025
RMSE .657 .628 .613 .615 .642 .712 .676 1.193

Estimand: LATE = 0.564

Bias .004 .023 .025 .040 .072 .145 −.019 .628
SD .331 .222 .170 .118 .083 .063 .399 .025
RMSE .331 .223 .172 .125 .110 .158 .399 .629

Estimand: LATE(RCT) = 0.559

Bias .009 .028 .030 .045 .077 .150 −.014 .633
SD .331 .222 .170 .118 .083 .063 .399 .025
RMSE .331 .224 .173 .127 .114 .163 .399 .634

Coverage 95.9% 94.8% 95.0% 93.2% 87.1% 37.4% — —

Avg N 235 723 1274 2567 3993 5561 100 10000

Notes: This table shows the bias, the standard deviation (SD) and the root mean squared error (RMSE) of 2SLS with
Approximate Propensity Score controls, 2SLS with A(Xi) controls, and OLS with no controls. These statistics are
computed with the estimand set to ATE, ATE(RCT), LATE, or LATE(RCT). The row “Coverage” in each panel shows
the probabilities that the 95% confidence intervals of the form [β̂s1 − 1.96σ̂sn, β̂

s
1 + 1.96σ̂sn] contains LATE(RCT), where β̂s1

is the 2SLS estimate with Approximate Propensity Score controls and σ̂sn is its heteroskedasticity-robust standard error.
We use 1, 000 replications of a size 10, 000 simulated sample to compute these statistics. We use several possible values of
δ to compute the Approximate Propensity Score. All Approximate Propensity Scores are computed by averaging 400
simulation draws of A(Xi). Panel A reports the results under the model in which the treatment effect does not depend on
Xi (Model A). Panel B reports the results under the model in which the treatment effect depends on Xi (Model B). The
bottom row “Avg N ” in each panel shows the average number of observations used for estimation (i.e., the average number
of observations for which the Approximate Propensity Score or A(Xi) is strictly between 0 and 1).
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Figure 3: Three-dimensional Regression Discontinuity in Hospital Funding Eligibility

Notes: The top figure visualizes the three dimensions that determine funding eligibility. The bottom figures show the data
points plotted along 2 out of 3 dimensions. The bottom left panel plots disproportionate patient percentage against profit
margin, while the bottom right panel plots uncompensated care per bed against profit margin. We remove hospitals above
the 99th percentile of disproportionate patient percentage and uncompensated care per bed, for visibility purposes.
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Table 2: Hospital Characteristics and Outcomes

All Ineligible Eligible Hospitals w/
Hospitals Hospitals APS ∈ (0,1)

Panel A: Outcome Variable Means

# Confirmed/Suspected Covid Patients 105.59 98.41 136.61 125.19
# Confirmed Covid Patients 80.1 73.86 107.83 86.78
# Confirmed/Suspected Covid Patients in ICU 31.37 28.92 42.1 36.84
# Confirmed Covid Patients in ICU 26.62 24.41 36.56 31.41
Observations 4,008 3,293 715 429

Panel B: Hospital Characteristics Means

Beds 143.66 134.6 188.35 206.47
Interns and residents (full-time equivalents) per bed .06 .05 .11 .09
Adult and pediatric hospital beds 120.26 113.29 154.66 170.49
Ownership: Proprietary (for-profit) .19 .2 .18 .15
Ownership: Governmental .22 .22 .23 .16
Ownership: Voluntary (non-profit) .58 .58 .59 .68
Inpatient length of stay 9.21 10.14 4.66 4.38
Employees on payroll (full-time equivalents) 973.9 897.31 1351.57 1525.06
Disproportionate patient percentage .21 .18 .38 .36
Uncompensated care per bed 59,850 56,556.03 76,096.31 45,996.48
Profit margin .02 .04 -.07 -.03
Observations 4,633 3,852 781 485

Notes: This table reports averages of outcome variables and hospital characteristics by safety net eligibility. A
safety net hospital is defined as any acute care hospital with disproportionate patient percentage of 20.2% or
greater, annual uncompensated care of at least $25,000 per bed and profit margin of 3.0% or less. Panel A
reports the outcome variable means. Outcome variable estimates are 7 day sums for the week spanning July
31st 2020 to August 6th 2020. Confirmed or Suspected COVID patients refer to the sum of patients in inpatient
beds with lab-confirmed/suspected COVID-19. Confirmed COVID patients refer to the sum of patients in
inpatient beds with lab-confirmed COVID-19, including those with both lab-confirmed COVID-19 and influenza.
Inpatient bed totals also include observation beds. Similarly, Confirmed/ Suspected COVID patients in ICU
refer to the sum of patients in ICU beds with lab-confirmed or suspected COVID-19. Confirmed COVID
patients in ICU refers to the sum of patients in ICU beds with lab-confirmed COVID-19, including those with
both lab-confirmed COVID-19 and influenza. Panel B reports the means for hospital characteristics for the
financial year 2018. Column 1 shows the means for All Hospitals. Columns 2 and 3 show the means for hospitals
that are ineligible and eligible to receive safety net funding respectively. Column 4 shows the means for the
hospitals with non-degenerate Approximate Propensity Score with bandwidth δ = 0.05. Approximate
Propensity Score is computed by averaging 10,000 simulation draws.
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Figure 4: Funding Distribution for Eligible Hospitals
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Notes: The figure shows the distribution of funding amounts for eligible hospitals. Each eligible hospital is assigned an
individual facility score, which is the product of Disproportionate Patient Percentage and number of beds in the hospital.
The share of $10 billion received by an eligible hospital is determined by the ratio of the individual facility score of that
hospital to the sum of facility scores across all eligible hospitals. The amount of funding that can be received by an eligible
hospital is calculated as the product of this ratio and $10 billion, and is bounded below at $5 million and bounded above
at $50 million.
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Table 3: Covariate Balance Regressions

Our Method: OLS with Approximate Propensity Score ControlsMean No
(Ineligible) Controls δ = 0.01 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.25 δ = 0.5

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Determinants of Funding Eligibility

Profit margin .04 -0.11*** -0.03 -0.01 0.02 0.01 0.02 0.05** 0.06***
(0.01) (0.06) (0.04) (0.03) (0.03) (0.02) (0.01) (0.01)
N=4633 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368

Uncompensated 56556.02 19,540.28*** 4,943.70 10,234.70 -4,182.07 -9,506.62 -10,959.35 -8,009.43 -6,033.20
care per bed (3,827.22) (12,150.44) (10,151.35) (8,666.22) (7,671.12) (7,017.85) (4,538.28) (3,675.48)

N=4633 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368
Disproportionate .18 0.21*** -0.09 -0.09 -0.09 -0.08 -0.08 -0.06* -0.07***
patient percentage (0.01) (0.09) (0.07) (0.07) (0.06) (0.05) (0.03) (0.01)

N=4633 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368

Panel B: Other Hospital Characteristics

Full time employees 897.32 454.26*** 2,645.18 344.35 62.07 101.29 20.46 206.57 110.85
(69.23) (1,635.80) (1,021.21) (663.92) (511.76) (419.46) (218.52) (143.16)
N=4626 N=90 N=238 N=483 N=669 N=873 N=1723 N=2365

Medicare net revenue 20.04 18.36*** 34.67 -8.81 -6.39 -1.27 1.55 4.19 -0.42
(in millions) (2.39) (29.56) (18.59) (14.25) (12.03) (10.83) (6.64) (4.68)

N=4511 N=89 N=238 N=482 N=666 N=870 N=1684 N=2323
Occupancy .44 0.07*** 0.19* 0.07 -0.00 0.01 0.01 0.03 0.04**

(0.01) (0.09) (0.06) (0.04) (0.04) (0.03) (0.02) (0.01)
N=4624 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368

Operating margin .02 -0.11*** -0.03 0.00 0.03 0.02 0.03 0.06*** 0.07***
(0.01) (0.06) (0.05) (0.03) (0.03) (0.03) (0.02) (0.01)
N=4541 N=89 N=238 N=476 N=660 N=863 N=1676 N=2314

Beds 134.6 53.75*** 190.00 33.57 4.05 7.37 8.64 16.50 8.30
(7.05) (105.37) (67.12) (47.58) (39.07) (33.42) (20.05) (14.46)
N=4633 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368

Costs per discharge 66.28 -49.95** 3.88 3.29* 1.59 -6.40 -0.62 6.23 6.23
(in thousands) (17.93) (2.18) (1.50) (1.22) (8.15) (2.34) (4.82) (4.85)

N=3539 N=90 N=239 N=484 N=670 N=874 N=1726 N=2368
p-value joint significance 0 .73 .476 .864 .724 .269 0 0

Notes: This table shows the results of the covariate balance regressions at the hospital level. The dependent variables for these regressions are drawn
from the Healthcare Cost Report Information System for the financial year 2018. Disproportionate patient percentage, profit margin and
uncompensated care per bed are used to determine the hospital’s safety net funding eligibility. Other dependent variables shown indicate the
financial health and utilization of the hospitals. In column 1, we regress the dependent variables on the safety net eligibility of the hospital with no
controls. In columns 2–8, we regress the dependent variables on funding eligibility controlling for the Approximate Propensity Score with different
values of bandwidth δ. All Approximate Propensity Scores are computed by averaging 10,000 simulation draws. Column 9 shows the mean of
dependent variables for hospitals that are ineligible to receive safety net funding. Robust standard errors are reported in the parenthesis and number
of observations are reported separately for each regression. The last row reports the p-value of the joint significance test.
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Table 4: Estimated Effects of Funding on Hospital Utilization

OLS
with

OLS
with

2SLS
with

Our Method: 2SLS with Approximate Propensity Score Controls

No Covariate No
Controls Controls Controls δ =

0.01

δ =

0.025

δ =

0.05

δ =

0.075

δ =

0.1

δ =

0.25

δ =

0.5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

# Confirmed/Suspected COVID Patients

First stage 13.78*** 15.11* 13.34*** 14.28*** 14.19*** 13.89*** 13.96*** 13.06***
(in millions) (0.49) (5.83) (3.54) (2.27) (1.87) (1.61) (1.03) (0.74)
$1mm of funding 5.58*** 3.25*** 2.77*** -1.03 -1.86 -3.10 -4.08 -2.91 0.15 -0.31

(0.68) (0.89) (0.58) (5.64) (5.40) (4.99) (4.57) (3.58) (1.59) (1.21)
Observations 3532 3532 3532 73 195 392 547 719 1389 1947

# Confirmed COVID Patients

First stage 13.90*** 16.55** 14.37*** 15.05*** 14.81*** 14.42*** 14.10*** 13.19***
(in millions) (0.50) (6.11) (3.66) (2.33) (1.91) (1.64) (1.04) (0.75)
$1mm of funding 4.53*** 2.50** 2.44*** 0.05 -2.14 1.42 0.13 -0.03 -0.09 -0.63

(0.63) (0.79) (0.50) (4.33) (3.97) (2.17) (1.97) (1.74) (1.12) (0.96)
Observations 3558 3558 3558 70 191 385 539 709 1366 1923

# Confirmed/Suspected COVID Patients in ICU

First stage 13.88*** 14.67* 13.42*** 15.75*** 15.29*** 14.74*** 14.31*** 13.18***
(in millions) (0.51) (5.59) (3.49) (2.32) (1.93) (1.67) (1.06) (0.76)
$1mm of funding 1.67*** 0.91** 0.95*** 0.93 0.71 0.36 -0.05 0.16 -0.03 -0.32

(0.21) (0.28) (0.18) (1.47) (1.27) (0.74) (0.70) (0.60) (0.40) (0.36)
Observations 3445 3445 3445 72 186 374 520 678 1314 1846

# Confirmed COVID Patients in ICU

First stage 13.89*** 15.80* 13.79*** 15.78*** 15.53*** 15.08*** 14.43*** 13.40***
(in millions) (0.50) (6.15) (3.73) (2.41) (2.02) (1.73) (1.09) (0.77)
$1mm of funding 1.51*** 0.82** 0.88*** 0.50 -0.11 0.18 0.04 0.12 -0.13 -0.35

(0.21) (0.27) (0.17) (1.54) (1.37) (0.70) (0.64) (0.56) (0.39) (0.34)
Observations 3503 3503 3503 67 181 370 514 671 1321 1868

Notes: In this table we regress relevant outcomes at the hospital level on safety net funding. Column 1 presents the results
of OLS regression of the outcome variables on safety net funding without any controls. Column 2 presents the results of
OLS regression of the outcome variables on safety net funding controlling for disproportionate patient percentage,
uncompensated care per bed and profit margin. In columns 3–10, we instrument safety net funding with eligibility to
receive this funding and present the results of 2SLS regressions. In columns 3–10, the first stage shows the effect of being
deemed eligible on the amount of relief funding received by hospitals, in millions of dollars. Column 3 shows the results of
a 2SLS regression with no controls. In columns 4–10, we run this regression controlling for the Approximate Propensity
Score with different values of bandwidth δ on the sample with nondegenerate Approximate Propensity Scores. All
Approximate Propensity Scores are computed by averaging 10,000 simulation draws. The outcome variables are the 7 day
totals for the week spanning July 31st, 2020 to August 6th, 2020. Confirmed or Suspected COVID patients refer to the
sum of patients in inpatient beds with lab-confirmed/suspected COVID-19. Confirmed COVID patients refer to the sum
of patients in inpatient beds with lab-confirmed COVID-19, including those with both lab-confirmed COVID-19 and
influenza. Inpatient bed totals also include observation beds. Similarly, Confirmed/Suspected COVID patients in ICU
refer to the sum of patients in ICU beds with lab-confirmed or suspected COVID-19. Confirmed COVID patients in ICU
refers to the sum of patients in ICU beds with lab-confirmed COVID-19, including those with both lab-confirmed
COVID-19 and influenza. Robust standard errors are reported in parentheses.
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Figure 5: Dynamic Effects of Funding on Weekly Hospital Outcomes
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(b) # Confirmed COVID Patients
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(c) # Confirmed/Suspected COVID Patients in ICU
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(d) # Confirmed COVID Patients in ICU

Notes: The figure shows the results of estimating our main 2SLS specification about the effect of $1mm of relief funding on
weekly hospital outcomes from 07/31/2020 to 04/02/2021. The outcomes record the 7-day sum of the number of hospitalized
patients with the specified condition. We compute the Approximate Propensity Score with S = 10, 000 and δ = 0.05. The
estimates from the uncontrolled OLS, uncontrolled 2SLS, and 2SLS with the Approximate Propensity Score controls are
plotted on the y-axis. Standard error ribbons are given in grey.
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Figure 6: Dynamic Heterogeneous Effects of Hospital Funding by Hospital Characteristics
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(b) Total Full-Time Employees
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(c) Total Beds
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(d) Inpatient Length of Stay
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Notes: The figure shows the results of estimating our main 2SLS specification of the effect of $1mm of relief funding on
weekly confirmed/suspected Covid-19 patients from 07/31/2020 to 04/12/2021, where the sample is stratified by quartiles
of different hospital characteristics, or ownership type. There are no significant estimates at the 5% level. We estimate APS
with S = 10, 000 and δ = 0.05.
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A Extensions and Discussions

A.1 Related Literature: Details

In this section, we discuss the related methodological literature on the multidimensional RDD in
detail. Imbens and Wager (2019) propose the finite-sample-minimax linear estimator of the form∑n

i=1 γiYi and uniform confidence intervals for treatment effects in the multidimensional RDD.
One version of their approach constructs a linear estimator by choosing the weight (γi)

n
i=1 greedily

to make the inference as precise as possible. Although their estimator is favorable in terms of
precision, it is not obvious what estimand the estimator estimates, without assuming a constant
treatment effect. The other version of Imbens and Wager (2019)’s approach and some other
existing approaches (Zajonc, 2012; Keele and Titiunik, 2015) consider nonparametric estimation
of the conditional average treatment effect E[Yi(1)−Yi(0)|Xi = x] for a specified boundary point
x. The estimand has a clear interpretation, but “when curvature is nonnegligible, equation (6)
can effectively make use of only data near the specified focal point c, thus resulting in relatively
long confidence intervals” (Imbens and Wager, 2019, p. 268), where equation (6) defines their
estimator.

To obtain more precise estimates while keeping interpretability, several papers studying a two-
dimensional RDD, including Zajonc (2012) and Keele and Titiunik (2015), propose to estimate
an integral of conditional average treatment effects over the boundary. Their approach first
nonparametrically estimates E[Yi(1)−Yi(0)|Xi = x] and the density of Xi for a large number of
points x in the boundary and then computes the weighted average of the estimated conditional
average treatment effects with the weight set to the estimated density.

The above approach is difficult to implement, however, when Xi is high dimensional or the
decision algorithm is a complex, black box function of Xi, for the following reasons. First, it
is computationally demanding to estimate E[Yi(1) − Yi(0)|Xi = x] for numerous points in the
boundary such that the weighted average well approximates the integral of E[Yi(1)−Yi(0)|Xi = x]

over the boundary. Second, identifying boundary points from a general decision algorithm itself
is hard unless it has a known analytical form. By contrast, we develop an estimator that uses
observations near all the boundary points without tracing out the boundary or knowing its
analytical form, thus alleviating the limitations of existing estimators.

A.2 Existence of the Approximate Propensity Score

Proposition 1 assumes that APS exists, but is it fair to assume so? In general, APS may fail to
exist. Figure A.1 shows such an example. In this example, Xi is two dimensional, and

A(x) =

{
1 if 3(1

2)k−1 < ‖x‖ ≤ 4(1
2)k−1 for some k = 1, 2, · · ·

0 if 2(1
2)k−1 < ‖x‖ ≤ 3(1

2)k−1 for some k = 1, 2, · · · .
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Figure A.1: Example of Algorithm A for which Approximate Propensity Score Does Not Exist

It is shown that

pA(0; δ) =

{
7
12 if δ = 4(1

2)k−1 for some k = 1, 2, · · ·
7
27 if δ = 3(1

2)k−1 for some k = 1, 2, · · · .

Therefore, limδ→0 p
A(0; δ) does not exist.

Nevertheless, APS exists for almost every x, as shown in the following proposition.

Proposition A.1. pA(x) exists and is equal to A(x) for almost every x ∈ X (with respect to the
Lebesgue measure).

Proof. See Appendix C.6.

Does APS exist at a specific point x? What is the value of APS at x if it is not equal to
A(x)? We show that APS exists and is of a particular form for most covariate points and typical
algorithms. For each x ∈ X and each q ∈ Supp(A(Xi)), define

Ux,q ≡ {u ∈ B(0, 1) : lim
δ→0

A(x+ δu) = q}.

Ux,q is the set of vectors in B(0, 1) such that the value of A approaches q as we approach x from
the direction of the vector. With this notation, we obtain a sufficient condition for the existence
of APS at a point x.

Proposition A.2. Take any x ∈ X . If there exists a countable set Q ⊂ Supp(A(Xi)) such that
Lp(∪q∈QUx,q) = Lp(B(0, 1)) and Ux,q is Lp-measurable for all q ∈ Q, then pA(x) exists and is
given by

pA(x) =

∑
q∈Q qLp(Ux,q)
Lp(B(0, 1))

.

Proof. See Appendix C.4.

A-2



If almost every point in B(0, 1) is contained by one of countably many Ux,q’s, therefore, APS
exists and is equal to the weighted average of the values of q with the weight proportional to the
hypervolume of Ux,q. This result implies that APS exists in practically important cases.

Corollary A.1.

1. (Continuity points) If A is continuous at x ∈ X , then pA(x) exists and pA(x) = A(x).

2. (Interior points) Let Xq = {x ∈ X : A(x) = q} for some q ∈ [0, 1]. Then, for any interior
point x ∈ int(Xq), pA(x) exists and pA(x) = q.

3. (Smooth boundary points) Suppose that {x ∈ X : A(x) = q1} = {x ∈ X : f(x) ≥ 0} and
{x ∈ X : A(x) = q2} = {x ∈ X : f(x) < 0} for some q1, q2 ∈ [0, 1], where f : Rp → R.
Let x ∈ X be a boundary point such that f(x) = 0, and suppose that f is continuously
differentiable in a neighborhood of x with ∇f(x) 6= 0. In this case, pA(x) exists and
pA(x) = 1

2(q1 + q2).

4. (Intersection points under CART and random forests) Let p = 2, and suppose that {x ∈ X :

A(x) = q1} = {(x1, x2)′ ∈ X : x1 ≤ 0 or x2 ≤ 0}, {x ∈ X : A(x) = q2} = {(x1, x2)′ ∈ X :

x1 > 0, x2 > 0}, and 0 = (0, 0)′ ∈ X . This is an example in which tree-based algorithms
such as Classification And Regression Tree (CART) and random forests are used to create
A. In this case, pA(0) exists and pA(0) = 3

4q1 + 1
4q2.

Proof. See Appendix C.5.

A.3 Discrete Covariates

In this section, we provide the definition of APS and identification and asymptotic normality
results when Xi includes discrete covariates. Suppose that Xi = (Xdi, Xci), where Xdi ∈ Rpd
is a vector of discrete covariates, and Xci ∈ Rpc is a vector of continuous covariates. Let Xd
denote the support of Xdi and be assumed to be finite. We also assume that Xci is continuously
distributed conditional on Xdi, and let Xc(xd) denote the support of Xci conditional on Xdi = xd
for each xd ∈ Xd. Let Xc,0(xd) = {xc ∈ Xc(xd) : A(xd, xc) = 0} and Xc,1(xd) = {xc ∈ Xc(xd) :

A(xd, xc) = 1}.
Define APS as follows: for each x = (xd, xc) ∈ X ,

pA(x; δ) ≡

∫
B(xc,δ)

A(xd, x
∗
c)dx

∗
c∫

B(xc,δ)
dx∗c

,

pA(x) ≡ lim
δ→0

pA(x; δ),

where B(xc, δ) = {x∗c ∈ Rpc : ‖xc − x∗c‖ ≤ δ} is the δ-ball around xc ∈ Rpc . In other words, we
take the average of the A(xd, x

∗
c) values when x∗c is uniformly distributed on B(xc, δ) holding xd

fixed, and let δ → 0. Below, we assume that Assumptions 1, 2, 3 and 4 hold conditional on Xdi.

Assumption A.1 (Almost Everywhere Continuity of A).
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(a) For every xd ∈ Xd, A(xd, ·) is continuous almost everywhere with respect to the Lebesgue
measure Lpc .

(b) For every xd ∈ Xd, Lpc(Xc,k(xd)) = Lpc(int(Xc,k(xd))) for k = 0, 1.

A.3.1 Identification

Assumption A.2 (Local Mean Continuity). For every xd ∈ Xd and z ∈ {0, 1}, the conditional
expectation functions E[Yzi|Xi = (xd, xc)] and E[Di(z)|Xi = (xd, xc)] are continuous in xc at
any point xc ∈ Xc(xd) such that pA(xd, xc) ∈ (0, 1) and A(xd, xc) ∈ {0, 1}.

Let intc(X ) = {(xd, xc) ∈ X : xc ∈ int(Xc(xd))}. We say that a set S ⊂ Rp is open
relative to X if there exists an open set U ⊂ Rp such that S = U ∩ X . For a set S ⊂ Rp, let
X Sd = {xd ∈ Xd : (xd, xc) ∈ S for some xc ∈ Rpc} and X Sc (xd) = {xc ∈ Xc : (xd, xc) ∈ S} for
each xd ∈ X Sd .

Proposition A.3. Under Assumptions A.1 and A.2:

(a) E[Y1i − Y0i|Xi = x] and E[Di(1)−Di(0)|Xi = x] are identified for every x ∈ intc(X ) such
that pA(x) ∈ (0, 1).

(b) Let S be any subset of X open relative to X such that pA(x) exists for all x ∈ S. Then either
E[Y1i−Y0i|Xi ∈ S] or E[Di(1)−Di(0)|Xi ∈ S], or both are identified only if pA(x) ∈ (0, 1)

for almost every xc ∈ X Sc (xd) for every xd ∈ X Sd .

Proof. See Appendix C.7.

A.3.2 Estimation

For each xd ∈ Xd, let Ω∗(xd) = {xc ∈ Rpc : A(xd, xc) = 1}. Also, let X ∗d = {xd ∈ Xd :

Var(A(Xi)|Xdi = xd) > 0}, and let fXc|Xd denote the probability density function of Xci condi-
tional on Xdi. In addition, for each xd ∈ Xd, let

C∗(xd) = {xc ∈ Rpc : A(xd, ·) is continuously differentiable at xc},

and let D∗(xd) = Rpc \ C∗(xd).

Assumption A.3.

(a) (Finite Moments) E[Y 4
i ] <∞.

(b) (Nonzero First Stage) There exists a constant c > 0 such that E[Di(1)−Di(0)|Xi = x] > c

for every x ∈ X such that pA(x) ∈ (0, 1).

(c) (Nonzero Conditional Variance) If Pr(A(Xi) ∈ (0, 1)) > 0, then Var(A(Xi)|A(Xi) ∈
(0, 1)) > 0.

If Pr(A(Xi) ∈ (0, 1)) = 0, then the following conditions (d)–(g) hold.
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(d) (Nonzero Variance) X ∗d 6= ∅.

(e) (C2 Boundary of Ω∗(xd)) For each xd ∈ X ∗d , there exists a partition {Ω∗1(xd), ...,Ω
∗
M (xd)}

of Ω∗(xd) such that

(i) dist(Ω∗m(xd),Ω
∗
m′(xd)) > 0 for any m,m′ ∈ {1, ...,M} such that m 6= m′;

(ii) Ω∗m(xd) is nonempty, bounded, open, connected and twice continuously differentiable
for each m ∈ {1, ...,M}.

(f) (Regularity of Deterministic A)

(i) For each xd ∈ X ∗d , Hpc−1(∂Ω∗(xd)) <∞, and
∫
∂Ω∗(xd) fXc|Xd(xc|xd)dH

pc−1(xc) > 0.

(ii) There exists δ > 0 such that A(xd, xc) = 0 for almost every xc ∈ N(Xc(xd), δ)\Ω∗(xd).

(g) (Conditional Means and Density near ∂Ω∗(xd)) For each xd ∈ X ∗d , there exists δ > 0 such
that

(i) E[Y1i|Xi = (xd, ·)], E[Y0i|Xi = (xd, ·)], E[Di(1)|Xi = (xd, ·)], E[Di(0)|Xi = (xd, ·)]
and fXc|Xd(·|xd) are continuously differentiable and have bounded partial derivatives
on N(∂Ω∗(xd), δ);

(ii) E[Y 2
1i|Xi = (xd, ·)], E[Y 2

0i|Xi = (xd, ·)], E[Y1iDi(1)|Xi = (xd, ·)] and E[Y0iDi(0)|Xi =

(xd, ·)] are continuous on N(∂Ω∗(xd), δ);

(iii) E[Y 4
i |Xi = (xd, ·)] is bounded on N(∂Ω∗(xd), δ).

Assumption A.4. If Pr(A(Xi) ∈ (0, 1)) > 0, then the following conditions (a)–(c) hold.

(a) (Probability of Neighborhood of D∗(xd)) For each xd ∈ X ∗d , Pr(Xi ∈ N(D∗(xd), δ)) =

O(δ).

(b) (Bounded Partial Derivatives of A) For each xd ∈ X ∗d , the partial derivatives of A(xd, ·)
are bounded on C∗(xd).

(c) (Bounded Conditional Mean) For each xd ∈ X ∗d , E[Yi|Xi = (xd, ·)] is bounded on Xc(xd).

Theorem A.1. Suppose that Assumptions A.1 and A.3 hold, and that δn → 0, nδn → ∞ and
Sn →∞ as n→∞. Then the 2SLS estimators β̂1 and β̂s1 converge in probability to

β1 ≡ lim
δ→0

E[ωi(δ)(Yi(1)− Yi(0))],

where

ωi(δ) =
pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))

E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))]
.

Suppose, in addition, that Assumptions A.4 and 5 hold and that nδ2
n → 0 as n→∞. Then

σ̂−1
n (β̂1 − β1)

d−→ N (0, 1),

(σ̂sn)−1(β̂s1 − β1)
d−→ N (0, 1).
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Proof. See Appendix C.8.

As in the case in which all covariates are continuous, the probability limit of the 2SLS
estimators has more specific expressions depending on whether Pr(A(Xi) ∈ (0, 1)) > 0 or not. If
Pr(A(Xi) ∈ (0, 1)) > 0,

plim β̂1 = plim β̂s1 =
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)− Yi(0))]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]
.

If Pr(A(Xi) ∈ (0, 1)) = 0,

plim β̂1

= plim β̂s1

=

∑
xd∈X ∗d

Pr(Xdi = xd)
∫
∂Ω∗(xd)E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]fXc|Xd(xc|xd)dH

pc−1(xc)∑
xd∈X ∗d

Pr(Xdi = xd)
∫
∂Ω∗(xd)E[Di(1)−Di(0)|Xi = x]fXc|Xd(xc|xd)dHpc−1(xc)

.

A.4 A Sufficient Condition for Assumption 4 (a)

We provide a sufficient condition for Assumption 4 (a).

Assumption A.5.

(a) (Twice Continuous Differentiability of D∗) There exist C∗1 , ..., C
∗
M ⊂ Rp such that

(i) ∂(C̃∗) = D∗, where C̃∗ ≡ ∪Mm=1C
∗
m;

(ii) dist(C∗m, C
∗
m′) > 0 for any m,m′ ∈ {1, ...,M} such that m 6= m′;

(iii) C∗m is nonempty, bounded, open, connected and twice continuously differentiable for
each m ∈ {1, ...,M}.

(b) (Regularity of D∗) Hp−1(D∗) <∞.

(c) (Bounded Density near D∗) There exists δ > 0 such that fX is bounded on N(D∗, δ).

The key condition is the twice continuous differentiability of D∗. This condition holds if,
for example, the ε-Greedy algorithm described in Example A.1 (a) in Appendix A.6 uses an
estimated Q-function that is twice continuously differentiable in x.

Under Assumption A.5 (a), by Lemma B.4 in Appendix B.3 and with change of variables
v = λ

δ , for any sufficiently small δ > 0,

Pr(Xi ∈ N(D∗, δ)) =

∫ δ

−δ

∫
D∗
fX(u+ λνC̃∗(u))JD

∗
p−1ψC̃∗(u, λ)dHp−1(u)dλ

= δ

∫ 1

−1

∫
D∗
fX(u+ δvνC̃∗(u))JD

∗
p−1ψC̃∗(u, δv)dHp−1(u)dv.

(See Appendix B for the notation.) If fX is bounded on N(D∗, δ) and Hp−1(D∗) < ∞, the
right-hand side is O(δ).
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A.5 Sampling from Uniform Distribution on p-Dimensional Ball

When we calculate fixed-bandwidth APS by simulation, we need to uniformly sample from
B(Xi, δ). We introduce three existing methods to uniformly sample from a p-dimensional unit
ball B(0, 1). By multiplying the sampled vector by δ and adding Xi to it, we can sample from
a uniform distribution on B(Xi, δ).

Method 1.
1. Sample x1, ..., xp independently from the uniform distribution on [−1, 1].
2. Accept the vector x = (x1, ..., xp) if

∑p
k=1 x

2
k ≤ 1 and reject it otherwise.

Method 1 is a practical choice when p is small (e.g. p = 2, 3), but is inefficient for higher
dimensions, since the acceptance rate decreases to zero quickly as p increases. The conventional
method used for higher dimensions is the following.

Method 2.
1. Sample x∗1, ..., x∗p independently from the standard normal distribution, and compute the

vector s = (x∗1, ..., x
∗
p)/
√∑p

k=1(x∗k)
2.

2. Sample u from the uniform distribution on [0, 1].
3. Return the vector x = u1/ps.

There is yet another method efficient for higher dimensions, which is recently proposed by
Voelker, Gosmann and Stewart (2017).

Method 3.
1. Sample x∗1, ..., x∗p+2 independently from the standard normal distribution, and compute the

vector s = (x∗1, ..., x
∗
p+2)/

√∑p+2
k=1(x∗k)

2.
2. Return the vector x = (s1, ..., sp).

A.6 Additional Examples

Example A.1 (Reinforcement Learning Algorithms). Extending bandit algorithms to dynam-
ically changing environments, reinforcement learning algorithms optimize decisions in dynamic
environments, where the state (the set of observables that the agent receives from the envi-
ronment) and action in the current period can affect the future states and outcomes. Let
{(Xti, Zti, Yti)}∞t=0 denote the trajectory of the states, treatment assignments, and outcomes
in periods t = 0, 1, 2, · · · for individual i. For simplicity, we assume that the trajectory follows
a Markov decision process.39 Let Yti(1) and Yti(0) represent the potential outcomes in period t.
Let Q : X × {0, 1} → R be the optimal state-action value function, called the Q-function: for
(x, z) ∈ X × {0, 1},

Q(x, z) ≡ max
π:X→[0,1]

E

[ ∞∑
t=0

γt(Yti(1)π(Xti) + Yti(0)(1− π(Xti))|X0i = x, Z0i = z

]
,

39Under a Markov decision process, the distribution of the stateXti only depends on the last state and treatment
assignment (Xt−1,i, Zt−1,i), the distribution of the outcome Yti only depends on the current state and treatment
assignment (Xti, Zti), and these distributions are stationary over periods.
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where γ ∈ [0, 1) is a discount factor, and π is a policy function that assigns the probability of
treatment to each possible state.

(a) (ε-Greedy) This algorithm first uses past data to yield Q̂, an estimate of the Q-function.
For example, the fitted Q iteration (Ernst, Geurts and Wehenkel, 2005) is used to estimate
Q.40 The algorithm then chooses the best treatment based on Q̂(Xti, z) with probability
1− ε

2 and chooses the other treatment with probability ε
2 : for each t,

Zεti ≡

{
arg maxz=0,1 Q̂(Xti, z) with probability 1− ε

2

1− arg maxz=0,1 Q̂(Xti, z) with probability ε
2 ,

Aε(x) =

{
ε
2 if Q̂(x, 1) < Q̂(x, 0)

1− ε
2 if Q̂(x, 1) > Q̂(x, 0).

Suppose that the function g(·) = Q̂(·, 1) − Q̂(·, 0) is continuous on X and is continuously
differentiable in a neighborhood of x with ∇g(x) 6= 0 for any x ∈ X such that g(x) = 0.
APS for this case is given by

pε(x) =


ε
2 if Q̂(x, 1) < Q̂(x, 0)

0.5 if Q̂(x, 1) = Q̂(x, 0)

1− ε
2 if Q̂(x, 1) > Q̂(x, 0).

(b) (Policy Gradient Methods) Policy gradient methods such as REINFORCE (Williams, 1992)
and Actor-Critic approximate the optimal policy function by parametrization and learn the
parameter using stochastic gradient ascent. Let π(x; θ) be a parametrization of the policy
function that is differentiable with respect to θ.41 Suppose that we have collected a set of
L trajectories {(xlt, zlt, ylt)

Tl
t=0 : l = 1, ..., L} by running the policy π(x; θ0) for L individuals.

Policy gradient methods use the trajectories to update the policy parameter to θ1 by
stochastic gradient ascent. The algorithms then use the updated policy function π(x; θ1)

to determine the treatment assignment for new episodes. For each t,

ZPGti ≡

{
1 with probability π(Xti; θ

1)

0 with probability 1− π(Xti; θ
1),

ATG(x) = π(x; θ1).

Suppose that the function π(·; θ1) is continuous. APS for this case is given by

pTG(x) = π(x; θ1).
40Suppose that we have collected a set of L four-tuples {(xltl , z

l
tl , y

l
tl , x

l
tl+1)}Ll=1 as a result of the agent interacting

with the dynamic environment. Given the dataset and an initial approximation Q̂ of Q (e.g., Q̂(x, z) = 0 for all
(x, z)), we repeat the following steps until some stopping condition is reached: 1. For each l = 1, ..., L, calculate
ql = yltl + γmaxz∈{0,1} Q̂(xltl+1, z); 2. Use {(xltl , z

l
tl , q

l)}Ll=1 and a supervised learning method to train a model
that predicts q from (x, z). Let the model be a new approximation Q̂ of Q. Possible supervised learning methods
used in the second step include tree-based methods, neural networks (Neural Fitted Q Iteration) and deep neural
networks (Deep Fitted Q Iteration).

41For example, π might be a softmax function with a linear index: π(x; θ) = exp(x′θ)
1+exp(x′θ) . Another example

is a neural network whose input is a representation of the state x, whose output is the treatment assignment
probability, and whose weights are represented by the parameter θ.
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B Notation and Lemmas

B.1 Basic Notations

For a scalar-valued differentiable function f : S ⊂ Rn → R, let ∇f : S → Rn be a gradient of f :
for every x ∈ S,

∇f(x) =

(
∂f(x)

∂x1
, · · · , ∂f(x)

∂xn

)′
.

Also, when the second-order partial derivatives of f exist, let D2f(x) be the Hessian matrix:

D2f(x) =


∂2f(x)
∂x2

1
· · · ∂2f(x)

∂x1∂xn
...

. . .
...

∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂x2
n


for each x ∈ S.

Let f : S ⊂ Rm → Rn be a function such that its first-order partial derivatives exist. For
each x ∈ S, let Jf(x) be the Jacobian matrix of f at x:

Jf(x) =


∂f1(x)
∂x1

· · · ∂f1(x)
∂xm

...
. . .

...
∂fn(x)
∂x1

· · · ∂fn(x)
∂xm

 .
For a positive integer n, let In denote the n× n identity matrix.

B.2 Differential Geometry

We provide some concepts and facts from differential geometry of twice continuously differentiable
sets, following Crasta and Malusa (2007). Let S ⊂ Rp be a twice continuously differentiable set.
For each x ∈ ∂S, we denote by νS(x) ∈ Rp the inward unit normal vector of ∂S at x, that is,
the unit vector orthogonal to all vectors in the tangent space of ∂S at x that points toward the
inside of A. For a set S ⊂ Rp, let dsS : Rp → R be the signed distance function of S, defined by

dsS(x) =

{
d(x, ∂S) if x ∈ cl(S)

−d(x, ∂S) if x ∈ Rp \ cl(S),

where d(x,B) = infy∈B ‖y − x‖ for any x ∈ Rp for a set B ⊂ Rp. Note that we can write
N(∂S, δ) = {x ∈ Rp : −δ < dsS(x) < δ} for δ > 0. Lastly, let Π∂S(x) = {y ∈ ∂S : ‖y − x‖ =

d(x, ∂S)} be the set of projections of x on ∂S.

Lemma B.1 (Corollary of Theorem 4.16, Crasta and Malusa (2007)). Let S ⊂ Rp be nonempty,
bounded, open, connected and twice continuously differentiable. Then the function dsS is twice
continuously differentiable on N(∂S, µ) for some µ > 0. In addition, for every x0 ∈ ∂S, Π∂S(x0+

tνS(x0)) = {x0} for every t ∈ (−µ, µ). Furthermore, for every x ∈ N(∂S, µ), Π∂S(x) is a
singleton, ∇dsS(x) = νS(y) and x = y + dsS(x)νS(y) for y ∈ Π∂S(x), and ‖∇dsS(x)‖ = 1.
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Proof. We apply results from Crasta and Malusa (2007). Let K = {x ∈ Rp : ‖x‖ ≤ 1}. K is
nonempty, compact, convex subset of Rp with the origin as an interior point. The polar body
of K, defined as K0 = {y ∈ Rp : y · x ≤ 1 for all x ∈ K}, is K itself. The gauge functions
ρK , ρK0 : Rp → [0,∞] of K and K0 are given by

ρK(x) ≡ inf{t ≥ 0 : x ∈ tK} = ‖x‖,
ρK0(x) ≡ inf{t ≥ 0 : x ∈ tK0} = ‖x‖.

Given ρK0 , the Minkowski distance from a set S ⊂ Rp is defined as

δS(x) ≡ inf
y∈S

ρK0(x− y), x ∈ Rp.

Note that we can write

dsS(x) =

{
δ∂S(x) if x ∈ cl(S)

−δ∂S(x) if x ∈ Rp \ cl(S).

It then follows from Theorem 4.16 of Crasta and Malusa (2007) that dsS is twice continuously
differentiable on N(∂S, µ) for some µ > 0, and for every x0 ∈ ∂S,

∇dsS(x0) =
νS(x0)

ρK(νS(x0))
=

νS(x0)

‖νS(x0)‖
= νS(x0),

where the last equality follows since νS(x0) is a unit vector. It then follows that ‖∇dsS(x0)‖ =

‖νS(x0)‖ = 1 for every x0 ∈ ∂S. Also, it is obvious that, for every x0 ∈ ∂S, Π∂S(x0) = {x0} and
x0 = x0 + dsS(x0)νS(x0), since dsS(x0) = 0. In addition, as stated in the proof of Theorem 4.16
of Crasta and Malusa (2007), µ is chosen so that (4.7) in Proposition 4.6 of Crasta and Malusa
(2007) holds for every x0 ∈ ∂S and every t ∈ (−µ, µ). That is, Π∂S(x0 + t∇ρK(νS(x0))) =

{x0} for every x0 ∈ ∂S and every t ∈ (−µ, µ). Since ∇ρK(νS(x0)) = νS(x0)
‖νS(x0)‖ = νS(x0),

Π∂S(x0 + tνS(x0)) = {x0} for every x0 ∈ ∂S and every t ∈ (−µ, µ).
Furthermore, for every x ∈ N(∂S, µ) \ ∂S, Π∂S(x) is a singleton as shown in the proof of

Theorem 4.16 of Crasta and Malusa (2007). Let π∂S(x) be the unique element in Π∂S(x). By
Lemma 4.3 of Crasta and Malusa (2007), for every x ∈ N(∂S, µ) \ ∂S,

∇dsS(x) =
νS(π∂S(x))

ρK(νS(π∂S(x)))
=

νS(π∂S(x))

‖νS(π∂S(x))‖
= νS(π∂S(x)),

where the last equality follows since νS(π∂S(x)) is a unit vector. It then follows that ‖∇dsS(x)‖ =

‖νS(π∂S(x))‖ = 1 for every x ∈ N(∂S, µ) \ ∂S.
Lastly, note that

δ∂S(x) =

{
dsS(x) if x ∈ N(∂S, µ) ∩ int(S)

−dsS(x) if x ∈ N(∂S, µ) \ cl(S),

and

∇δ∂S(x) =

{
∇dsS(x) if x ∈ N(∂S, µ) ∩ int(S)

−∇dsS(x) if x ∈ N(∂S, µ) \ cl(S),
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so δ∂S(x)∇δ∂S(x) = dsS(x)∇dsS(x) = dsS(x)νS(π∂S(x)) for every x ∈ N(∂S, µ) \ ∂S. By Proposi-
tion 3.3 (i) of Crasta and Malusa (2007), for every x ∈ N(∂S, µ) \ ∂S,

∇ρK(∇δ∂S(x)) =
x− π∂S(x)

δ∂S(x)
,

which implies that

x = π∂S(x) + δ∂S(x)∇ρK(∇δ∂S(x))

= π∂S(x) + δ∂S(x)
∇δ∂S(x)

‖∇δ∂S(x)‖
= π∂S(x) + dsS(x)νS(π∂S(x)).

We say that a set S ⊂ Rn is a m-dimensional C1 submanifold of Rn if for every point x ∈ S,
there exist an open neighborhood V ⊂ Rn of x and a one-to-one continuously differentiable
function φ from an open set U ⊂ Rm to Rn such that the Jacobian matrix Jφ(u) is of rank m
for all u ∈ U , and φ(U) = V ∩ S.

Lemma B.2. Let S ⊂ Rp be nonempty, bounded, open, connected and twice continuously differ-
entiable. Then ∂S is a (p− 1)-dimensional C1 submanifold of Rp,

Proof. Fix any x∗ ∈ ∂S. By Lemma B.1, ∇dsS(x∗) is nonzero. Without loss of generality, let
∂dsS(x∗)
∂xp

6= 0. Let ψ : Rp → Rp be the function such that ψ(x) = (x1, ..., xp−1, d
s
S(x)). ψ is

continuously differentiable, and the Jacobian matrix of ψ at x∗ is given by

Jψ(x∗) =


∂ψ1

∂x1
(x∗) · · · ∂ψ1

∂xp
(x∗)

...
. . .

...
∂ψp
∂x1

(x∗) · · · ∂ψp
∂xp

(x∗)

 =


0

Ip−1
...
0

∂dsS(x∗)
∂x1

· · · ∂dsS(x∗)
∂xp−1

∂dsS(x∗)
∂xp

 .

Since ∂dsS(x∗)
∂xp

6= 0, the Jacobian matrix is invertible. By the Inverse Function Theorem, there
exist an open set V containing x∗ and an open set W containing ψ(x∗) such that ψ : V → W

has an inverse function ψ−1 : W → V that is continuously differentiable. We make V small
enough so that ∂dsS(x)

∂xp
6= 0 for every x ∈ V . The Jacobian matrix of ψ−1 is given by Jψ−1(y) =

Jψ(ψ−1(y))−1 for all y ∈W .
Now note that ψ(x) = (x1, ..., xp−1, 0) for all x ∈ V ∩ ∂S by the definition of dsS . Let U =

{(x1, ..., xp−1) ∈ Rp−1 : x ∈ V ∩ ∂S} and φ : U → Rp be a function such that φ(u) = ψ−1((u, 0))

for all u ∈ U . Below we verify that φ is one-to-one and continously differentiable, that Jφ(u) is
of rank p− 1 for all u ∈ U , that φ(U) = V ∩ ∂S, and that U is open.

First, φ is one-to-one, since ψ−1 is one-to-one, and (u, 0) 6= (u′, 0) if u 6= u′. Second, φ is
continuously differentiable, since ψ−1 is so. The Jacobian matrix of φ at u ∈ U is by definition

Jφ(u) =


∂ψ−1

1
∂y1

((u, 0)) · · · ∂ψ−1
1

∂yp−1
((u, 0))

...
. . .

...
∂ψ‘

p−1

∂y1
((u, 0)) · · · ∂ψ−1

p

∂yp−1
((u, 0))

 .
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Note that this is the left p× (p− 1) submatrix of Jψ−1((u, 0)). Since Jψ−1((u, 0)) has full rank,
Jφ(u) is of rank p− 1. Moreover,

φ(U) = {ψ−1((u, 0)) : u ∈ U}
= {ψ−1((x1, ..., xp−1, 0)) : x ∈ V ∩ ∂S}
= {ψ−1(ψ(x)) : x ∈ V ∩ ∂S}
= V ∩ ∂S.

Lastly, we show that U is open. Pick any ū ∈ U . Then, there exists x̄p ∈ R such that
(ū, x̄p) ∈ V ∩ ∂S. As (ū, x̄p) ∈ V ∩ ∂S, dsS((ū, x̄p)) = 0. Since ∂dsS((ū,x̄p))

∂xp
6= 0, it follows by the

Implicit Function Theorem that there exist an open set S ⊂ Rp−1 containing ū and a continuously
differentiable function g : S → R such that g(ū) = x̄p and dsS(u, g(u)) = 0 for all u ∈ S. Since
g is continuous, (ū, g(ū)) ∈ V and V is open, there exists an open set S′ ⊂ S containing ū such
that (u, g(u)) ∈ V for all u ∈ S′. By the definition of dsS , d

s
S(x) = 0 if and only if x ∈ ∂S.

Therefore, if u ∈ S′, (u, g(u)) must be contained by ∂S, for otherwise dsS(u, g(u)) 6= 0, which is
a contradiction. Thus, (u, g(u)) ∈ V ∩ ∂S and hence u ∈ U for all u ∈ S′. This implies that S′

is an open subset of U containing ū, which proves that U is open.

B.3 Geometric Measure Theory

We provide some concepts and facts from geometric measure theory, following Krantz and Parks
(2008). Recall that for a function f : S ⊂ Rm → Rn and a point x ∈ S at which f is differentiable,
Jf(x) denotes the Jacobian matrix of f at x.

Lemma B.3 (Coarea Formula, Lemma 5.1.4 and Corollary 5.2.6 of Krantz and Parks (2008)).
If f : Rm → Rn is a Lipschitz function and m ≥ n, then∫

S
g(x)Jnf(x)dLm(x) =

∫
Rn

∫
{x′∈S:f(x′)=y}

g(x)dHm−n(x)dLn(y)

for every Lebesgue measurable subset S of Rm and every Lm-measurable function g : S → R,
where for each x ∈ Rm at which f is differentiable,

Jnf(x) =
√

det((Jf(x))(Jf(x))′).

Let S be an m-dimensional C1 submanifold of Rn. Let x ∈ S and let φ : U ⊂ Rm → Rn be
as in the definition of m-dimensional C1 submanifold. We denote by TS(x) the tangent space of
S at x, {Jφ(u)v : v ∈ Rm}, where u = φ−1(x).

Lemma B.4 (Area Formula, Lemma 5.3.5 and Theorem 5.3.7 of Krantz and Parks (2008)).
Suppose m ≤ ν and f : Rn → Rν is Lipschitz. If S is an m-dimensional C1 submanifold of Rn,
then ∫

S
g(x)JSmf(x)dHm(x) =

∫
Rν

∑
x∈S:f(x)=y

g(x)dHm(y)
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for every Hm-measurable function g : S → R, where for each x ∈ Rn at which f is differentiable,

JSmf(x) =
Hm({Jf(x)y : y ∈ P})

Hm(P )

for an arbitrary m-dimensional parallelepiped P contained in TS(x).

Let S ⊂ Rp. For each x ∈ Rp at which dsS is differentiable and for each λ ∈ R, let ψS(x, λ) =

x+ λ∇dsS(x).

Lemma B.5. Let Ω ⊂ Rp, and suppose that there exists a partition {Ω1, ...,ΩM} of Ω such that

(i) dist(Ωm,Ωm′) > 0 for any m,m′ ∈ {1, ...,M} such that m 6= m′;

(ii) Ωm is nonempty, bounded, open, connected and twice continuously differentiable for each
m ∈ {1, ...,M}.

Then there exists µ > 0 such that dsΩ is twice continuously differentiable on N(∂Ω, µ) and that∫
N(∂Ω,δ)

g(x)dx =

∫ δ

−δ

∫
∂Ω
g(u+ λνΩ(u))J∂Ω

p−1ψΩ(u, λ)dHp−1(u)dλ

for every δ ∈ (0, µ) and every function g : Rp → R that is integrable on N(∂Ω, δ), where for
each fixed λ ∈ (−µ, µ), J∂Ω

p−1ψΩ(·, λ) is calculated by applying the operation J∂Ω
p−1 to the function

ψΩ(·, λ). Futhermore, J∂Ω
p−1ψΩ(x, ·) is continuously differentiable in λ and J∂Ω

p−1ψΩ(x, 0) = 1 for

every x ∈ ∂Ω, and J∂Ω
p−1ψΩ(·, ·) and

∂J∂Ω
p−1ψΩ(·,·)
∂λ are bounded on ∂Ω× (−µ, µ).

Proof. Let µ̄ = 1
2 minm,m′∈{1,...,M},m 6=m′ dist(Ω∗m,Ωm′) so that {N(∂Ωm, µ̄)}Mm=1 is a partition of

N(∂Ω, µ̄). Note that for every m ∈ {1, ...,M}, dsΩ(x) = dsΩm(x) for every x ∈ N(∂Ωm, µ̄). By
Lemma B.1, for every m ∈ {1, ...,M}, there exists µ̄m > 0 such that dsΩm is twice continuously
differentiable on N(∂Ωm, µ̄m). Letting µ ∈ (0,min{µ̄, µ̄1, ..., µ̄M}), we have that dsΩ is twice
continuously differentiable on N(∂Ω, µ). This implies that dsΩ is Lipschitz on N(∂Ω, µ). For
every δ ∈ (0, µ) and every function g : Rp → R that is integrable on N(∂Ω, δ),∫

N(∂Ω,δ)
g(x)dx =

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ)}

g(x)
√

det(‖∇dsΩ(x)‖)dx

=

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ)}

g(x)
√

det(∇dsΩ(x)′∇dsΩ(x))dx

=

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ)}

g(x)
√

det((JdsΩ(x))(JdsΩ(x))′)dx

=

∫
R

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ),dsΩ(x′)=λ}

g(x)dHp−1(x)dλ

=

∫ δ

−δ

∫
{x′∈Rp:dsΩ(x′)=λ}

g(x)dHp−1(x)dλ, (12)

where the first equality follows since ‖∇dsΩ(x)‖ = 1 for every x ∈ N(∂Ω, δ) by Lemma B.1, the
third equality follows from the definition of the Jacobian matrix, and the fourth equality follows
from Lemma B.3.
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Let Γ(λ) = {x ∈ Rp : dsΩ(x) = λ} for each λ ∈ (−µ, µ). Since ∇dsΩ is differentiable on
N(∂Ω, µ), ψΩ(x, λ) is defined on N(∂Ω, µ)×R. We show that {ψΩ(x0, λ) : x0 ∈ ∂Ω} ⊂ Γ(λ) for
every λ ∈ (−µ, µ). By Lemma B.1, for every x0 ∈ ∂Ω, ψΩ(x0, λ) = x0 + λνΩ(x0) and

Π∂Ω(ψΩ(x0, λ)) = Π∂Ω(x0 + λνΩ(x0)) = {x0}.

Hence,

d(ψΩ(x0, λ), ∂Ω) = ‖ψΩ(x0, λ)− x0‖ = ‖λνΩ(x0)‖ = |λ|.

Since νΩ(x0) is an inward normal vector, ψΩ(x0, λ) ∈ cl(Ω) if 0 ≤ λ < µ, and ψΩ(x, λ0) ∈
Rp \ cl(Ω) if −µ < λ < 0. It follows that

dsΩ(ψΩ(x0, λ)) =

{
|λ| if 0 ≤ λ < µ

−|λ| if µ < λ < 0

= λ,

so {ψΩ(x0, λ) : x0 ∈ ∂Ω} ⊂ Γ(λ). It also holds that Γ(λ) ⊂ {ψΩ(x0, λ) : x0 ∈ ∂Ω}, since by
Lemma B.1, for every x ∈ Γ(λ),

ψΩ(π∂Ω(x), λ) = π∂Ω(x) + λ∇dsΩ(π∂Ω(x)) = π∂Ω(x) + dsΩ(x)νΩ(π∂Ω(x)) = x,

where π∂Ω(x) is the unique element in Π∂Ω(x). Thus, {ψΩ(x0, λ) : x0 ∈ ∂Ω} = Γ(λ).
Now note that {∂Ωm}Mm=1 is a partition of ∂Ω, since dist(Ωm,Ωm′) > 0 for any m,m′ ∈

{1, ...,M} such that m 6= m′. By Lemma B.2, ∂Ωm is a (p − 1)-dimensional C1 submanifold
of Rp for every m ∈ {1, ...,M}, and hence ∂Ω is a (p − 1)-dimensional C1 submanifold of
Rp. Furthermore, since ∇dsΩ is continuously differentiable on N(∂Ω, µ), ψΩ(·, λ) is continuously
differentiable on N(∂Ω, µ), which implies that ψΩ(·, λ) is Lipschitz on N(∂Ω, µ) for every λ ∈ R.
Applying Lemma B.4, we have that for every λ ∈ (−µ, µ),∫

∂Ω
g(u+ λνΩ(u))J∂Ω

p−1ψΩ(u, λ)dHp−1(u) =

∫
∂Ω
g(ψΩ(u, λ))J∂Ω

p−1ψΩ(u, λ)dHp−1(u)

=

∫
Rp

∑
u∈∂Ω:ψΩ(u,λ)=x

g(ψΩ(u, λ))dHp−1(x). (13)

If x /∈ {ψΩ(u, λ) : u ∈ ∂Ω}, {u ∈ ∂Ω : ψΩ(u, λ) = x} = ∅. If x ∈ {ψΩ(u, λ) : u ∈ ∂Ω}, there exists
u ∈ ∂Ω such that x = ψΩ(u, λ). Since Π∂Ω(x) = Π∂Ω(u + λ∇dsΩ(u)) = Π∂Ω(u + λνΩ(u)) = {u}
by Lemma B.1, such u is unique, and hence {u ∈ ∂Ω : ψΩ(u, λ) = x} is a singleton. It follow
that ∫

Rp

∑
u∈∂Ω:ψΩ(u,λ)=x

g(ψΩ(u, λ))dHp−1(x) =

∫
{ψΩ(u,λ):u∈∂Ω}

g(x)dHp−1(x)

=

∫
Γ(λ)

g(x)dHp−1(x), (14)

A-14



where the last equality holds since {ψΩ(u, λ) : u ∈ ∂Ω} = Γ(λ). Combining (12), (13) and (14),
we obtain ∫

N(∂Ω,δ)
g(x)dx =

∫ δ

−δ

∫
∂Ω
g(u+ λνΩ(u))J∂Ω

p−1ψΩ(u, λ)dHp−1(u)dλ.

We next show that J∂Ω
p−1ψΩ(x, ·) is continuously differentiable in λ and J∂Ω

p−1ψΩ(x, 0) = 1

for every x ∈ ∂Ω. Fix an x ∈ ∂Ω, and let VΩ(x) be an arbitrary p × (p − 1) matrix whose
columns v1(x), ..., vp−1(x) ∈ Rp form an orthonormal basis of T∂Ω(x). Let P (x) ⊂ T∂Ω(x)

be a parallelepiped determined by v1(x), ..., vp−1(x), that is, let P (x) = {
∑p−1

k=1 ckvk(x) : 0 ≤
ck ≤ 1 for k = 1, ..., p− 1}. Since v1(x), ..., vp−1(x) are linearly independent, P (x) is a (p − 1)-
dimensional parallelepiped. It follows that for each fixed λ ∈ R,

{JψΩ(x, λ)y : y ∈ P (x)} = {JψΩ(x, λ)

p−1∑
k=1

ckvk(x) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1}

= {
p−1∑
k=1

ckJψΩ(x, λ)vk(x) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1}

= {
p−1∑
k=1

ckwk(x, λ) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1},

where wk(x, λ) = JψΩ(x, λ)vk(x) for k = 1, ..., p − 1. Since JψΩ(x, λ)vk(x) is the k-th column
of JψΩ(x, λ)VΩ(x), {JψΩ(x, λ)y : y ∈ P (x)} is the parallelepiped determined by the columns of
JψΩ(x, λ)VΩ(x). By Proposition 5.1.2 of Krantz and Parks (2008), we have that

J∂Ω
p−1ψΩ(x, λ) =

Hp−1({
∑p−1

k=1 ckwk(x, λ) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1})
Hp−1(P (x))

=

√
det((JψΩ(x, λ)VΩ(x))′(JψΩ(x, λ)VΩ(x)))√

det(VΩ(x)′VΩ(x))

=

√
det((VΩ(x) + λD2dsΩ(x)VΩ(x))′(VΩ(x) + λD2dsΩ(x)VΩ(x)))√

det(Ip−1)

=
√

det(VΩ(x)′VΩ(x) + 2VΩ(x)′λD2dsΩ(x)VΩ(x) + VΩ(x)′(λD2dsΩ(x))2VΩ(x))

=
√

det(Ip−1 + λVΩ(x)′(2D2dsΩ(x) + λ(D2dsΩ(x))2)VΩ(x)))

=
√

det(Ip + λVΩ(x)VΩ(x)′(2D2dsΩ(x) + λ(D2dsΩ(x))2)),

where we use the fact that VΩ(x)′VΩ(x) = Ip−1 and the fact that det(Im +AB) = det(In +BA)

for an m × n matrix A and an n ×m matrix B (the Weinstein-Aronszajn identity). For every
x ∈ ∂Ω, J∂Ω

p−1ψΩ(x, ·) is continuously differentiable in λ, and J∂Ω
p−1ψΩ(x, 0) =

√
det(Ip) = 1.

Lastly, we show that J∂Ω
p−1ψΩ(·, ·) and

∂J∂Ω
p−1ψΩ(·,·)
∂λ are bounded on ∂Ω × (−µ, µ). Let f, h :

∂Ω× Rp×(p−1) → Rp×p be functions such that

f(x,A) = 2AA′D2dsΩ(x),

h(x,A) = AA′(D2dsΩ(x))2.
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Also, let k : ∂Ω× R× Rp×(p−1) → R be a function such that

k(x, λ,A) =
√

det(Ip + λf(x,A) + λ2h(x,A)).

Observe that

J∂Ω
p−1ψΩ(x, λ) = k(x, λ, VΩ(x))

and that

∂J∂Ω
p−1ψΩ(x, λ)

∂λ

=
∂k(x, λ,A)

∂λ

∣∣∣∣
A=VΩ(x)

=
1

2k(x, λ,A)

∑
i,j

∂det(Ip + λf(x,A) + λ2h(x,A))

∂bij
(fij(x,A) + 2λhij(x,A))

∣∣∣∣∣∣
A=VΩ(x)

,

where ∂det(B)
∂bij

denotes the partial derivative of the function det : Rp×p → R with respect to the
(i, j) entry of B.

Note that k(·, ·, ·) and ∂k(·,·,·)
∂λ are continuous on ∂Ω × R × Rp×(p−1) (except at the points

for which k(x, λ,A) = 0), since det is infinitely differentiable, and f and h are continuous on
∂Ω × Rp×(p−1). Let S = {(x, λ,A) ∈ ∂Ω × [−µ, µ] × Rp×(p−1) : ‖aj‖ = 1 for k = 1, ..., p− 1},
where aj denotes the jth column of A. Since k(·, ·, ·) and ∂k(·,·,·)

∂λ are continuous and S is
closed and bounded, k̄ = max(x,λ,A)∈S |k(x, λ,A)| and k̄′ = max(x,λ,A)∈S |

∂k(x,λ,A)
∂λ | exist. Since

(x, λ, VΩ(x)) ∈ S for every (x, λ) ∈ ∂Ω × (−µ, µ), it follows that |J∂Ω
p−1ψΩ(x, λ)| ≤ k̄ and

|∂J
∂Ω
p−1ψΩ(x,λ)

∂λ | ≤ k̄′ for every (x, λ) ∈ ∂Ω× (−µ, µ).

B.4 Other Lemmas

Lemma B.6. Let {Vi}∞i=1 be i.i.d. random variables such that E[V 2
i ] < ∞. If Assumption 1

holds, then for l ≥ 0 and m = 0, 1,

E[Vip
A(Xi; δ)

l1{pA(Xi; δ) ∈ (0, 1)}m]→ E[ViA(Xi)
l1{A(Xi) ∈ (0, 1)}m]

as δ → 0. Moreover, if, in addition, δn → 0 as n→∞, then for l ≥ 0,

1

n

n∑
i=1

Vip
A(Xi; δn)lIi,n

p−→ E[ViA(Xi)
l1{A(Xi) ∈ (0, 1)}]

as n→∞.

Proof. Note that E[ 1
n

∑n
i=1 Vip

A(Xi; δn)lIi,n] = E[Vip
A(Xi; δn)l1{pA(Xi; δn) ∈ (0, 1)}]. We show

that

E[Vip
A(Xi; δ)

l1{pA(Xi; δ) ∈ (0, 1)}m]→ E[ViA(Xi)
l1{A(Xi) ∈ (0, 1)}m]
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for l ≥ 0 and m = 0, 1 as δ → 0, and that

Var(
1

n

n∑
i=1

Vip
A(Xi; δn)lIi,n)→ 0

for l ≥ 0 as n→∞. For the first part, we have

E[Vip
A(Xi; δ)

l1{pA(Xi; δ) ∈ (0, 1)}m] =

∫
X
E[Vi|Xi = x]pA(x; δ)l1{pA(x; δ) ∈ (0, 1)}mfX(x)dx.

Suppose A is continuous at x and A(x) ∈ (0, 1). Then limδ→0 p
A(x; δ) = A(x) by Part 1 of

Corollary A.1, and hence pA(x; δ) ∈ (0, 1) for sufficiently small δ > 0. It follows that 1{pA(x; δ) ∈
(0, 1)} → 1 = 1{A(x) ∈ (0, 1)} as δ → 0. Suppose x ∈ int(X0) ∪ int(X1). Then B(x, δ) ⊂ X0 or
B(x, δ) ⊂ X1 for sufficiently small δ > 0 by the fact that int(X0) and int(X1) are open, and hence
1{pA(x; δ) ∈ (0, 1)} → 0 = 1{A(x) ∈ (0, 1)} as δ → 0. Therefore, limδ→0 p

A(x; δ) = A(x) and
limδ→0 1{pA(x; δ) ∈ (0, 1)} = 1{A(x) ∈ (0, 1)} for almost every x ∈ X , since A is continuous at
x for almost every x ∈ X by Assumption 1 (a), and either A(x) ∈ (0, 1) or x ∈ int(X0)∪ int(X1)

for almost every x ∈ X by Assumption 1 (b). By the Dominated Convergence Theorem,

E[Vip
A(Xi; δ)

l1{pA(Xi; δ) ∈ (0, 1)}m]→
∫
X
E[Vi|Xi = x]A(x)l1{A(x) ∈ (0, 1)}mfX(x)dx

= E[ViA(Xi)
l1{A(Xi) ∈ (0, 1)}m]

as δ → 0. As for variance,

Var(
1

n

n∑
i=1

Vip
A(Xi; δn)lIi,n) ≤ 1

n
E[V 2

i p
A(Xi; δn)2l(Ii,n)2]

≤ 1

n
E[V 2

i ]

→ 0

as n→∞.

Lemma B.7. Let {(δn, Sn)}∞n=1 be any sequence of positive numbers and positive integers. Fix
x ∈ X , and let X∗1 , ..., X

∗
Sn

be Sn independent draws from the uniform distribution on B(x, δn)

so that

ps(x; δn) =
1

Sn

Sn∑
s=1

A(X∗s ).

Then,

E[ps(x; δn)− pA(x; δn)] = 0,

E[(ps(x; δn)− pA(x; δn))2] ≤ 1

Sn
,

|E[ps(x; δn)2 − pA(x; δn)2]| ≤ 1

Sn
,

E[(ps(x; δn)2 − pA(x; δn)2)2] ≤ 4

Sn
,

Pr(ps(x; δn) ∈ {0, 1}) ≤ (1− pA(x; δn))Sn + pA(x; δn)Sn .
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Moreover, for any ε > 0,

E[|ps(x; δn)− pA(x; δn)|] ≤ 1

Snε2
+ ε,

and if Sn →∞, then

E[|ps(x; δn)− pA(x; δn)|]→ 0

as n→∞.

Proof. By construction, E[A(X∗s )] = pA(x; δn), so

E[ps(x; δn)− pA(x; δn)] = E[
1

Sn

Sn∑
s=1

A(X∗s )]− pA(x; δn)

= E[A(X∗s )]− pA(x; δn)

= 0.

We have

E[(ps(x; δn)− pA(x; δn))2] = Var(ps(x; δn))

= Var(
1

Sn

Sn∑
s=1

A(X∗s ))

=
1

Sn
Var(A(X∗s ))

≤ 1

Sn
E[A(X∗s )2]

≤ 1

Sn
,

|E[ps(x; δn)2 − pA(x; δn)2]| = |Var(ps(x; δn)) + (E[ps(x; δn)])2 − pA(x; δn)2|

≤ 1

Sn
+ |(pA(x; δn))2 − pA(x; δn)2|

=
1

Sn
,

and

E[(ps(x; δn)2 − pA(x; δn)2)2]

= E[(ps(x; δn) + pA(x; δn))2(ps(x; δn)− pA(x; δn))2]

≤ 4E[(ps(x; δn)− pA(x; δn))2]

≤ 4

Sn
.

Now note that we have the following bounds on Pr(A(X∗s ) = 0) and Pr(A(X∗s ) = 1):

0 ≤ Pr(A(X∗s ) = 0) ≤ 1− pA(x; δn),

0 ≤ Pr(A(X∗s ) = 1) ≤ pA(x; δn).
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It follows that

0 ≤ Pr(ps(x; δn) ∈ {0, 1})
= Pr(A(X∗s ) = 0)Sn + Pr(A(X∗s ) = 1)Sn

≤ (1− pA(x; δn))Sn + pA(x; δn)Sn .

Lastly, for any ε > 0,

E[|ps(x; δn)− pA(x; δn)|]
= E[|ps(x; δn)− pA(x; δn)|||ps(x; δn)− pA(x; δn)| ≥ ε] Pr(|ps(x; δn)− pA(x; δn)| ≥ ε)

+ E[|ps(x; δn)− pA(x; δn)|||ps(x; δn)− pA(x; δn)| < ε] Pr(|ps(x; δn)− pA(x; δn)| < ε)

< 1 · Var(ps(x; δn))

ε2
+ ε · 1

≤ 1

Snε2
+ ε,

where we use Chebyshev’s inequality for the first inequality. We can make E[|ps(x; δn) −
pA(x; δn)|] arbitrarily close to zero by taking sufficiently small ε > 0 and sufficiently large Sn,
which implies that E[|ps(x; δn)− pA(x; δn)|] = o(1) if Sn →∞.

Lemma B.8. Let Isi,n = 1{ps(Xi; δn) ∈ (0, 1)}, and let {Vi}∞i=1 be i.i.d. random variables such
that E[V 2

i ] <∞. If Assumption 1 holds, Sn →∞, and δn → 0, then

1

n

n∑
i=1

Vip
s(Xi; δn)lIsi,n −

1

n

n∑
i=1

Vip
A(Xi; δn)lIi,n = op(1)

for l = 0, 1, 2, 3, 4. If, in addition, Assumption 5 holds, and E[Vi|Xi] is bounded, then

1√
n

n∑
i=1

Vip
s(Xi; δn)lIsi,n −

1√
n

n∑
i=1

Vip
A(Xi; δn)lIi,n = op(1)

for l = 0, 1, 2.

Proof. We have

1

n

n∑
i=1

Vip
s(Xi; δn)lIsi,n −

1

n

n∑
i=1

Vip
A(Xi; δn)lIi,n

=
1

n

n∑
i=1

Vip
s(Xi; δn)l(Isi,n − Ii,n) +

1

n

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii,n.
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We first consider 1
n

∑n
i=1 Vi(p

s(Xi; δn)l − pA(Xi; δn)l)Ii,n. By Lemma B.7, for l = 0, 1, 2,

|E[
1

n

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii,n]|

= |E[Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii,n]|

= E[|E[Vi|Xi]||E[ps(Xi; δn)l − pA(Xi; δn)l|Xi]|Ii,n]

≤ 1

Sn
E[|E[Vi|Xi]|Ii,n]

= O(S−1
n ).

Also, by Lemma B.7,

|E[
1

n

n∑
i=1

Vi(p
s(Xi; δn)3 − pA(Xi; δn)3)Ii,n]|

= |E[Vi(p
s(Xi; δn)− pA(Xi; δn))(ps(Xi; δn)2 + ps(Xi; δn)pA(Xi; δn) + pA(Xi; δn)2)Ii,n]|

≤ E[|E[Vi|Xi]||E[(ps(Xi; δn)− pA(Xi; δn))(ps(Xi; δn)2 + ps(Xi; δn)pA(Xi; δn) + pA(Xi; δn)2)|Xi]|Ii,n]

≤ 3E[|E[Vi|Xi]|E[|ps(Xi; δn)− pA(Xi; δn)||Xi]Ii,n]

= o(1),

and

|E[
1

n

n∑
i=1

Vi(p
s(Xi; δn)4 − pA(Xi; δn)4)Ii,n]|

= |E[Vi(p
s(Xi; δn)2 + pA(Xi; δn)2)(ps(Xi; δn) + pA(Xi; δn))(ps(Xi; δn)− pA(Xi; δn))Ii,n]|

≤ E[|E[Vi|Xi]||E[(ps(Xi; δn)2 + pA(Xi; δn)2)(ps(Xi; δn) + pA(Xi; δn))(ps(Xi; δn)− pA(Xi; δn))|Xi]|Ii,n]

≤ 4E[|E[Vi|Xi]|E[|ps(Xi; δn)− pA(Xi; δn)||Xi]Ii,n]

= o(1).

As for variance, for l = 0, 1, 2,

Var(
1

n

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii,n) ≤ 1

n
E[V 2

i (ps(Xi; δn)l − pA(Xi; δn)l)2Ii,n]

≤ 1

n
E[E[V 2

i |Xi]E[(ps(Xi; δn)l − pA(Xi; δn)l)2|Xi]Ii,n]

≤ 4

nSn
E[E[V 2

i |Xi]Ii,n]

= O((nSn)−1),

and for l = 3, 4,

Var(
1

n

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii,n) ≤ 1

n
E[V 2

i (ps(Xi; δn)l − pA(Xi; δn)l)2Ii,n]

≤ 1

n
E[V 2

i Ii,n]

= o(1).
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Therefore, 1
n

∑n
i=1 Vi(p

s(Xi; δn)l − pA(Xi; δn)l)Ii,n = op(1) if Sn → ∞ for l = 0, 1, 2, 3, 4, and
1√
n

∑n
i=1 Vi(p

s(Xi; δn)l − pA(Xi; δn)l)Ii,n = op(1) if n−1/2Sn →∞ for l = 0, 1, 2.
We next show that 1

n

∑n
i=1 Vip

s(Xi; δn)l(Isi,n − Ii,n) = op(1) if Sn →∞ and δn → 0 for l ≥ 0.
We have

|E[
1

n

n∑
i=1

Vip
s(Xi; δn)l(Isi,n − Ii,n)]| = |E[Vip

s(Xi; δn)l(Isi,n − Ii,n)]|

≤ E[|E[Vi|Xi]||E[ps(Xi; δn)l(Isi,n − Ii,n)|Xi]|]
≤ E[|E[Vi|Xi]|E[|Isi,n − Ii,n||Xi]].

Note that by construction, 1{ps(Xi; δn) ∈ (0, 1)} ≤ 1{pA(Xi; δn) ∈ (0, 1)} with probability one
conditional on Xi = x, so that

E[|Isi,n − Ii,n||Xi = x] = −E[Isi,n − Ii,n|Xi = x].

Suppose A is continuous at x and A(x) ∈ (0, 1). Then limδ→0 p
A(x; δ) = A(x) ∈ (0, 1) by Part 1

of Corollary A.1, and hence pA(x; δn) ∈ [ε, 1 − ε] for sufficiently small δn > 0 for some constant
ε ∈ (0, 1/2). It follows that

E[Isi,n|Xi = x] = 1− Pr(ps(x; δn) ∈ {0, 1})
≥ 1− (1− pA(x; δn))Sn − pA(x; δn)Sn

≥ 1− 2(1− ε)Sn

→ 1

as Sn → ∞, where the first inequality follows from Lemma B.7. This implies that E[Isi,n −
Ii,n|Xi = x]→ 0 as n→∞. Suppose x ∈ int(X0)∪int(X1). Then B(x, δn) ⊂ X0 or B(x, δn) ⊂ X1

for sufficiently small δn > 0 by the fact that int(X0) and int(X1) are open, and hence pA(x; δn) ∈
{0, 1} and ps(x; δn) ∈ {0, 1} for sufficiently small δn > 0, so that E[Isi,n − Ii,n|Xi = x] → 0 as
n→∞. Therefore, E[Isi,n − Ii,n|Xi = x]→ 0 for almost every x ∈ X , since A is continuous at x
for almost every x ∈ X by Assumption 1 (a), and either A(x) ∈ (0, 1) or x ∈ int(X0) ∪ int(X1)

for almost every x ∈ X by Assumption 1 (b). By the Dominated Convergence Theorem,

−E[|E[Vi|Xi]|E[Isi,n − Ii,n|Xi]]→ 0

as n→∞.
As for variance,

Var(
1

n

n∑
i=1

Vip
s(Xi; δn)l(Isi,n − Ii,n)) ≤ 1

n
E[V 2

i p
s(Xi; δn)2l(Isi,n − Ii,n)2]

≤ 1

n
E[V 2

i ]

→ 0.
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Lastly, we show that, for l ≥ 0, 1√
n

∑n
i=1 Vip

s(Xi; δn)l(Isi,n − Ii,n) = op(1) if Assumption 5

holds, and E[Vi|Xi] is bounded. Let ηn = γ logn
Sn

, where γ is the one satisfying Assumption 5.
We have

|E[
1√
n

n∑
i=1

Vip
s(Xi; δn)l(Isi,n − Ii,n)]|

≤
√
nE[|E[Vi|Xi]|E[|Isi,n − Ii,n||Xi]]

= −
√
nE[|E[Vi|Xi]|E[Isi,n − 1|Xi]Ii,n]

≤
√
nE[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn))Ii,n]

=
√
nE[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn))1{pA(Xi; δn) ∈ (0, ηn) ∪ (1− ηn, 1)}]

+
√
nE[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn))1{pA(Xi; δn) ∈ [ηn, 1− ηn]}]

≤ (sup
x∈X
|E[Vi|Xi = x]|)(

√
nPr(pA(Xi; δn) ∈ (0, ηn) ∪ (1− ηn, 1)) + 2

√
n(1− ηn)Sn),

where the second equality follows from the fact that Isi,n ≤ Ii,n with strict inequality only if
Ii,n = 1. By Assumption 5,

√
nPr(pA(Xi; δn) ∈ (0, ηn)∪(1−ηn, 1)) = o(1). As for

√
n(1−ηn)Sn ,

first observe that ηn = γ logn
Sn

= γ logn
n1/2

1
n−1/2Sn

→ 0, since n−1/2Sn →∞ and logn
n1/2 → 0. Using the

fact that et ≥ 1 + t for every t ∈ R, we have
√
n(1− ηn)Sn ≤

√
n(e−ηn)Sn

=
√
ne−ηnSn

=
√
ne−γ logn

=
√
nn−γ

= n1/2−γ

→ 0,

since γ > 1/2. As for variance,

Var(
1√
n

n∑
i=1

Vip
s(Xi; δn)l(Isi,n − Ii,n)) ≤ E[V 2

i p
s(Xi; δn)2l(Isi,n − Ii,n)2]

≤ E[V 2
i |Isi,n − Ii,n|]

= E[E[V 2
i |Xi]E[|Isi,n − Ii,n||Xi]]

= o(1).

C Proofs

C.1 Proof of Proposition 1

Suppose that Assumptions 1 and 2 hold. Here, we only show that

(a) E[Y1i − Y0i|Xi = x] is identified for every x ∈ int(X ) such that pA(x) ∈ (0, 1).
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(b) Let S be any open subset of X such that pA(x) exists for all x ∈ S. Then E[Y1i−Y0i|Xi ∈ S]

is identified only if pA(x) ∈ (0, 1) for almost every x ∈ S.

The results for E[Di(1)−Di(0)|Xi = x] and E[Di(1)−Di(0)|Xi ∈ S] are obtained by a similar
argument.

Proof of Part (a). Pick an x ∈ int(X ) such that pA(x) ∈ (0, 1). If A(x) ∈ (0, 1), E[Y1i −
Y0i|Xi = x] and E[Di(1)−Di(0)|Xi = x] are trivially identified by Property 1:

E[Yi|Xi = x, Zi = 1]− E[Yi|Xi = x, Zi = 0] = E[Y1i − Y0i|Xi = x].

We next consider the case where A(x) ∈ {0, 1}. Since x ∈ int(X ), B(x, δ) ⊂ X for any
sufficiently small δ > 0. Moreover, since pA(x) = limδ→0 p

A(x; δ) ∈ (0, 1), pA(x; δ) ∈ (0, 1) for
any sufficiently small δ > 0. This implies that we can find points x0,δ, x1,δ ∈ B(x, δ)(⊂ X ) such
that A(x0,δ) < 1 and A(x1,δ) > 0 for any sufficiently small δ > 0, for otherwise pA(x; δ) ∈ {0, 1}.
Noting that x0,δ → x and x1,δ → x as δ → 0,

lim
δ→0

(E[Yi|Xi = x1,δ, Zi = 1]− E[Yi|Xi = x0,δ, Zi = 0]) = lim
δ→0

(E[Yi1|Xi = x1,δ]− E[Yi0|Xi = x0,δ])

= E[Y1i − Y0i|Xi = x],

where the first equality follows from Property 1, and the second from Assumption 2.

Proof of Part (b).
Suppose to the contrary that Lp({x ∈ S : pA(x) ∈ {0, 1}}) > 0. Without loss of generality,

assume Lp({x ∈ S : pA(x) = 1}) > 0. The proof proceeds in four steps.

Step C.1.1. Lp(S ∩ X1) > 0.

Proof. By Assumption 1, A is continuous almost everywhere. Part 1 of Cororally A.1 then
implies that pA(x) = A(x) for almost every x ∈ {x∗ ∈ S : pA(x∗) = 1}. Since Lp({x ∈ S :

pA(x) = 1}) > 0, Lp({x ∈ S : pA(x) = 1, pA(x) = A(x)}) > 0, and hence Lp(S ∩ X1) > 0.

Step C.1.2. S ∩ int(X1) 6= ∅.

Proof. Suppose that S ∩ int(X1) = ∅. Then, we must have that S ∩ X1 ⊂ X1 \ int(X1). It then
follows that Lp(S ∩ X1) ≤ Lp(X1 \ int(X1)) = Lp(X1)−Lp(int(X1)) = 0, where the last equality
holds by Assumption 1. But this is a contradiction to the result from Step C.1.1.

Step C.1.3. pA(x) = 1 for any x ∈ int(X1).

Proof. Pick any x ∈ int(X1). By the definition of interior, B(x, δ) ⊂ X1 for any sufficiently small
δ > 0. Therefore, pA(x; δ) = 1 for any sufficiently small δ > 0.

Step C.1.4. E[Y1i − Y0i|Xi ∈ S] is not identified.
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Proof. We first introduce some notation. Let Q be the set of all distributions of (Y1i, Y0i, Xi, Zi)

satisfying Property 1 and Assumptions 1 and 2. Let P be the set of all distributions of (Yi, Xi, Zi).
Let T : Q → P be a function such that, for Q ∈ Q, T (Q) is the distribution of (ZiY1i + (1 −
Zi)Y0i, Xi, Zi), where the distribution of (Y1i, Y0i, Xi, Zi) is Q. Let Q0 and P0 denote the true
distributions of (Y1i, Y0i, Xi, Zi) and (Yi, Xi, Zi), respectively. Given P0, the identified set of
E[Y1i − Y0i|Xi ∈ S] is given by {EQ[Y1i − Y0i|Xi ∈ S] : P0 = T (Q), Q ∈ Q}, where EQ[·] is the
expectation operator under distribution Q. We show that this set contains two distinct values.
In what follows, Pr(·) and E[·] without a subscript denote the probability and expectation under
the true distributions Q0 and P0 as up until now.

Now pick any x∗ ∈ S ∩ int(X1). Since A and int(X1) are open, there is some δ > 0 such
that B(x∗, δ) ⊂ S ∩ int(X1). Let ε = δ

2 , and consider a function f : X → R such that f(x) =

E[Y0i|X = x] for all x ∈ X \ B(x∗, ε) and f(x) = E[Y0i|X = x] − 1 for all x ∈ B(x∗, ε). Below,
we show that f is continuous at any point x ∈ X such that pA(x) ∈ (0, 1) and A(x) ∈ {0, 1}.
Pick any x ∈ X such that pA(x) ∈ (0, 1) and A(x) ∈ {0, 1}. Since B(x∗, δ) ⊂ int(X1) and
int(X1) ⊂ {x′ ∈ X : pA(x′) = 1} by Step C.1.3, x /∈ B(x∗, δ). Hence, B(x, ε) ⊂ X \B(x∗, ε). By
Assumption 2 and the definition of f , f is continuous at x.

Now take any random vector (Y ∗1i, Y
∗

0i, X
∗
i , Z

∗
i ) that is distributed according to the true distri-

bution Q0. Let Q be the distribution of (Y Q
1i , Y

Q
0i , X

Q
i , Z

Q
i ), where (Y Q

1i , X
Q
i , Z

Q
i ) = (Y ∗1i, X

∗
i , Z

∗
i ),

and

Y Q
0i =

{
Y ∗0i if X∗i ∈ X \B(x∗, ε)

Y ∗0i − 1 if X∗i ∈ B(x∗, ε)

Note first that Q ∈ Q, since EQ[Y Q
1i |X

Q
i = x] = E[Y ∗1i|X∗i = x] and EQ[Y Q

0i |X
Q
i = x] = f(x),

where E[Y ∗1i|X∗i ] and f are both continuous at any point x ∈ X such that pA(x) ∈ (0, 1) and
A(x) ∈ {0, 1}. Also, ZQi = Z∗i = 1 if X∗i ∈ B(x∗, ε). It then follows that

Y Q
i = ZQi Y

Q
1i + (1− ZQi )Y Q

0i

=

{
Z∗i Y

∗
1i + (1− Z∗i )Y ∗0i if X∗i ∈ X \B(x∗, ε)

Z∗i Y
∗

1i if X∗i ∈ B(x∗, ε)

and

Y ∗i = Z∗i Y
∗

1i + (1− Z∗i )Y ∗0i

=

{
Z∗i Y

∗
1i + (1− Z∗i )Y ∗0i if X∗i ∈ X \B(x∗, ε)

Z∗i Y
∗

1i if X∗i ∈ B(x∗, ε).

Thus, Y Q
i = Y ∗i , and hence T (Q) = T (Q0) = P0.
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Using EQ[Y Q
1i |X

Q
i = x] = E[Y ∗1i|X∗i = x] and EQ[Y Q

0i |X
Q
i = x] = f(x), we have

EQ[Y Q
1i − Y

Q
0i |X

Q
i ∈ S]

= EQ[EQ[Y Q
1i |X

Q
i ]|XQ

i ∈ S]

− EQ[EQ[Y Q
0i |X

Q
i ]|XQ

i ∈ S,X
Q
i /∈ B(x∗, ε)]PrQ(XQ

i /∈ B(x∗, ε)|XQ
i ∈ S)

− EQ[EQ[Y Q
0i |X

Q
i ]|XQ

i ∈ B(x∗, ε)]PrQ(XQ
i ∈ B(x∗, ε)|XQ

i ∈ S)

= E[E[Y ∗1i|X∗i ]|X∗i ∈ S]− E[f(X∗i )|X∗i ∈ S,X∗i /∈ B(x∗, ε)] Pr(X∗i /∈ B(x∗, ε)|X∗i ∈ S)

− E[f(X∗i )|X∗i ∈ B(x∗, ε)] Pr(X∗i ∈ B(x∗, ε)|X∗i ∈ S)

= E[Y ∗1i|X∗i ∈ S]− E[Y ∗0i|X∗i ∈ S,X∗i /∈ B(x∗, ε)] Pr(X∗i /∈ B(x∗, ε)|X∗i ∈ S)

− E[Y ∗0i − 1|X∗i ∈ B(x∗, ε)] Pr(X∗i ∈ B(x∗, ε)|X∗i ∈ S)

= E[Y ∗1i − Y ∗0i|X∗i ∈ S] + Pr(X∗i ∈ B(x∗, ε)|X∗i ∈ S).

By the definition of support, Pr(X∗i ∈ B(x∗, ε)) > 0. Since T (Q) = T (Q0) = P0 but EQ[Y Q
1i −

Y Q
0i |X

Q
i ∈ S] 6= E[Y ∗1i − Y ∗0i|X∗i ∈ S], E[Y1i − Y0i|Xi ∈ S] is not identified.

C.2 Proof of Corollary 1

If Pr(Di(1) − Di(0) = 1|Xi = x) = 1, Pr(Y1i − Y0i = Yi(1) − Yi(0)|Xi = x) = 1, and hence
E[Y1i− Y0i|Xi = x] = E[Yi(1)− Yi(0)|Xi = x]. Then, Part (a) follows from Proposition 1 (a). If
Pr(Di(1) ≥ Di(0)|Xi = x) = 1, we have

E[Y1i − Y0i|Xi = x] = E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]

= Pr(Di(1) 6= Di(0)|Xi = x)E[Yi(1)− Yi(0)|Di(1) 6= Di(0), Xi = x].

If in addition Pr(Di(1) 6= Di(0)|Xi = x) > 0, we obtain

E[Yi(1)− Yi(0)|Di(1) 6= Di(0), Xi = x] =
E[Y1i − Y0i|Xi = x]

Pr(Di(1) 6= Di(0)|Xi = x)

=
E[Y1i − Y0i|Xi = x]

E[Di(1)−Di(0)|Xi = x]
.

Then, Part (b) follows from Proposition 1 (a).

C.3 Proof of Theorem 1

We prove consistency and asymptotic normality of the following estimators without imposing
Assumption 3 (c). These estimators are aymptotically equivalent to the estimators defined in
Section 4.1 if Assumption 3 (c) holds.

First, consider the following 2SLS regression using the observations with pA(Xi; δn) ∈ (0, 1):

Di = γ0(1− In) + γ1Zi + γ2p
A(Xi; δn) + νi (15)

Yi = β0(1− In) + β1Di + β2p
A(Xi; δn) + εi. (16)
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Here In is a dummy random variable which equals one if there exists a constant q ∈ (0, 1) such
that A(Xi) ∈ {0, q, 1} for all i ∈ {1, ..., n}. In is the indicator that A(Xi) takes on only one
nondegenerate value in the sample. If the support of A(Xi) (in the population) contains only
one value in (0, 1), pA(Xi; δn) is asymptotically constant conditional on pA(Xi; δn) ∈ (0, 1). To
avoid the multicollinearity between asymptotically constant pA(Xi; δn) and a constant, we do not
include the constant term if In = 1. Let Ii,n = 1{pA(Xi; δn) ∈ (0, 1)}, Di,n = (1, Di, p

A(Xi; δn))′,
Zi,n = (1, Zi, p

A(Xi; δn))′, Dnc
i,n = (Di, p

A(Xi; δn))′, and Znci,n = (Zi, p
A(Xi; δn))′. The 2SLS

estimator β̂ from this regression is then given by

β̂ =

{
(
∑n

i=1 Zi,nD
′
i,nIi,n)−1

∑n
i=1 Zi,nYiIi,n if In=0

(
∑n

i=1 Znci,n(Dnc
i,n)′Ii,n)−1

∑n
i=1 Znci,nYiIi,n if In=1.

Let β̂1 denote the 2SLS estimator of β1 in the above regression.
Similarly, consider the following simulation version of the 2SLS regression using the observa-

tions with ps(Xi; δn) ∈ (0, 1):

Di = γ0(1− In) + γ1Zi + γ2p
s(Xi; δn) + νi (17)

Yi = β0(1− In) + β1Di + β2p
s(Xi; δn) + εi. (18)

Let β̂s1 denote the 2SLS estimator of β1 in the simulation-based regression.
Below, we prove the following result.

Theorem C.1. Suppose that Assumptions 1 and 3 hold except Assumption 3 (c), and that
δn → 0, nδn → ∞ and Sn → ∞ as n → ∞. Then the 2SLS estimators β̂1 and β̂s1 converge in
probability to

β1 ≡ lim
δ→0

E[ωi(δ)(Yi(1)− Yi(0))],

where

ωi(δ) =
pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))

E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))]
.

Suppose, in addition, that Assumptions 4 and 5 hold and that nδ2
n → 0 as n→∞. Then

σ̂−1
n (β̂1 − β1)

d−→ N (0, 1),

(σ̂sn)−1(β̂s1 − β1)
d−→ N (0, 1).

where we define σ̂−1
n and (σ̂sn)−1 as follows: let

Σ̂n =

{
(
∑n

i=1 Zi,nD
′
i,nIi,n)−1(

∑n
i=1 ε̂

2
i,nZi,nZ

′
i,nIi,n)(

∑n
i=1 Di,nZ

′
i,nIi,n)−1 if In = 0

(
∑n

i=1 Znci,n(Dnc
i,n)′Ii,n)−1(

∑n
i=1 ε̂

2
i,nZ

nc
i,n(Znci,n)′Ii,n)(

∑n
i=1 Dnc

i,n(Znci,n)′Ii,n)−1 if In = 1,

where

ε̂i,n =

{
Yi −D′i,nβ̂ if In = 0

Yi − (Dnc
i,n)′β̂ if In = 1.

Let σ̂2
n denote the estimator for the variance of β̂1. That is, σ̂2

n is the second diagonal element of
Σ̂n when In = 0 and is the first diagonal element of Σ̂n when In = 1. (σ̂sn)2 is the analogously-
defined estimator for the variance of β̂s1 from the simulation-based regression.
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Throughout the proof, we omit the subscript n from Ii,n, Di,n, Zi,n, ε̂i,n, Σ̂n, σ̂n, etc. for
notational brevity. We provide proofs separately for the two cases, the case in which Pr(A(Xi) ∈
(0, 1)) > 0 and the case in which Pr(A(Xi) ∈ (0, 1)) = 0. For each case, we first prove consistency
and asymptotic normality of β̂1, and then prove consistency and asymptotic normality of β̂s1.

C.3.1 Consistency and Asymptotic Normality of β̂1 When Pr(A(Xi) ∈ (0, 1)) > 0

By Lemma B.6,

lim
δ→0

E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))] = E[A(Xi)(1−A(Xi))(Di(1)−Di(0))].

When Pr(A(Xi) ∈ (0, 1)) > 0, E[A(Xi)(1−A(Xi))(Di(1)−Di(0))] = E[pA(Xi)(1−pA(Xi))(Di(1)−
Di(0))], since pA(x) = A(x) for almost every x ∈ X by Proposition A.1. Under Assumption 3
(b), E[pA(Xi)(1− pA(Xi))(Di(1)−Di(0))] > 0. Again by Lemma B.6,

lim
δ→0

E[ωi(δ)(Yi(1)− Yi(0))] =
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)− Yi(0)]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]
.

Let β1 = E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)−Yi(0)]
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))] . Let

β̂c = (
n∑
i=1

ZiD
′
iIi)
−1

n∑
i=1

ZiYiIi

β̂nc = (
n∑
i=1

Znci (Dnc
i )′Ii)

−1
n∑
i=1

Znci YiIi,

and let β̂c1 = (0, 1, 0)β̂c and β̂nc1 = (1, 0)β̂nc. β̂1 is given by

β̂1 = β̂c1(1− In) + β̂nc1 In.

Also, let D̃i = (1, Di, A(Xi))
′, Z̃i = (1, Zi, A(Xi))

′, D̃nc
i = (Di, A(Xi))

′, Z̃nci = (Zi, A(Xi))
′, and

IAi = 1{A(Xi) ∈ (0, 1)}.
We claim that Pr(In = 1)→ 0 when Var(A(Xi)|IAi = 1) > 0, and that Pr(In = 1)→ 1 when

Var(A(Xi)|IAi = 1) = 0. To show the first claim, observe that In = 1 if and only if V̂n = 0, where

V̂n =

∑n
i=1(A(Xi)−

∑n
i=1 A(Xi)I

A
i∑n

i=1 I
A
i

)2IAi∑n
i=1 I

A
i

is the sample variance of A(Xi) conditional on IAi = 1. When Var(A(Xi)|IAi = 1) > 0,

Pr(In = 1) = Pr(V̂n = 0)

≤ Pr(|V̂n −Var(A(Xi)|IAi = 1)| ≥ Var(A(Xi)|IAi = 1))

→ 0,

where the convergence follows since V̂n
p−→ Var(A(Xi)|IAi = 1) > 0.
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To show the second claim, note that, when Var(A(Xi)|IAi = 1) = 0, there exists q ∈ (0, 1)

such that Pr(A(Xi) = q|IAi = 1) = 1. It follows that

Pr(In = 0) = Pr(A(Xi) ∈ {0, 1} for all i = 1, ..., n)

+ Pr(A(Xi) = q′ and A(Xj) = q′′ for some q′, q′′ ∈ (0, 1) with q′ 6= q′′

for some i, j ∈ {1, ..., n})
= Pr(A(Xi) ∈ {0, 1} for all i = 1, ..., n)

= (1− Pr(A(Xi) ∈ (0, 1)))n,

which converges to zero as n→∞, since Pr(A(Xi) ∈ (0, 1)) > 0.
The above claims imply that β̂1 = β̂c1 with probability approaching one when Var(A(Xi)|IAi =

1) > 0, and that β̂1 = β̂nc1 with probability approaching one when Var(A(Xi)|IAi = 1) = 0.
Therefore, to prove consistency and asymptotic normality of β̂1, it suffices to show those of β̂c1
when Var(A(Xi)|IAi = 1) > 0 and those of β̂nc1 when Var(A(Xi)|IAi = 1) = 0.

Below we first show that, if Assumptions 1 and 3 hold and δn → 0 as n → ∞, then
β̂1

p−→ β1. We then show that, if, in addition, Assumption 4 holds and nδ2
n → 0 as n→∞, then

σ̂−1(β̂1 − β1)
d−→ N (0, 1).

Proof of Consistency. To prove consistency of β̂1, we first show that β̂c1
p−→ β1 when

Var(A(Xi)|IAi = 1) > 0. We then show that β̂nc1
p−→ β1 whether or not Var(A(Xi)|IAi = 1) > 0.

By Lemma B.6,

β̂c = (

n∑
i=1

ZiD
′
iIi)
−1

n∑
i=1

ZiYiIi
p−→ (E[Z̃iD̃

′
iI
A
i ])−1E[Z̃iYiI

A
i ]

provided that E[Z̃iD̃
′
iI
A
i ] is invertible. After a few lines of algebra, we have

det(E[Z̃iD̃
′
iI
A
i ])

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[Di(Zi −A(Xi))I
A
i ]

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[(ZiDi(1) + (1− Zi)Di(0))(Zi −A(Xi))I
A
i ]

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[((Zi − ZiA(Xi))Di(1)− (1− Zi)A(Xi)Di(0))IAi ]

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[((A(Xi)−A(Xi)
2)Di(1)− (1−A(Xi))A(Xi)Di(0))IAi ]

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[A(Xi)(1−A(Xi))(Di(1)−Di(0))IAi ]

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[A(Xi)(1−A(Xi))(Di(1)−Di(0))],

where the fourth equality follows from Property 1. Therefore, E[Z̃iD̃
′
iI
A
i ] is invertible when

Var(A(Xi)|IAi = 1) > 0. Another few lines of algebra gives

(E[Z̃iD̃
′
iI
A
i ])−1 =

1

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

∗ ∗ ∗
0 1 −1

∗ ∗ ∗
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when Var(A(Xi)|IAi = 1) > 0. Therefore, when Var(A(Xi)|IAi = 1) > 0,

β̂c1
p−→ E[ZiYiI

A
i ]− E[A(Xi)YiI

A
i ]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[ZiY1iI

A
i ]− E[A(Xi)(ZiY1i + (1− Zi)Y0i)I

A
i ]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[A(Xi)Y1iI

A
i ]− E[A(Xi)(A(Xi)Y1i + (1−A(Xi))Y0i)I

A
i ]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[A(Xi)(1−A(Xi))(Y1i − Y0i)I

A
i ]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[A(Xi)(1−A(Xi))((Di(1)−Di(0))(Yi(1)− Yi(0))]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

= β1,

where the third line follows from Property 1, and the second last follows from the definitions of
Y1i and Y0i.

We next consider β̂nc1 . By Lemma B.6,

β̂nc = (
n∑
i=1

Znci (Dnc
i )′Ii)

−1
n∑
i=1

Znci YiIi
p−→ (E[Z̃nci (D̃nc

i )′IAi ])−1E[Z̃nci YiI
A
i ]

provided that E[Z̃nci (D̃nc
i )′IAi ] is invertible. After a few lines of algebra, we have

det(E[Z̃nci (D̃nc
i )′IAi ]) = E[A(Xi)

2IAi ]E[Di(Zi −A(Xi))I
A
i ]

= E[A(Xi)
2IAi ]E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

> 0.

Another few lines of algebra gives

(E[Z̃nci (D̃nc
i )′IAi ])−1 =

1

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

[
1 −1

∗ ∗

]
.

Therefore,

β̂nc1
p−→ E[ZiYiI

A
i ]− E[A(Xi)YiI

A
i ]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]
= β1.

Proof of Asymptotic Normality. Let (σ̂c)2 be the second diagonal element of

Σ̂c = (
n∑
i=1

ZiD
′
iIi)
−1(

n∑
i=1

ε̂2iZiZ
′
iIi)(

n∑
i=1

DiZ
′
iIi)
−1

and (σ̂nc)2 be the first diagonal element of

Σ̂nc = (

n∑
i=1

Znci,n(Dnc
i,n)′Ii)

−1(
n∑
i=1

ε̂2i,nZ
nc
i,n(Znci,n)′Ii)(

n∑
i=1

Dnc
i,n(Znci,n)′Ii)

−1.
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We only show that (σ̂c)−1(β̂c1 − β1)
d−→ N (0, 1) when Var(A(Xi)|IAi = 1) > 0. We can show

that (σ̂nc)−1(β̂nc1 − β1)
d−→ N (0, 1) by an analogous argument. The proof proceeds in six steps.

Step C.3.1.1. Let β̃n = (E[Z̃iD̃
′
iIi])

−1E[Z̃iYiIi], and let β̃1,n denote the second element of β̃n.
Then β̃1,n = β1 for any choice of δn > 0.

Proof. Note first that, for every δ > 0, pA(x; δ) ∈ (0, 1) for almost every x ∈ {x′ ∈ X : A(x′) ∈
(0, 1)}, since by almost everywhere continuity of A, for almost every x ∈ {x′ ∈ X : A(x′) ∈ (0, 1)},
there exists an open ball B ⊂ B(x, δ) such that A(x′) ∈ (0, 1) for every x′ ∈ B. After a few lines
of algebra, we have

det(E[Z̃iD̃
′
iIi]) = Pr(Ii = 1)2Var(A(Xi)|Ii = 1)E[Di(Zi −A(Xi))Ii]

= Pr(Ii = 1)2Var(A(Xi)|Ii = 1)E[A(Xi)(1−A(Xi))(Di(1)−Di(0))Ii]

= Pr(Ii = 1)2Var(A(Xi)|Ii = 1)E[A(Xi)(1−A(Xi))(Di(1)−Di(0))],

where the last equality holds since pA(x; δ) ∈ (0, 1) for almost every x ∈ {x′ ∈ X : A(x′) ∈ (0, 1)}.
By the law of total conditional variance,

Var(A(Xi)|Ii = 1)

= E[Var(A(Xi)|Ii = 1, IAi )|Ii = 1] + Var(E[A(Xi)|Ii = 1, IAi ]|Ii = 1)

≥
∑

t∈{0,1}

Var(A(Xi)|Ii = 1, IAi = t) Pr(IAi = t|Ii = 1)

≥ Var(A(Xi)|Ii = 1, IAi = 1) Pr(IAi = 1|Ii = 1)

= Var(A(Xi)|IAi = 1) Pr(IAi = 1|Ii = 1)

> 0.

Therefore, E[Z̃iD̃
′
iIi] is invertible. Another few lines of algebra gives

(E[Z̃iD̃
′
iIi])

−1 =
1

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

∗ ∗ ∗
0 1 −1

∗ ∗ ∗

 .
It follows that

β̃1,n =
E[ZiYiIi]− E[A(Xi)YiIi]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)− Yi(0))Ii]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)− Yi(0))]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

= β1.
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We can write

√
n(β̂c − β̃n) = (

1

n

n∑
i=1

ZiD
′
iIi)
−1 1√

n

n∑
i=1

ZiYiIi − (
1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1√

n

n∑
i=1

Z̃iYiIi︸ ︷︷ ︸
=(A)

+ (
1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1√

n

n∑
i=1

Z̃iYiIi − (E[Z̃iD̃
′
iIi])

−1√nE[Z̃iYiIi]︸ ︷︷ ︸
=(B)

.

We first consider (B). Let ε̃i,n = Yi − D̃′iβ̃n so that

E[Z̃iε̃i,nIi] = E[Z̃i(Yi − D̃′iβ̃n)Ii] = E[Z̃iYiIi]− E[Z̃iD̃
′
iIi]β̃n = 0.

Then

(B) = (
1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1√

n

n∑
i=1

Z̃i(D̃
′
iβ̃n + ε̃i,n)Ii − (E[Z̃iD̃

′
iIi])

−1√nE[Z̃i(D̃
′
iβ̃n + ε̃i,n)Ii]

=
√
n(β̃n − β̃n) + (

1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1√

n

n∑
i=1

Z̃iε̃i,nIi − (E[Z̃iD̃
′
iIi])

−1√nE[Z̃iε̃i,nIi]

= (
1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1√

n

n∑
i=1

Z̃iε̃i,nIi.

Step C.3.1.2.
1√
n

n∑
i=1

Z̃iε̃i,nIi
d−→ N (0, E[ε̃2i Z̃iZ̃

′
iI
A
i ]).

Proof. We use the triangular-array Lyapunov CLT and the Cramér-Wold device. Pick a nonzero
λ ∈ Rp, and let Vi,n = 1√

n
λ′Z̃iε̃i,nIi. First, we have

n∑
i=1

E[V 2
i,n] = λ′E[ε̃2i,nZ̃iZ̃

′
iIi]λ.

By Lemma B.6,

β̃n → (E[Z̃iD̃
′
iI
A
i ])−1E[Z̃iYiI

A
i ]

as n→∞. Let β = (E[Z̃iD̃
′
iI
A
i ])−1E[Z̃iYiI

A
i ] and ε̃i = Yi − D̃′iβ. We have

E[ε̃2i,nZ̃iZ̃
′
iIi] = E[(Yi − D̃′iβ̃n)2Z̃iZ̃

′
iIi]

= E[(ε̃i − D̃′i(β̃n − β))2Z̃iZ̃
′
iIi]

= E[ε̃2i Z̃iZ̃
′
iIi]− 2E[ε̃i((β̃0,n − β0) +Di(β̃1,n − β1) +A(Xi)(β̃2,n − β2))Z̃iZ̃

′
iIi]

+ E[((β̃0,n − β0) +Di(β̃1,n − β1) +A(Xi)(β̃2,n − β2))2Z̃iZ̃
′
iIi]

→ E[ε̃2i Z̃iZ̃
′
iI
A
i ]
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as n → ∞, where the convergence follows from Lemma B.6 and from the fact that β̃n → β.
Therefore,

n∑
i=1

E[V 2
i,n]→ λ′E[ε̃2i Z̃iZ̃

′
iI
A
i ]λ.

We next verify the Lyapunov condition: for some t > 0,

n∑
i=1

E[|Vi,n|2+t]→ 0.

We have
n∑
i=1

E[|Vi,n|4] =
1

n
E[|λ′Z̃iε̃i,nIi|4].

We use the cr-inequality: E[|X + Y |r] ≤ 2r−1E[|X|r + |Y |r] for r ≥ 1. Repeating using the
cr-inequality gives

E[|λ′Z̃iε̃i,nIi|4] = E[|λ′Z̃i(Yi − β̃0,n − β̃1,nDi − β̃2,nA(Xi))|4Ii]
≤ 23cE[(|λ′Z̃i|4)(|Yi|4 + |β̃0,n|4 + |β̃1,n|4Di + |β̃2,n|4A(Xi)

4)Ii]

≤ 23c(λ1 + λ2 + λ3)4(E[Y 4
i ] + β̃4

0,n + β̃4
1,n + β̃4

2,n)

for some finite constant c, and the right-hand side converges to

23c(λ1 + λ2 + λ3)4(E[Y 4
i ] + β̃4

0 + β̃4
1 + β̃4

2),

which is finite under Assumption 3 (a). Therefore,

n∑
i=1

E[|Vi,n|4]→ 0,

and the conclusion follows from the Lyapunov CLT and the Cramér-Wold device.

We next consider (A). We can write

(A) = (
1

n

n∑
i=1

ZiD
′
iIi)
−1 1√

n

n∑
i=1

(ZiYiIi − Z̃iYiIi)

− (
1

n

n∑
i=1

ZiD
′
iIi)
−1[

1√
n

n∑
i=1

(ZiD
′
iIi − Z̃iD̃

′
iIi)](

1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1

n

n∑
i=1

Z̃iYiIi.

Step C.3.1.3. Let {Vi}∞i=1 be i.i.d. random variables such that E[|Vi|] < ∞ and that E[Vi|Xi]

is bounded on N(D∗, δ′) ∩ X for some δ′ > 0. Then,

E[Vip
A(Xi; δ)

l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}] = O(δ)

for l = 0, 1.
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Proof. For every x /∈ N(D∗, δ), B(x, δ) ∩D∗ = ∅, so A is continuously differentiable on B(x, δ).
By the mean value theorem, for every x /∈ N(D∗, δ) and a ∈ B(0, δ),

A(x+ a) = A(x) +∇A(y(x, a))′a

for some point y(x, a) on the line segment connecting x and x+ a. For every x /∈ N(D∗, δ),

pA(x; δ) =

∫
B(0,1)A(x+ δu)du∫

B(0,1) du

=

∫
B(0,1)(A(x) + δ∇A(y(x, δu))′u)du∫

B(0,1) du

= A(x) + δ

∫
B(0,1)∇A(y(x, δu))′udu∫

B(0,1) du
.

Now, we can write

E[Vip
A(Xi; δ)

l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}]
= E[Vip

A(Xi; δ)
l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}1{Xi /∈ N(D∗, δ)}]

+ E[Vip
A(Xi; δ)

l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}1{Xi ∈ N(D∗, δ)}].

For the first term,

|E[Vip
A(Xi; δ)

l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}1{Xi /∈ N(D∗, δ)}]|

= δ|E[Vip
A(Xi; δ)

l

∫
B(0,1)∇A(y(Xi, δu))′udu∫

B(0,1) du
1{pA(Xi; δ) ∈ (0, 1)}1{Xi /∈ N(D∗, δ)}]|

≤ δE[|Vi|pA(Xi; δ)
l

∫
B(0,1)

∑p
k=1 |

∂A(y(Xi,δu))
∂xk

||uk|du∫
B(0,1) du

1{pA(Xi; δ) ∈ (0, 1)}1{Xi /∈ N(D∗, δ)}]

≤ δE[|Vi|]
p∑

k=1

sup
x∈C∗

∣∣∣∣∂A(x)

∂xk

∣∣∣∣
∫
B(0,1) |uk|du∫
B(0,1) du

= O(δ),

where we use the assumption that the partial derivatives of A is bounded on C∗. For the second
term, for sufficiently small δ > 0,

|E[Vip
A(Xi; δ)

l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}1{Xi ∈ N(D∗, δ)}]|
≤ E[|E[Vi|Xi]|1{Xi ∈ N(D∗, δ)}]
≤ CE[1{Xi ∈ N(D∗, δ)}]
= C Pr(Xi ∈ N(D∗, δ))

= O(δ),

where C is some constant, the second inequality follows from the assumption that E[Vi|Xi] is
bounded on N(D∗, δ′) ∩ X for some δ′ > 0, and the last equality follows from Assumption 4
(a).
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Step C.3.1.4. 1√
n

∑n
i=1(ZiYiIi − Z̃iYiIi) = op(1) and 1√

n

∑n
i=1(ZiD

′
iIi − Z̃iD̃

′
iIi) = op(1).

Proof. We only show that 1√
n

∑n
i=1(pA(Xi; δn)2 − A(Xi)

2)Ii = op(1). The proofs for the other
elements are similar. As for bias,

E[
1√
n

n∑
i=1

(pA(Xi; δn)2 −A(Xi)
2)Ii]

=
√
nE[(pA(Xi; δn)2 −A(Xi)

2)Ii]

=
√
nE[(pA(Xi; δn) +A(Xi))(p

A(Xi; δn)−A(Xi))Ii]

=
√
nO(δn)

= 0,

where the third equality follows from Step C.3.1.3 and the last from the assumption that nδ2
n → 0.

As for variance, by Lemma B.6,

Var(
1√
n

n∑
i=1

(pA(Xi; δn)2 −A(Xi)
2)Ii)

≤ E[(pA(Xi; δn)2 −A(Xi)
2)2Ii]

= E[(pA(Xi; δn)4 − 2pA(Xi; δn)2A(Xi)
2 +A(Xi)

4)Ii]

→ E[(A(Xi)
4 − 2A(Xi)

2A(Xi)
2 +A(Xi)

4)IAi ]

= 0.

Step C.3.1.5. nΣ̂c p−→ (E[Z̃iD̃
′
iI
A
i ])−1E[ε̃2i Z̃iZ̃

′
iI
A
i ](E[D̃iZ̃

′
iI
A
i ])−1.

Proof. Let εi = Yi −D′iβ. We have

1

n

n∑
i=1

ε̂2iZiZ
′
iIi =

1

n

n∑
i=1

(Yi −D′iβ̂
c)2ZiZ

′
iIi

=
1

n

n∑
i=1

(εi −D′i(β̂
c − β))2ZiZ

′
iIi

=
1

n

n∑
i=1

ε2iZiZ
′
iIi

− 2

n

n∑
i=1

(Yi −D′iβ)((β̂c0 − β0) +Di(β̂
c
1 − β1) + pA(Xi; δn)(β̂c2 − β2))ZiZ

′
iIi

+
1

n

n∑
i=1

((β̂c0 − β0) +Di(β̂
c
1 − β1) + pA(Xi; δn)(β̂c2 − β2))2ZiZ

′
iIi

=
1

n

n∑
i=1

ε2iZiZ
′
iIi + op(1)Op(1),
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where the last equality follows from the result that β̂c − β = op(1) and from Lemma B.6. Again
by Lemma B.6,

1

n

n∑
i=1

ε2iZiZ
′
iIi =

1

n

n∑
i=1

(Y 2
i − 2YiD

′
iβ + β′DiD

′
iβ)ZiZ

′
iIi

p−→ E[(Y 2
i − 2YiD̃

′
iβ + β′D̃iD̃

′
iβ)Z̃iZ̃

′
iI
A
i ]

= E[ε̃2i Z̃iZ̃
′
iI
A
i ],

and
1

n

n∑
i=1

ZiD
′
iIi

p−→ E[Z̃iD̃
′
iI
A
i ].

The conclusion then follows.

Step C.3.1.6. (σ̂c)−1(β̂c1 − β1)
d−→ N (0, 1).

Proof. By combining the results from Steps C.3.1.2–C.3.1.4 and by Lemma B.6,

(A)
p−→ 0,

(B)
d−→ N (0, (E[Z̃iD̃

′
iI
A
i ])−1E[ε̃2i Z̃iZ̃

′
iI
A
i ](E[D̃iZ̃

′
iI
A
i ])−1),

and therefore,

√
n(β̂c − β̃n)

d−→ N (0, (E[Z̃iD̃
′
iI
A
i ])−1E[ε̃2i Z̃iZ̃

′
iI
A
i ](E[D̃iZ̃

′
iI
A
i ])−1).

The conclusion then follows from Steps C.3.1.1 and C.3.1.5.

C.3.2 Consistency and Asymptotic Normality of β̂s1 When Pr(A(Xi) ∈ (0, 1)) > 0

Let Isi = 1{ps(Xi; δn) ∈ (0, 1)}, Ds
i = (1, Di, p

s(Xi; δn))′ and Zsi = (1, Zi, p
s(Xi; δn))′. Let

β̂c,s = (

n∑
i=1

Zsi (D
s
i )
′Isi )−1

n∑
i=1

ZsiYiI
s
i

and

Σ̂c,s = (

n∑
i=1

Zsi (D
s
i )
′Isi )−1(

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi )(

n∑
i=1

Ds
i (Z

s
i )
′Isi )−1,

where ε̂si = Yi−(Ds
i )
′β̂c,s. Here, we only show that β̂c,s1

p−→ β1 if Sn →∞ and that (σ̂s)−1(β̂c,s1 −
β1)

d−→ N (0, 1) if Assumption 5 holds when Var(A(Xi)|IAi = 1) > 0. For that, it suffices to
show that

β̂c,s − β̂c = op(1)
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if Sn →∞ and that
√
n(β̂c,s − β̂c) = op(1),

nΣ̂c,s p−→ (E[Z̃iD̃
′
iI
A
i ])−1E[ε̃2i Z̃iZ̃

′
iI
A
i ](E[D̃iZ̃

′
iI
A
i ])−1

if Assumption 5 holds. We have

β̂c,s − β̂c = (
1

n

n∑
i=1

Zsi (D
s
i )
′Isi )−1 1

n

n∑
i=1

ZsiYiI
s
i − (

1

n

n∑
i=1

ZiD
′
iIi)
−1 1

n

n∑
i=1

ZiYiIi

= (
1

n

n∑
i=1

Zsi (D
s
i )
′Isi )−1(

1

n

n∑
i=1

ZsiYiI
s
i −

1

n

n∑
i=1

ZiYiIi)

− (
1

n

n∑
i=1

Zsi (D
s
i )
′Isi )−1(

1

n

n∑
i=1

Zsi (D
s
i )
′Isi −

1

n

n∑
i=1

ZiD
′
iIi)(

1

n

n∑
i=1

ZiD
′
iIi)
−1 1

n

n∑
i=1

ZiYiIi.

By Lemma B.8, β̂c,s− β̂c = op(1) if Sn →∞, and
√
n(β̂c,s− β̂c) = op(1) under the boundedness

imposed by Assumption 4 (c) if Assumption 5 holds.
By proceeding as in Step C.3.1.5 in Section C.3.1, we have

1

n

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi =

1

n

n∑
i=1

(εsi )
2Zsi (Z

s
i )
′Isi + op(1),

where εsi = Yi − (Ds
i )
′β. Then, by Lemma B.8,

1

n

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi −

1

n

n∑
i=1

ε2iZiZ
′
iIi

=
1

n

n∑
i=1

(Y 2
i − 2Yi(D

s
i )
′β + β′Ds

i (D
s
i )
′β)Zsi (Z

s
i )
′Isi −

1

n

n∑
i=1

(Y 2
i − 2YiD

′
iβ + β′DiD

′
iβ)ZiZ

′
iIi + op(1)

= op(1)

so that
1

n

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi

p−→ E[ε̃2i Z̃iZ̃
′
iI
A
i ].

Also, 1
n

∑n
i=1 Zsi (D

s
i )
′Isi

p−→ E[Z̃iD̃
′
iI
A
i ] by using Lemma B.8. The conclusion then follows.

C.3.3 Consistency and Asymptotic Normality of β̂1 When Pr(A(Xi) ∈ (0, 1)) = 0

Since Pr(A(Xi) ∈ (0, 1)) = 0, In = 0 with probability one. Hence,

β̂ = (

n∑
i=1

ZiD
′
iIi)
−1

n∑
i=1

ZiYiIi

with probability one. We use the notation and results provided in Appendix B. By Lemma B.5,
under Assumption 3 (e), there exists µ > 0 such that dsΩ∗ is twice continuously differentiable on
N(∂Ω∗, µ) and that∫

N(∂Ω∗,δ)
g(x)dx =

∫ δ

−δ

∫
∂Ω∗

g(u+ λνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, λ)dHp−1(u)dλ
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for every δ ∈ (0, µ) and every function g : Rp → R that is integrable on N(∂Ω∗, δ).
Below we show that β̂1

p−→ β1 if nδn →∞ and δn → 0 and that σ̂−1(β̂1 − β1)
d−→ N (0, 1) if

nδ3
n → 0 in addition. The proof proceeds in eight steps.

Step C.3.3.1. There exist δ̄ > 0 and a bounded function r : ∂Ω∗∩N(X , δ̄)×(−1, 1)×(0, δ̄)→ R
such that

pA(u+ δvνΩ∗(u); δ) = k(v) + δr(u, v, δ)

for every (u, v, δ) ∈ ∂Ω∗ ∩N(X , δ̄)× (−1, 1)× (0, δ̄), where

k(v) =

{
1− 1

2I(1−v2)(
p+1

2 , 1
2) for v ∈ [0, 1)

1
2I(1−v2)(

p+1
2 , 1

2) for v ∈ (−1, 0).

Here Ix(α, β) is the regularized incomplete beta function (the cumulative distribution function of
the beta distribution with shape parameters α and β).

Proof. By Assumption 3 (f) (ii), there exists δ̄ ∈ (0, µ2 ) such that A(x) = 0 for almost every
x ∈ N(X , 3δ̄) \ Ω∗. By Taylor’s theorem, for every u ∈ ∂Ω∗ ∩N(X , δ̄) and a ∈ B(0, 2δ̄),

dsΩ∗(u+ a) = dsΩ∗(u) +∇dsΩ∗(u)′a+ a′R(u, a)a,

where

R(u, a) =

∫ 1

0
(1− t)D2dsΩ∗(u+ ta)dt.

Since D2dsΩ∗ is continuous and cl(N(∂Ω∗, 2δ̄)) is bounded and closed, D2dsΩ∗ is bounded on
cl(N(∂Ω∗, 2δ̄)). Therefore, R(·, ·) is bounded on ∂Ω∗ ∩N(X , δ̄)×B(0, 2δ̄). It also follows that

dsΩ∗(u+ a) = νΩ∗(u)′a+ a′R(u, a)a,

since dsΩ∗(u) = 0 and ∇dsΩ∗(u) = νΩ∗(u) for every u ∈ ∂Ω∗ ∩ N(X , 2δ̄) by Lemma B.1. For
(u, v, δ) ∈ ∂Ω∗ ∩N(X , δ̄)× (−1, 1)× (0, δ̄),

pA(u+ δvνΩ∗(u); δ)

=

∫
B(0,1)A(u+ δvνΩ∗(u) + δw)dw∫

B(0,1) dw

=

∫
B(0,1) 1{u+ δvνΩ∗(u) + δw ∈ Ω∗}dw

Volp

=

∫
B(0,1) 1{dsΩ∗(u+ δ(vνΩ∗(u) + w)) ≥ 0)}dw

Volp

=

∫
B(0,1) 1{δνΩ∗(u)′(vνΩ∗(u) + w) + δ2(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w) ≥ 0}dw

Volp
,

where Volp denotes the volume of the p-dimensional unit ball, and the second equality follows
since u + δvνΩ∗(u) + δw ∈ N(X , 3δ̄) and hence A(u + δvνΩ∗(u) + δw) = 0 for almost every
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w ∈ B(0, 1) such that u+ δvνΩ∗(u) + δw /∈ Ω∗. Observe that

1{δνΩ∗(u)′(vνΩ∗(u) + w) + δ2(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w) ≥ 0}
= 1{v + νΩ∗(u) · w + δ(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w) ≥ 0}
= 1{v + νΩ∗(u) · w ≥ 0}
− 1{v + νΩ∗(u) · w ≥ 0, v + νΩ∗(u) · w + δ(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w) < 0}︸ ︷︷ ︸

=a(u,v,w,δ)

+ 1{v + νΩ∗(u) · w < 0, v + νΩ∗(u) · w + δ(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w) ≥ 0}︸ ︷︷ ︸
=b(u,v,w,δ)

.

Note that the set {w ∈ B(0, 1) : v + ν(u) · w ≥ 0} is a region of the p-dimensional unit ball cut
off by the plane {w ∈ Rp : v + ν(u) · w = 0}. The distance from the center of the unit ball to
the plane is |v|. Using the formula for the volume of a hyperspherical cap (see e.g. Li (2011)),
we have∫

B(0,1)
1{v + ν(u) · w ≥ 0}dw =

{
Volp − 1

2VolpI(2(1−v)−(1−v)2)(
p+1

2 , 1
2) for v ∈ [0, 1)

1
2VolpI(2(1+v)−(1+v)2)(

p+1
2 , 1

2) for v ∈ (−1, 0).

Therefore, for every (u, v, δ) ∈ ∂Ω∗ ∩N(X , δ̄)× (−1, 1)× (0, δ̄),

pA(u+ δvνΩ∗(u); δ) = k(v) +

∫
B(0,1)(−a(u, v, w, δ) + b(u, v, w, δ))dw

Volp
.

Now let r(u, v, δ) = δ−1(pA(u + δvνΩ∗(u); δ) − k(v)). Since R(·, ·) is bounded on ∂Ω∗ ∩
N(X , δ̄)×B(0, 2δ̄) and ‖νΩ∗(u)‖ = 1, there exists r̄ > 0 such that

|(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w)| ≤ r̄

for every (u, v, w, δ) ∈ ∂Ω∗ ∩N(X , δ̄)× (−1, 1)×B(0, 1)× (0, δ̄). Therefore,

0 ≤ a(u, v, w, δ) ≤ 1{0 ≤ v + νΩ∗(u) · w < δr̄}

and
0 ≤ b(u, v, w, δ) ≤ 1{−δr̄ ≤ v + νΩ∗(u) · w < 0}.

It then follows that

−

∫
B(0,1) 1{0 ≤ v + νΩ∗(u) · w < δr̄}dw

Volp
≤

∫
B(0,1)(−a(u, v, w, δ) + b(u, v, w, δ))dw

Volp

≤

∫
B(0,1) 1{−δr̄ ≤ v + νΩ∗(u) · w < 0}dw

Volp
.

The set {w ∈ B(0, 1) : 0 ≤ v + νΩ∗(u) · w < δr̄} is a region of the p-dimensional unit ball cut
off by the two planes {w ∈ Rp : v + νΩ∗(u) · w = 0} and {w ∈ Rp : v + νΩ∗(u) · w = δr̄}. Its
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Lebesgue measure is at most the volume of the (p− 1)-dimensional unit ball times the distance
between the two planes, so

−δVolp−1r̄ ≤ −
∫
B(0,1)

1{0 ≤ v + νΩ∗(u) · w < δr̄}dw.

Likewise, ∫
B(0,1)

1{−δr̄ ≤ v + νΩ∗(u) · w < 0}dw ≤ δVolp−1r̄.

Therefore,

−δVolp−1r̄

Volp
≤

∫
B(0,1)(−a(u, v, w, δ) + b(u, v, w, δ))dw

Volp
≤ δVolp−1r̄

Volp
.

It follows that

r(u, v, δ) = δ−1

∫
B(0,1)(−a(u, v, w, δ) + b(u, v, w, δ))dw

Volp

∈ [−Volp−1r̄

Volp
,
Volp−1r̄

Volp
],

and hence r is bounded on ∂Ω∗ ∩N(X , δ̄)× (−1, 1)× (0, δ̄).

Step C.3.3.2. For every (u, v, δ) ∈ ∂Ω∗∩N(X , δ̄)×(−1, 1)×(0, δ̄), pA(u+δvνΩ∗(u); δ) ∈ (0, 1).

Proof. Fix (u, v, δ) ∈ ∂Ω∗ ∩ N(X , δ̄) × (−1, 1) × (0, δ̄). Suppose v = 0. By Step C.3.3.1,
pA(u) = limδ′→0 p

A(u; δ′) = k(0) = 1
2 . This implies that there exists δ′ ∈ (0, δ) such that

pA(u; δ′) ∈ (0, 1). It then follows that 0 < Lp(B(u, δ′) ∩ Ω∗) ≤ Lp(B(x, δ) ∩ Ω∗) and that
0 < Lp(B(x, δ′) \ Ω∗) ≤ Lp(B(x, δ) \ Ω∗). Therefore, pA(u; δ) = Lp(B(u,δ)∩Ω∗)

Lp(B(u,δ)) ∈ (0, 1).
Suppose v 6= 0 and let ε ∈ (0, δ(1 − |v|)). Note that B(u, ε) ⊂ B(u + δvνΩ∗(u), δ), since for

any x ∈ B(u, ε), ‖u + δvνΩ∗(u) − x‖ ≤ ‖δvνΩ∗(u)‖ + ‖u − x‖ ≤ δ|v| + ε < δ. Since pA(u) = 1
2 ,

there exists ε′ ∈ (0, ε) such that pA(u; ε′) ∈ (0, 1). It then follows that 0 < Lp(B(u, ε′) ∩ Ω∗) ≤
Lp(B(u, ε)∩Ω∗) ≤ Lp(B(u+δvνΩ∗(u), δ)∩Ω∗) and that 0 < Lp(B(x, ε′)\Ω∗) ≤ Lp(B(x, ε)\Ω∗) ≤
Lp(B(u+δvνΩ∗(u), δ)\Ω∗). Therefore, pA(u+δvνΩ∗(u); δ) = Lp(B(u+δvνΩ∗ (u),δ)∩Ω∗)

Lp(B(u+δvνΩ∗ (u),δ)) ∈ (0, 1).

Step C.3.3.3. Let g : Rp → R be a function that is bounded on N(∂Ω∗, δ′) ∩N(X , δ′) for some
δ′ > 0. Then, for l ≥ 0, there exist δ̃ > 0 and constant C > 0 such that

|δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]| ≤ C

for every δ ∈ (0, δ̃). If g is continuous on N(∂Ω∗, δ′) ∩N(X , δ′) for some δ′ > 0, then

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}] =

∫ 1

−1
k(v)ldv

∫
∂Ω∗

g(x)fX(x)dHp−1(x) + o(1)

δ−1E[Zip
A(Xi; δ)

lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}] =

∫ 1

0
k(v)ldv

∫
∂Ω∗

g(x)fX(x)dHp−1(x) + o(1)
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for l ≥ 0. Furthermore, if g is continuously differentiable and ∇g is bounded on N(∂Ω∗, δ′) ∩
N(X , δ′) for some δ′ > 0, then

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}] =

∫ 1

−1
k(v)ldv

∫
∂Ω∗

g(x)fX(x)dHp−1(x) +O(δ)

δ−1E[Zip
A(Xi; δ)

lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}] =

∫ 1

0
k(v)ldv

∫
∂Ω∗

g(x)fX(x)dHp−1(x) +O(δ)

for l ≥ 0.

Proof. Let δ̄ be given in Step C.3.3.1. Under Assumption 3 (g), there exists δ̃ ∈ (0, δ̄) such that
fX is bounded, is continuously differentiable, and has bounded partial derivatives onN(∂Ω∗, 2δ̃)∩
N(X , 2δ̃). Let δ̃ ∈ (0, δ̄) be such that both g and fX are bounded on N(∂Ω∗, 2δ̃) ∩ N(X , 2δ̃).
We first show that pA(x; δ) ∈ {0, 1} for every x ∈ X \ N(∂Ω∗, δ) for every δ ∈ (0, δ̃). Pick
x ∈ X \ N(∂Ω∗, δ) and δ ∈ (0, δ̃). Since B(x, δ) ∩ ∂Ω∗ = ∅, either B(x, δ) ⊂ int(Ω∗) or
B(x, δ) ⊂ int(Rp \Ω∗). If B(x, δ) ⊂ int(Ω∗), pA(x; δ) = 1. If B(x, δ) ⊂ int(Rp \Ω∗), pA(x; δ) = 0,
since A(x′) = 0 for almost every x′ ∈ B(x, δ) ⊂ N(X , 3δ̄) \ Ω∗ by the choice of δ̄. Therefore,
{x ∈ X : pA(x; δ) ∈ (0, 1)} ⊂ N(∂Ω∗, δ) for every δ ∈ (0, δ̃). By this and Lemma B.5, for
δ ∈ (0, δ̃),

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

= δ−1

∫
pA(x; δ)lg(x)1{pA(x; δ) ∈ (0, 1)}fX(x)dx

= δ−1

∫
N(∂Ω∗,δ)

pA(x; δ)lg(x)1{pA(x; δ) ∈ (0, 1)}fX(x)dx

= δ−1

∫ δ

−δ

∫
∂Ω∗

pA(u+ λνΩ∗(u); δ)lg(u+ λνΩ∗(u))1{pA(u+ λνΩ∗(u); δ) ∈ (0, 1)}

× fX(u+ λνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, λ)dHp−1(u)dλ.

With change of variables v = λ
δ , we have

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1

−1

∫
∂Ω∗

pA(u+ δvνΩ∗(u); δ)l1{pA(u+ δvνΩ∗(u); δ) ∈ (0, 1)}

× g(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv.

For every (u, v, δ) ∈ ∂Ω∗ \N(X , δ̃)× (−1, 1)× (0, δ̃), u+ δvνΩ∗(u) /∈ X , so

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

pA(u+ δvνΩ∗(u); δ)l1{pA(u+ δvνΩ∗(u); δ) ∈ (0, 1)}

× g(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

(k(v) + δr(u, v, δ))lg(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv,
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where the second equality follows from Steps C.3.3.1 and C.3.3.2. By Lemma B.5, J∂Ω∗
p−1ψΩ∗(·, ·)

is bounded on ∂Ω∗ × (−δ̃, δ̃). Since r, g and fX are also bounded, for some constant C > 0,

|δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]| ≤ C

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

dHp−1(u)dv,

which is finite by Assumption 3 (f) (i). Moreover, if g and fX are continuous on N(∂Ω∗, 2δ̃) ∩
N(X , 2δ̃), by the Dominated Convergence Theorem,

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]→

∫ 1

−1
k(v)ldv

∫
∂Ω∗

g(u)fX(u)dHp−1(u),

where we use the fact from Lemma B.5 that J∂Ω∗
p−1ψΩ∗(u, λ) is continuous in λ and J∂Ω∗

p−1ψΩ∗(u, 0) =

1.
Note that A(x) = 1 for every x ∈ Ω∗ and A(x) = 0 for almost every x ∈ N(X , 2δ̃) \ Ω∗.

Also, for every (u, v, δ) ∈ ∂Ω∗ ∩ N(X , δ̃) × (−1, 1) × (0, δ̃), u + δvνΩ∗(u) ∈ Ω∗ if v ∈ (0, 1) and
u+ δvνΩ∗(u) ∈ N(X , 2δ̃) \ Ω∗ if v ∈ (−1, 0]. Therefore,

δ−1E[Zip
A(Xi; δ)

lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]
= δ−1E[A(Xi)p

A(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

A(u+ δvνΩ∗(u))(k(v) + δr(u, v, δ))lg(u+ δvνΩ∗(u))

× fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv

=

∫ 1

0

∫
∂Ω∗∩N(X ,δ̃)

(k(v) + δr(u, v, δ))lg(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv

→
∫ 1

0
k(v)ldv

∫
∂Ω∗

g(u)fX(u)dHp−1(u).

Now suppose that g and fX are continuously differentiable on N(∂Ω∗, 2δ̃) ∩ N(X , 2δ̃) and
that ∇g and ∇f are bounded on N(∂Ω∗, 2δ̃) ∩ N(X , 2δ̃). Using the mean-value theorem, we
obtain that, for any (u, v, δ) ∈ ∂Ω∗ ∩N(X , δ̃)× (−1, 1)× (0, δ̃),

g(u+ δvνΩ∗(u)) = g(u) +∇g(yg(u, δvνΩ∗(u)))′δvνΩ∗(u),

fX(u+ δvνΩ∗(u)) = fX(u) +∇fX(yf (u, δvνΩ∗(u)))′δvνΩ∗(u)

for some yg(u, δvνΩ∗(u)) and yf (u, δvνΩ∗(u)) that are on the line segment connecting u and
u+ δvνΩ∗(u). In addition,

J∂Ω∗
p−1ψΩ∗(u, δv) = J∂Ω∗

p−1ψΩ∗(u, 0) +
∂J∂Ω∗

p−1ψΩ∗(u, yJ(u, δv))

∂λ
δv

= 1 +
∂J∂Ω∗

p−1ψΩ∗(u, yJ(u, δv))

∂λ
δv
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for some yJ(u, δv) that is on the line segment connecting 0 and δv. By Lemma B.5,
∂J∂Ω∗
p−1 ψΩ∗ (·,·)

∂λ

is bounded on ∂Ω∗ × (−δ̃, δ̃). We then have

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

(k(v) + δr(u, v, δ))l(g(u) +∇g(yg(u, δvνΩ∗(u)))′δvνΩ∗(u))

× (fX(u) +∇fX(yf (u, δvνΩ∗(u)))′δvνΩ∗(u))(1 +
∂J∂Ω∗
p−1 ψΩ∗ (u,yJ (u,δv))

∂λ δv)dHp−1(u)dv

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

(k(v)lg(u)fX(u) + δh(u, v, δ))dHp−1(u)dv

=

∫ 1

−1
k(v)ldv

∫
∂Ω∗

g(u)fX(u)dHp−1(u) + δ

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

h(u, v, δ)dHp−1(u)dv

for some function h bounded on ∂Ω∗ ∩N(X , δ̃)× (−1, 1)× (0, δ̃). It then follows that

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}] =

∫ 1

−1
k(v)ldv

∫
∂Ω∗

g(u)fX(u)dHp−1(u) +O(δ).

Also,

δ−1E[Zip
A(Xi; δ)

lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1

0

∫
∂Ω∗∩N(X ,δ̃)

(k(v) + δr(u, v, δ))lg(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv

=

∫ 1

0
k(v)ldv

∫
∂Ω∗

g(u)fX(u)dHp−1(u) +O(δ).

Step C.3.3.4. Let SD = limδ→0 δ
−1E[ZiD

′
i1{pA(Xi; δ) ∈ (0, 1)}] and SY = limδ→0 δ

−1E[ZiYi1{pA(Xi; δ) ∈
(0, 1)}]. Then the second element of S−1

D SY is β1.

Proof. Note that Di = ZiDi(1) + (1− Zi)Di(0) and Yi = ZiY1i + (1− Zi)Y0i. By Step C.3.3.3,

SD

=

 2f̄X
∫
∂Ω∗

E[Di(1) +Di(0)|Xi = x]fX(x)dHp−1(x)
∫ 1

−1
k(v)dvf̄X

f̄X
∫
∂Ω∗

E[Di(1)|Xi = x]fX(x)dHp−1(x)
∫ 1

0
k(v)dvf̄X∫ 1

−1
k(v)dvf̄X

∫
∂Ω∗

(
∫ 1

0
k(v)dvE[Di(1)|Xi = x] +

∫ 0

−1
k(v)dvE[Di(0)|Xi = x])fX(x)dHp−1(x)

∫ 1

−1
k(v)2dvf̄X

 ,
where f̄X =

∫
∂Ω∗ fX(x)dHp−1(x), and

SY =


∫
∂Ω∗ E[Y1i + Y0i|Xi = x]fX(x)dHp−1(x)∫

∂Ω∗ E[Y1i|Xi = x]fX(x)dHp−1(x)∫
∂Ω∗(

∫ 1
0 k(v)dvE[Y1i|Xi = x] +

∫ 0
−1 k(v)dvE[Y0i|Xi = x])fX(x)dHp−1(x)

 .
After a few lines of algebra, we have

det(SD) =f̄−2
X

∫
∂Ω∗

E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)

× (

∫ 0

−1
(k(v)−

∫ 0

−1
k(s)ds)2dv +

∫ 1

0
(k(v)−

∫ 1

0
k(s)ds)2dv),
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which is nonzero under Assumption 3 (b) and (f) (i). After another few lines of algebra, we
obtain that the second element of S−1

D SY is∫
∂Ω∗ E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]fX(x)dHp−1(x)∫

∂Ω∗ E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)
.

On the other hand, by Step C.3.3.3,

β1 = lim
δ→0

E[ωi(δ)(Yi(1)− Yi(0))]

= lim
δ→0

δ−1E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))(Yi(1)− Yi(0))1{pA(Xi; δ) ∈ (0, 1)}]
δ−1E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1
−1 k(v)(1− k(v))dv

∫
∂Ω∗ E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]fX(x)dHp−1(x)∫ 1

−1 k(v)(1− k(v))dv
∫
∂Ω∗ E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)

=

∫
∂Ω∗ E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]fX(x)dHp−1(x)∫

∂Ω∗ E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)
.

Step C.3.3.5. If nδn →∞ as n→∞, then β̂1
p−→ β1.

Proof. It suffices to verify that the variance of each element of 1
nδn

∑n
i=1 ZiD

′
iIi and

1
nδn

∑n
i=1 ZiY Ii

is o(1). Here, we only verify that Var( 1
nδn

∑n
i=1 p

A(Xi; δn)YiIi) = o(1). Note that

E[Y 2
i |Xi] = E[ZiY

2
1i + (1− Zi)Y 2

0i|Xi] ≤ E[Y 2
1i + Y 2

0i|Xi].

Under Assumption 3 (g), there exists δ′ > 0 such that E[Y 2
1i+Y

2
0i|Xi] is continuous on N(∂Ω∗, δ′).

Since cl(N(∂Ω∗, 1
2δ
′)) is closed and bounded, E[Y 2

1i +Y 2
0i|Xi] is bounded on cl(N(∂Ω∗, 1

2δ
′)). We

have

Var(
1

nδn

n∑
i=1

pA(Xi; δn)YiIi) ≤
1

nδn
δ−1
n E[pA(Xi; δn)2Y 2

i Ii]

=
1

nδn
δ−1
n E[pA(Xi; δn)2E[Y 2

i |Xi]Ii]

≤ 1

nδn
C

for some C > 0, where the last inequality follows from Step C.3.3.3. The conclusion follows since
nδn →∞.

Now let β = (β0, β1, β2)′ = S−1
D SY and let εi = Yi −D′iβ. We can write

√
nδn(β̂ − β) = (

1

nδn

n∑
i=1

ZiD
′
iIi)
−1 1√

nδn

n∑
i=1

ZiεiIi

= (
1

nδn

n∑
i=1

ZiD
′
iIi)
−1 1√

nδn

n∑
i=1

{(ZiεiIi − E[ZiεiIi]) + E[ZiεiIi]}.
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Step C.3.3.6.
1√
nδn

n∑
i=1

(ZiεiIi − E[ZiεiIi])
d−→ N (0,V),

where V = limn→∞ δ
−1
n E[ε2iZiZiIi].

Proof. We use the triangular-array Lyapunov CLT and the Cramér-Wold device. Pick a nonzero
λ ∈ Rp, and let Vi,n = 1√

nδn
λ′(ZiεiIi − E[ZiεiIi]). First,

n∑
i=1

E[V 2
i,n] = δ−1

n λ′(E[ε2iZiZ
′
iIi]− E[ZiεiIi]E[Z′iεiIi])λ.

By Step C.3.3.3,
E[ZiεiIi] = E[Zi(Yi −D′iβ)Ii] = O(δn),

so
δ−1
n E[ZiεiIi]E[Z′iεiIi] = o(1).

We have

E[ε2iZiZ
′
iIi] = E[(Yi − β0 − β1Di − β2p

A(Xi; δn))2ZiZ
′
iIi]

= E[Zi(Y1i − β0 − β1Di(1)− β2p
A(Xi; δn))2ZiZ

′
iIi]

+ E[(1− Zi)(Y0i − β0 − β1Di(0)− β2p
A(Xi; δn))2ZiZ

′
iIi].

Since E[Y1i|Xi], E[Y0i|Xi], E[Di(1)|Xi], E[Di(0)|Xi], E[Y 2
1i|Xi], E[Y 2

0i|Xi], E[Y1iDi(1)|Xi] and
E[Y0iDi(0)|Xi] are continuous onN(∂Ω∗, δ′) for some δ′ > 0 under Assumption 3 (g), limn→∞ δ

−1
n E[ε2iZiZ

′
iIi]

exists and finite. Therefore,
n∑
i=1

E[V 2
i,n]→ λ′Vλ < 0.

We next verify the Lyapunov condition: for some t > 0,
n∑
i=1

E[|Vi,n|2+t]→ 0.

We have
n∑
i=1

E[|Vi,n|4] =
1

nδn
δ−1
n E[|λ′(ZiεiIi − E[ZiεiIi])|4]

≤ 1

nδn
23cδ−1

n {E[|λ′ZiεiIi|4] + |λ′E[ZiεiIi]|4}

by the cr-inequality. Repeating using the cr-inequality gives

δ−1
n E[|λ′ZiεiIi|4] = δ−1

n E[|λ′Zi(Yi − β0 − β1Di − β2p
A(Xi; δn))|4Ii]

≤ 23cδ−1
n E[(|λ′Zi|4)(|Yi|4 + |β0|4 + |β1|4Di + |β2|4pA(Xi; δn)4)Ii]

≤ 23c(λ1 + λ2 + λ3)4δ−1
n E[(Y 4

i + β4
0 + β4

1 + β4
2)Ii]

= 23cO(1)
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for some finite constant c, where the last equality holds by Step C.3.3.3 under Assumption 3 (g).
Moreover,

δ−1
n |λ′E[ZiεiIi]|4 = δ3

n|λ′δ−1
n E[ZiεiIi]|4

= δ3
nO(1)

= o(1).

Therefore, when nδn →∞,
n∑
i=1

E[|Vi,n|4]→ 0,

and the conclusion follows from the Lyapunov CLT and the Cramér-Wold device.

Step C.3.3.7. nδnΣ̂
p−→ S−1

D V(S′D)−1.

Proof. We have

1

nδn

n∑
i=1

ε̂2iZiZ
′
iIi =

1

nδn

n∑
i=1

(Yi −D′iβ̂)2ZiZ
′
iIi

=
1

nδn

n∑
i=1

(εi −D′i(β̂ − β))2ZiZ
′
iIi

=
1

nδn

n∑
i=1

ε2iZiZ
′
iIi

− 2

nδn

n∑
i=1

(Yi −D′iβ)((β̂0 − β0) +Di(β̂1 − β1) + pA(Xi; δn)(β̂2 − β2))ZiZ
′
iIi

+
1

nδn

n∑
i=1

((β̂0 − β0) +Di(β̂1 − β1) + pA(Xi; δn)(β̂2 − β2))2ZiZ
′
iIi

=
1

nδn

n∑
i=1

ε2iZiZ
′
iIi + op(1)Op(1),

where the last equality follows from the result that β̂ − β = op(1) and from application of
Step C.3.3.3 as in Steps C.3.3.5 and C.3.3.6. To show 1

nδn

∑n
i=1 ε

2
iZiZ

′
iIi

p−→ V, it suffices
to verify that the variance of each element of 1

nδn

∑n
i=1 ε

2
iZiZ

′
iIi is o(1). We only verify that
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Var( 1
nδn

∑n
i=1 ε

2
i p
A(Xi; δn)2Ii) = o(1). Using the cr-inequality, we have that for some constant c,

Var(
1

nδn

n∑
i=1

ε2i p
A(Xi; δn)2Ii) ≤

1

nδn
δ−1
n E[ε4i Ii]

=
1

nδn
δ−1
n E[(Yi − β0 − β1Di − β2p

A(Xi))
4Ii]

≤ 1

nδn
23cδ−1

n E[(Y 4
i + β4

0 + β4
1Di + β4

2p
A(Xi)

4)Ii]

≤ 1

nδn
23cδ−1

n E[(Y 4
i + β4

0 + β4
1 + β4

2)Ii]

=
1

nδn
23cO(1)

= o(1),

where the second last equality holds by Step C.3.3.3 under Assumption 3 (g). Therefore,

1

nδn

n∑
i=1

ε̂2iZiZ
′
iIi

p−→ V.

It follows that

nδnΣ̂ = (
1

nδn

n∑
i=1

ZiD
′
iIi)
−1(

1

nδn

n∑
i=1

ε̂2iZiZ
′
iIi)(

1

nδn

n∑
i=1

DiZ
′
iIi)
−1 p−→ S−1

D V(S′D)−1.

Step C.3.3.8. σ̂−1(β̂1 − β1)
d−→ N (0, 1).

Proof. Let βn = S−1
D δ−1

n E[ZiYiIi]. We then have

1√
nδn

n∑
i=1

E[ZiεiIi] =
√
nδnδ

−1
n E[Zi(Yi −D′β)Ii]

=
√
nδnδ

−1
n E[Zi(Yi −D′iβn + D′i(βn − β))Ii]

=
√
nδnδ

−1
n {E[ZiYiIi]− E[ZiD

′
iIi]βn + E[ZiD

′
iIi](βn − β)}

=
√
nδn{(SD − δ−1

n E[ZiD
′
iIi])S

−1
D δ−1

n E[ZiYiIi]

+ δ−1
n E[ZiD

′
iIi]S

−1
D (δ−1

n E[ZiYiIi]− SY )}

=
√
nδn(O(δn)O(1) +O(1)O(δn))

= O(
√
nδnδn),

where we use Step C.3.3.3 for the second last equality. Thus, when nδ3
n → 0,√

nδn(β̂ − β) = (
1

nδn

n∑
i=1

ZiD
′
iIi)
−1 1√

nδn

n∑
i=1

{(ZiεiIi − E[ZiεiIi]) + E[ZiεiIi]}

d−→ N (0, S−1
D V(S′D)−1).

The conclusion then follows from Step C.3.3.7.
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C.3.4 Consistency and Asymptotic Normality of β̂s1 When Pr(A(Xi) ∈ (0, 1)) = 0

Let Isi = 1{ps(Xi; δn) ∈ (0, 1)}, Ds
i = (1, Di, p

s(Xi; δn))′ and Zsi = (1, Zi, p
s(Xi; δn))′. β̂s and Σ̂s

are given by

β̂s = (
n∑
i=1

Zsi (D
s
i )
′Isi )−1

n∑
i=1

ZsiYiI
s
i .

and

Σ̂s = (
n∑
i=1

Zsi (D
s
i )
′Isi )−1(

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi )(

n∑
i=1

Ds
i (Z

s
i )
′Isi )−1,

where ε̂si = Yi − (Ds
i )
′β̂s. It is sufficient to show that

β̂s − β̂ = op(1),

if Sn →∞ and that √
nδn(β̂s − β̂) = op(1),

nδnΣ̂
s p−→ S−1

D V(S′D)−1

if Assumption 5 holds.

Step C.3.4.1. Let {Vi}∞i=1 be i.i.d. random variables. If E[Vi|Xi] and E[V 2
i |Xi] are bounded on

N(∂Ω∗, δ′) ∩N(X , δ′) for some δ′ > 0, and Sn →∞, then

1

nδn

n∑
i=1

Vip
s(Xi; δn)lIsi −

1

nδn

n∑
i=1

Vip
A(Xi; δn)lIi = op(1)

for l = 0, 1, 2, 3, 4. If, in addition, Assumption 5 holds, then

1√
nδn

n∑
i=1

Vip
s(Xi; δn)lIsi −

1√
nδn

n∑
i=1

Vip
A(Xi; δn)lIi = op(1)

for l = 0, 1, 2.

Proof. We have

1

nδn

n∑
i=1

Vip
s(Xi; δn)lIsi −

1

nδn

n∑
i=1

Vip
A(Xi; δn)lIi

=
1

nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii) +

1

nδn

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii.
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We first consider 1
nδn

∑n
i=1 Vi(p

s(Xi; δn)l− pA(Xi; δn)l)Ii. By using the argument in the proof of
Step C.3.3.3 in Section C.3.3, we have

|E[
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii]|

= δ−1
n |E[E[Vi|Xi]E[ps(Xi; δn)l − pA(Xi; δn)l|Xi]Ii]|

≤ δ−1
n E[|E[Vi|Xi]||E[ps(Xi; δn)l − pA(Xi; δn)l|Xi]|Ii]

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

|E[Vi|Xi = u+ δnvνΩ∗(u)]||E[ps(u+ δnvνΩ∗(u); δn)l − pA(u+ δnvνΩ∗(u); δn)l]|

× fX(u+ δnvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δnv)dHp−1(u)dv,

where the choice of δ̃ is as in the proof of Step C.3.3.3. By Lemma B.7, for l = 0, 1, 2,

|E[
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii]|

≤ 1

Sn

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

|E[Vi|Xi = u+ δnvνΩ∗(u)]|fX(u+ δnvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δnv)dHp−1(u)dv

= O(S−1
n ).

Also, by Lemma B.7,

|E[
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)3 − pA(Xi; δn)3)Ii]|

= |δ−1
n E[Vi(p

s(Xi; δn)− pA(Xi; δn))(ps(Xi; δn)2 + ps(Xi; δn)pA(Xi; δn) + pA(Xi; δn)2)Ii]|
≤ δ−1

n E[|E[Vi|Xi]||E[(ps(Xi; δn)− pA(Xi; δn))(ps(Xi; δn)2 + ps(Xi; δn)pA(Xi; δn) + pA(Xi; δn)2)|Xi]|Ii]
≤ 3δ−1

n E[|E[Vi|Xi]|E[|ps(Xi; δn)− pA(Xi; δn)||Xi]Ii]

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

|E[Vi|Xi = u+ δnvνΩ∗(u)]|E[|ps(u+ δnvνΩ∗(u); δn)− pA(u+ δnvνΩ∗(u); δn)|]

× fX(u+ δnvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δnv)dHp−1(u)dv

≤ (
1

Snε2
+ ε)O(1)

for every ε > 0. We can make the right-hand side arbitrarily close to zero by taking suffi-
ciently small ε > 0 and sufficiently large Sn, which implies that |E[ 1

nδn

∑n
i=1 Vi(p

s(Xi; δn)3 −
pA(Xi; δn)3)Ii]| = o(1) if Sn →∞. Likewise,

|E[
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)4 − pA(Xi; δn)4)Ii]|

= |δ−1
n E[Vi(p

s(Xi; δn)2 + pA(Xi; δn)2)(ps(Xi; δn) + pA(Xi; δn))(ps(Xi; δn)− pA(Xi; δn))Ii]|
≤ δ−1

n E[|E[Vi|Xi]||E[(ps(Xi; δn)2 + pA(Xi; δn)2)(ps(Xi; δn) + pA(Xi; δn))(ps(Xi; δn)− pA(Xi; δn))|Xi]|Ii]
≤ 8δ−1

n E[|E[Vi|Xi]|E[|ps(Xi; δn)− pA(Xi; δn)||Xi]Ii]

= o(1).
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As for variance, for l = 0, 1, 2,

Var(
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii) ≤

1

nδn
δ−1
n E[V 2

i (ps(Xi; δn)l − pA(Xi; δn)l)2Ii]

≤ 1

nδn
δ−1
n E[E[V 2

i |Xi]E[(ps(Xi; δn)l − pA(Xi; δn)l)2|Xi]Ii]

≤ 4

nδnSn
δ−1
n E[E[V 2

i |Xi]Ii]

= O((nδnSn)−1),

and for l = 3, 4,

Var(
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii) ≤

1

nδn
δ−1
n E[V 2

i (ps(Xi; δn)l − pA(Xi; δn)l)2Ii]

≤ 1

nδn
δ−1
n E[V 2

i Ii]

= o(1).

Therefore, 1
nδn

∑n
i=1 Vi(p

s(Xi; δn)l − pA(Xi; δn)l)Ii = op(1) if Sn → ∞ for l = 0, 1, 2, 3, 4, and
1√
nδn

∑n
i=1 Vi(p

s(Xi; δn)l − pA(Xi; δn)l)Ii = op(1) if n−1/2Sn →∞ for l = 0, 1, 2.
We next show that 1

nδn

∑n
i=1 Vip

s(Xi; δn)l(Isi − Ii) = op(1) if Sn →∞ for l ≥ 0. We have

|E[
1

nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)]| = δ−1

n |E[Vip
s(Xi; δn)l(Isi − Ii)]|

≤ δ−1
n E[|E[Vi|Xi]||E[ps(Xi; δn)l(Isi − Ii)|Xi]|]

= δ−1
n E[|E[Vi|Xi]|E[|Isi − Ii||Xi]].

Since Isi − Ii ≤ 0 with strict inequality only if Ii = 1,

E[|Isi − Ii||Xi] = −E[Isi − Ii|Xi]Ii = (1− E[Isi |Xi])Ii = Pr(ps(Xi; δn) ∈ {0, 1}|Xi)Ii.

We then have

|E[
1

nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)]|

≤ δ−1
n E[|E[Vi|Xi]|Pr(ps(Xi; δn) ∈ {0, 1}|Xi)Ii]

≤ δ−1
n E[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn)Ii]

≤
∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

|E[Vi|Xi = u+ δnvνΩ∗(u)]|{(1− pA(u+ δnvνΩ∗(u); δn))Sn

+ pA(u+ δnvνΩ∗(u); δn)Sn}fX(u+ δnvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δnv)dHp−1(u)dv,

where the second inequality follows from Lemma B.7. Note that for every (u, v) ∈ ∂Ω∗ ∩
N(X , δ̃)× (−1, 1), limδ→0 p

A(u+ δnvνΩ∗(u); δn) = k(v) ∈ (0, 1) by Step C.3.3.1 in Section C.3.3.
Since E[Vi|Xi], fX and J∂Ω∗

p−1ψΩ∗ are bounded, by the Bounded Convergence Theorem,

|E[
1

nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)]| = o(1)
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if Sn →∞.
As for variance,

Var(
1

nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)) ≤

1

nδn
δ−1
n E[V 2

i p
s(Xi; δn)2l(Isi − Ii)2]

≤ 1

nδn
δ−1
n E[V 2

i |Isi − Ii|]

=
1

nδn
δ−1
n E[E[V 2

i |Xi]E[|Isi − Ii||Xi]]

= o(1).

Lastly, we show that, for l ≥ 0, 1√
nδn

∑n
i=1 Vip

s(Xi; δn)l(Isi − Ii) = op(1) if Assumption 5

holds. Let ηn = γ logn
Sn

, where γ is the one satisfying Assumption 5. We have

|E[
1√
nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)]|

≤
√
nδ−1

n E[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn)Ii]

=

√
nδ−1

n E[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn))1{pA(Xi; δn) ∈ (0, ηn) ∪ (1− ηn, 1)}]

+

√
nδ−1

n E[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn))1{pA(Xi; δn) ∈ (ηn, 1− ηn)}]

≤ ( sup
x∈N(∂Ω∗,2δ̃)∩N(X ,2δ̃)

|E[Vi|Xi = x]|)(
√
nδ−1

n Pr(pA(Xi; δn) ∈ (0, ηn) ∪ (1− ηn, 1))

+ 2
√
nδn(1− ηn)Snδ−1

n E[1{pA(Xi; δn) ∈ (ηn, 1− ηn)}]).

By Assumption 5,
√
nδ−1

n Pr(pA(Xi; δn) ∈ (0, ηn) ∪ (1− ηn, 1)) = o(1). For the second term,

2
√
nδn(1− ηn)Snδ−1

n E[1{pA(Xi; δn) ∈ (ηn, 1− ηn)}] ≤ 2
√
nδn(1− ηn)Snδ−1

n E[Ii]

= 2
√
nδn(1− ηn)SnO(1).

Observe that ηn = γ logn
Sn

= γ logn
n1/2

1
n−1/2Sn

→ 0, since n−1/2Sn →∞ and logn
n1/2 → 0. Using the fact

that et ≥ 1 + t for every t ∈ R, we have√
nδn(1− ηn)Sn ≤

√
nδn(e−ηn)Sn

=
√
nδne

−ηnSn

=
√
nδne

−γ logn

=
√
nδnn

−γ

= n1/2−γδ1/2
n

→ 0,
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since γ > 1/2. As for variance,

Var(
1√
nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)) ≤ δ−1

n E[V 2
i p

s(Xi; δn)2l(Isi − Ii)2]

≤ δ−1
n E[E[V 2

i |Xi]E[|Isi − Ii||Xi]Ii]

= o(1).

We have

β̂s − β̂

= (
1

nδn

n∑
i=1

Zsi (D
s
i )
′Isi )−1 1

nδn

n∑
i=1

ZsiYiI
s
i − (

1

nδn

n∑
i=1

ZiD
′
iIi)
−1 1

nδn

n∑
i=1

ZiYiIi

= (
1

nδn

n∑
i=1

Zsi (D
s
i )
′Isi )−1(

1

nδn

n∑
i=1

ZsiYiI
s
i −

1

nδn

n∑
i=1

ZiYiIi)

− (
1

nδn

n∑
i=1

Zsi (D
s
i )
′Isi )−1(

1

nδn

n∑
i=1

Zsi (D
s
i )
′Isi −

1

nδn

n∑
i=1

ZiD
′
iIi)(

1

nδn

n∑
i=1

ZiD
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iIi)
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nδn

n∑
i=1

ZiYiIi.

By Step C.3.4.1, β̂s − β̂ = op(1) if Sn →∞, and
√
nδn(β̂s − β̂) = op(1) if Assumption 5 holds.

By proceeding as in Step C.3.3.7 in Section C.3.3, we have

1

nδn

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi =

1

nδn

n∑
i=1

(εsi )
2Zsi (Z

s
i )
′Isi + op(1),

where εsi = Yi − (Ds
i )
′β. Then, by Step C.3.4.1,

1

nδn

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi −

1

nδn

n∑
i=1

ε2iZiZ
′
iIi

=
1

nδn

n∑
i=1

(Y 2
i − 2Yi(D

s
i )
′β + β′Ds

i (D
s
i )
′β)Zsi (Z

s
i )
′Isi −

1

nδn

n∑
i=1

(Y 2
i − 2YiD

′
iβ + β′DiD

′
iβ)ZiZ

′
iIi + op(1)

= op(1)

so that
1

nδn

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi

p−→ V.

Also, 1
nδn

∑n
i=1 Zsi (D

s
i )
′Isi

p−→ SD by using Step C.3.4.1. The conclusion then follows.
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C.4 Proof of Proposition A.2

With change of variables u = x∗−x
δ , we have

pA(x; δ) =

∫
B(x,δ)A(x∗)dx∗∫

B(x,δ) dx
∗

=
δp
∫
B(0,1)A(x+ δu)du

δp
∫
B(0,1) du

=

∫
∪q∈QUx,q A(x+ δu)du+

∫
B(0,1)\∪q∈QUx,q A(x+ δu)du∫

B(0,1) du

=

∑
q∈Q

∫
Ux,q A(x+ δu)du∫
B(0,1) du

,

where the last equality follows from the assumption that Lp(∪q∈QUx,q) = Lp(B(0, 1)). By the
definition of Ux,q, for each q ∈ Q, limδ→0A(x + δu) = q for any u ∈ Ux,q. By the Dominated
Convergence Theorem,

pA(x) = lim
δ→0

pA(x; δ)

=

∑
q∈Q qLp(Ux,q)
Lp(B(0, 1))

.

The numerator exists, since q ≤ 1 for all q ∈ Q and
∑

q∈Q Lp(Ux,q) = Lp(B(0, 1)).

C.5 Proof of Corollary A.1

1. Suppose that A is continuous at x ∈ X , and let q = A(x). Then, by definition, Ux,q =

B(0, 1). By Proposition A.2, pA(x) exists, and pA(x) = q.

2. Pick any x ∈ int(Xq). A is continuous at x, since there exists δ > 0 such that B(x, δ) ⊂ Xq
by the definition of interior. By the previous result, pA(x) exists, and pA(x) = q.

3. Let N be the neighborhood of x on which f is continuously differentiable. By the mean
value theorem, for any sufficiently small δ > 0,

f(x+ δu) = f(x) +∇f(x̃δ) · δu
= ∇f(x̃δ) · δu

for some x̃δ which is on the line segment connecting x and x+ δu. Since x̃δ → x as δ → 0

and ∇f is continuous on N , ∇f(x̃δ) · u→ ∇f(x) · u as δ → 0. Therefore, if ∇f(x) · u > 0,
then f(x + δu) = ∇f(x̃δ) · δu > 0 for any sufficiently small δ > 0, and if ∇f(x) · u < 0,
then f(x+ δu) = ∇f(x̃δ) · δu < 0 for any sufficiently small δ > 0. We then have

U+
x ≡ {u ∈ B(0, 1) : ∇f(x) · u > 0} ⊂ Ux,q1
U−x ≡ {u ∈ B(0, 1) : ∇f(x) · u < 0} ⊂ Ux,q2 .
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Let V be the Lebesgue measure of a half p-dimensional unit ball. Since V = Lp(U+
x ) ≤

Lp(Ux,q1), V = Lp(U−x ) ≤ Lp(Ux,q2), and Lp(Ux,q1) + Lp(Ux,q2) ≤ Lp(B(0, 1)) = 2V , it
follows that Lp(Ux,q1) = Lp(Ux,q2) = V . By Proposition A.2, pA(x) exists, and pA(x) =
1
2(q1 + q2).

4. We have that U0,q1 = {(u1, u2)′ ∈ B(0, 1) : u1 ≤ 0 or u2 ≤ 0} and U0,q2 = {(u1, u2)′ ∈
B(0, 1) : u1 > 0, u2 > 0}. By Proposition A.2, pA(x) exists, and pA(x) =

q1L2(U0,q1 )+q2L2(U0,q2 )

L2(B(0,1))
=

3
4q1 + 1

4q2.

C.6 Proof of Proposition A.1

Since A is a Lp-measurable and bounded function, A is locally integrable with respect to the
Lebesgue measure, i.e., for every ball B ⊂ Rp,

∫
B A(x)dx exists. An application of the Lebesgue

differentiation theorem (see e.g. Theorem 1.4 in Chapter 3 of Stein and Shakarchi (2005)) to the
function A shows that

lim
δ→0

∫
B(x,δ)A(x∗)dx∗∫

B(x,δ) dx
∗ = A(x)

for almost every x ∈ Rp.

C.7 Proof of Proposition A.3

We can prove Part (a) using the same argument in the proof of Proposition 1 (a). For Part (b),
suppose to the contrary that there exists xd ∈ X Sd such that Lpc({xc ∈ X Sc (xd) : pA(xd, xc) ∈
{0, 1}}) > 0. Without loss of generality, assume Lpc({xc ∈ X Sc (xd) : pA(xd, xc) = 1}) > 0. The
proof proceeds in five steps.

Step C.7.1. Lpc(X Sc (xd) ∩ Xc,1(xd)) > 0.

Step C.7.2. X Sc (xd) ∩ int(Xc,1(xd)) 6= ∅.

Step C.7.3. pA(xd, xc) = 1 for any xc ∈ int(Xc,1(xd)).

Step C.7.4. For every x∗c ∈ X Sc (xd) ∩ int(Xc,1(xd)), there exists δ > 0 such that B(x∗c , δ) ⊂
X Sc (xd) ∩ int(Xc,1(xd)).

Step C.7.5. E[Y1i − Y0i|Xi ∈ S] is not identified.

Following the argument in the proof of Proposition 1 (b), we can prove Steps C.7.1–C.7.3. Once
Step C.7.4 is established, we prove Step C.7.5 by following the proof of Step C.1.4 in Proposition
1 (b) with B(x∗c , δ) and B(x∗c , ε) in place of B(x∗, δ) and B(x∗, ε), respectively, using the fact
that Pr(Xci ∈ B(x∗c , ε)|Xdi = xd) > 0 by the definition of support. Here, we provide the proof
of Step C.7.4.

Proof of Step C.7.4. Pick an x∗c ∈ X Sc (xd) ∩ int(Xc,1). Then, x∗ = (xd, x
∗
c) ∈ S. Since S is

open relative to X , there exists an open set U ∈ Rp such that S = U ∩ X . This implies that
for any sufficiently small δ > 0, B(x∗, δ) ∩ X ⊂ U ∩ X = S. It then follows that {xc ∈ Rpc :
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(xd, xc) ∈ B(x∗, δ) ∩ X} ⊂ {xc ∈ Rpc : (xd, xc) ∈ S}, equivalently, B(x∗c , δ) ∩ Xc(xd) ⊂ X Sc (xd).
By choosing a sufficiently small δ > 0 so that B(x∗c , δ) ⊂ int(Xc,1(xd)) ⊂ Xc(xd), we have
B(x∗c , δ) ⊂ X Sc (xd) ∩ int(Xc,1(xd)).

C.8 Proof of Theorem A.1

The proof is analogous to the proof of Theorem 1. The only difference is that, when we prove the
convergence of expectations, we show the convergence of the expectations conditional on Xdi,
and then take the expectations over Xdi.

D Machine Learning Simulation: Details

Parameter Choice. For the variance-covariance matrix Σ of Xi, we first create a 100 × 100

symmetric matrix V such that the diagonal elements are one, Vij is nonzero and equal to
Vji for (i, j) ∈ {2, 3, 4, 5, 6} × {35, 66, 78}, and everything else is zero. We draw values from
Unif(−0.5, 0.5) independently for the nonzero off-diagonal elements of V. We then create matrix
Σ = V ×V, which is a positive semidefinite matrix.

For α0 and α1, we first draw α̃0j , j = 51, ..., 100, from Unif(−100, 100) independently across
j, and draw α̃1j , j = 1, ..., 100, from Unif(−150, 200) independently across j. We then set
α̃0j = α̃1j for j = 1, ..., 50, and calculate α0 and α1 by normalizing α̃0 and α̃1 so that Var(X ′iα0) =

Var(X ′iα1) = 1.
Training of Prediction Model. We construct τpred using an independent sample {(Ỹi, X̃i, D̃i, Z̃i)}ñi=1

of size ñ = 2, 000. The distribution of (Ỹi, X̃i, D̃i, Z̃i) is the same as that of (Yi, Xi, Di, Zi) except
(1) that Ỹi(1) is generated as Ỹi(1) = Ỹi(0) + 0.5X̃ ′iα1 + 0.5ε1i, where ε1i ∼ N (0, 1) and (2) that
Z̃i ∼ Bernoulli(0.5). This can be viewed as data from a past randomized experiment conducted
to construct the algorithm.

We then use random forests separately for the subsamples with Z̃i = 1 and Z̃i = 0 to predict
Ỹi from X̃i. Let µz(x) be the trained prediction model. Set τpred(x) = µ1(x) − µ0(x). We
generate the sample {(Ỹi, X̃i, D̃i, Z̃i)}ñi=1 and construct τpred only once, and we use it for all of
the 1, 000 simulation samples. The distribution of the sample {(Yi, Xi, Di, Zi)}ni=1 is thus held
fixed for all simulations.

When training µz, we first randomly split the sample {(Ỹi, X̃i, D̃i, Z̃i)}ñi=1 into train (80%)
and test datasets (20%). We use random forests on the training sample to obtain the prediction
model µz and validate its performance on the test sample. The trained algorithm has an accuracy
of 97% on the test data.
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E Empirical Policy Application: Details

E.1 Hospital Cost Data

We use publicly available Healthcare Cost Report Information System (HCRIS) data,42 to
project43 funding eligibility and funding amounts for all hospitals in the dataset. This data
set contains information on various hospital characteristics including utilization, number of em-
ployees, medicare cost data and financial statement data.

The data is available from financial year 1996 to 2019. As the coverage is higher for 2018
(compared to 2019), we utilize the data corresponding to the 2018 financial year. Hospitals are
uniquely identified in a financial year by their CMS (Center for Medicaid and Medicare Services)
Certification Number. We have data for 4,705 providers for the 2018 financial year. We focus
on 4,648 acute care and critical access hospitals that are either located in one of the 50 states or
Washington DC.

Disproportionate patient percentage. Disproportionate patient percentage is equal to
the percentage of Medicare inpatient days attributable to patients eligible for both Medicare
Part A and Supplemental Security Income (SSI) summed with the percentage of total inpatient
days attributable to patients eligible for Medicaid but not Medicare Part A.44 In the data, this
variable is missing for 1560 hospitals. We impute the disproportionate patient percentage to 0
when it is missing.

Uncompensated care per bed. Cost of uncompensated care refers to the care provided by
the hospital for which no compensation was received from the patient or the insurer. It is the sum
of a hospital’s bad debt and the financial assistance it provides.45 The cost of uncompensated
care is missing for 86 hospitals, which we impute to 0. We divide the cost of uncompensated
care by the number of beds in the hospital to obtain the cost per bed. The data on bed count
is missing for 15 hospitals, which we drop from the analysis, leaving us with 4,633 hospitals in
2,473 counties.

Profit Margin. Hospital profit margins are indicative of the financial health of the hospitals.
We calculate profit margins as the ratio of net income to total revenue where total revenue is
the sum of net patient revenue and total other income. After the calculation, profit margins are
missing for 92 hospitals, which we impute to 0.

Funding. We calculate the projected funding using the formula on the CARES ACT website.
Hospitals that do not qualify on any of the three dimensions are not given any funding. Each
eligible hospital is assigned an individual facility score, which is calculated as the product of dis-
proportionate patient percentage and number of beds in that hospital. We calculate cumulative
facility score as the sum of all individual facility scores in the dataset. Each hospital receives

42We use the RAND cleaned version of this dataset, which can be accessed https://www.hospitaldatasets.
org/

43We use the methodology detailed in the CARES ACT website to project funding based on 2018 financial year
cost reports.

44For the precise definition, see https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/
AcuteInpatientPPS/dsh.

45The precise definition can be found at https://www.aha.org/fact-sheets/2020-01-06-fact-sheet-
uncompensated-hospital-care-cost.
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a share of $10 billion, where the share is determined by the ratio of individual facility score of
that hospital to the cumulative facility score. The amount of funding received by hospitals is
bounded below at $5 million and capped above at $50 million.

E.2 Hospital Utilization Data

We use the publicly available COVID-19 Reported Patient Impact and Hospital Capacity by
Facility dataset for our outcome variables. This provides facility level data on hospital utilization
aggregated on a weekly basis, from July 31st onwards. These reports are derived from two
main sources – (1) HHS TeleTracking and (2) reporting provided directly to HHS Protect by
state/territorial health departments on behalf of health care facilities.46

The hospitals are uniquely identified for a given collection week (which goes from Friday to
Thursday) by their CMS Certification number. All hospitals that are registered with CMS by
June 1st 2020 are included in the population. We merge the hospital cost report data with the
utilization data using the CMS certification number. According to the terms and conditions of
the CARES Health Care Act, the recipients may use the relief funds only to “prevent, prepare
for, and respond to coronavirus” and for “health care related expenses or lost revenues that
are attributable to coronavirus”. Therefore, for our analysis we focus on 4 outcomes that were
directly affected by COVID-19, for the week spanning July 31st to August 6th 2020. The outcome
measures are described below.47

1. Total reports of patients currently hospitalized in an adult inpatient bed who have laboratory-
confirmed or suspected COVID-19, including those in observation beds reported during the
7-day period.

2. Total reports of patients currently hospitalized in an adult inpatient bed who have laboratory-
confirmed COVID-19 or influenza, including those in observation beds. Including patients
who have both laboratory-confirmed COVID-19 and laboratory confirmed influenza during
the 7-day period.

3. Total reports of patients currently hospitalized in a designated adult ICU bed who have
suspected or laboratory-confirmed COVID-19.

4. Total reports of patients currently hospitalized in a designated adult ICU bed who have
laboratory-confirmed COVID-19 or influenza, including patients who have both laboratory-
confirmed COVID-19 and laboratory-confirmed influenza.48

46Source: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/
anag-cw7u.

47We conduct sanity checks and impute observations to missing if they fail our checks. For example, we impute
the value # Confirmed/ Suspected COVID Patients and # Confirmed COVID Patients to missing when the
latter is greater than the former. # Confirmed/ Suspected COVID Patients should be greater than or equal to
# Confirmed COVID Patients as the former includes the latter. Similarly, we impute # Confirmed/ Suspected
COVID Patients in ICU and # Confirmed COVID Patients in ICU to be missing when the latter is greater than
the former.

48In the dataset, when the values of the 7 day sum are reported to be less than 4, they are replaced with
-999,999. We recode these values to be missing. The results in Table 4 remain almost the same even if we impute
the suppressed values (coded as -999,999) with 0s. Results are available upon request.
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E.3 Computing Fixed-Bandwidth Approximate Propensity Score

As the three determinants of funding eligibility are continuous variables, we can think of this
setting as a multi-dimensional regression discontinuity design and a suitable setting to apply our
method. In this setting, the Xi are disproportionate patient percentage, uncompensated care
per bed and profit margin. Funding eligibility (Zi) is determined algorithmically using these 3
dimensions. Di is the amount of funding received by hospital i, which depends on both funding
eligibility status Zi, number of beds in the hospital, and disproportionate patient percentage.
Before calculating fixed-bandwidth APS, we normalize each characteristic of Xi to have mean 0
and variance 1. For each hospital and every δ ∈ {0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5}, we draw
10,000 times from a δ-ball around the normalized covariate space and calculate fixed-bandwidth
APS by averaging funding eligibility Zi over these draws.

E.4 Additional Empirical Results

Figure A.2: Fixed-bandwidth APS Estimation with Varying Simulations S
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Notes: The above figure plots the fixed-bandwidth APS estimates for 10 randomly selected hospitals along the eligibility
margin for varying numbers of simulations S. Each line represents a different hospital. The dotted line at 104 indicates the
number of simulations we use for our main analysis.
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Table A.1: Differential Attrition

Our Method with Approximate Propensity Score Controls
Ineligible No
Hospitals Controls δ =

0.01

δ =

0.025

δ =

0.05

δ =

0.075

δ =

0.1

δ =

0.25

δ =

0.5

(1) (2) (3) (4) (5) (6) (7) (8) (9)

#Confirmed/Suspected .745 38.19*** -15.51 -24.80 -44.34 -57.95 -40.34 2.05 -4.08
Covid Patients (8.55) (85.67) (70.81) (70.09) (63.06) (48.58) (22.20) (15.67)

N=3532 N=73 N=195 N=392 N=547 N=719 N=1389 N=1947
#Confirmed Covid Patients .754 33.97*** 0.85 -30.81 21.32 1.96 -0.39 -1.28 -8.25

(7.44) (73.28) (55.22) (33.46) (29.41) (25.14) (15.75) (12.56)
N=3558 N=70 N=191 N=385 N=539 N=709 N=1366 N=1923

#Confirmed/Suspected .728 13.18*** 13.68 9.54 5.71 -0.83 2.34 -0.46 -4.21
Covid Patients in ICU (2.74) (23.41) (17.74) (11.91) (10.68) (9.01) (5.78) (4.64)

N=3445 N=72 N=186 N=374 N=520 N=678 N=1314 N=1846
#Confirmed Covid Patients .744 12.16*** 7.97 -1.54 2.79 0.65 1.87 -1.94 -4.66
in ICU (2.58) (25.63) (18.89) (11.25) (9.97) (8.52) (5.57) (4.43)

N=3503 N=67 N=181 N=370 N=514 N=671 N=1321 N=1868

Notes: This table reports differential safety net eligibility effects on the availability of outcome data at the hospital level.
Column 1 presents the average of the availability indicators of the outcome variables for the ineligible hospitals. In column
2, we regress the availability indicator on dummy for safety net eligibility without any controls. In columns 3-9, we run
this regression controlling for the Approximate Propensity Score with different values of bandwidth δ on the sample with
nondegenerate Approximate Propensity Score. All Approximate Propensity Scores are computed by averaging 10,000
simulation draws. The outcome variables are the 7 day totals for the week spanning July 31st, 2020 to August 6th, 2020.
Confirmed or Suspected COVID patients refer to the sum of patients in inpatient beds with lab-confirmed/suspected
COVID-19. Confirmed COVID patients refer to the sum of patients in inpatient beds with lab-confirmed COVID-19,
including those with both lab-confirmed COVID-19 and influenza. Inpatient bed totals also include observation beds.
Similarly, Confirmed/Suspected COVID patients in ICU refer to the sum of patients in ICU beds with lab-confirmed or
suspected COVID-19. Confirmed COVID patients in ICU refers to the sum of patients in ICU beds with lab-confirmed
COVID-19, including those with both lab-confirmed COVID-19 and influenza. Robust standard errors are reported in
parenthesis.
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