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Summary We consider an experimental setting in which a matching of resources to
participants has to be chosen repeatedly and returns from the individual chosen matches
are unknown but can be learned. Our setting covers two-sided and one-sided matching with
(potentially complex) capacity constraints, such as refugee resettlement, social housing al-
location, and foster care. We propose a variant of the Thompson sampling algorithm to
solve such adaptive combinatorial allocation problems. We give a tight, prior-independent,
finite-sample bound on the expected regret for this algorithm. Although the number of
allocations grows exponentially in the number of matches, our bound does not. In simu-
lations based on refugee resettlement data using a Bayesian hierarchical model, we find
that the algorithm achieves half of the employment gains (relative to the status quo) that
could be obtained in an optimal matching based on perfect knowledge of employment
probabilities.

Keywords: Matching, experimental design, bandits, Bayesian modeling, optimal policy,
refugees.

1. INTRODUCTION

Adaptive experimentation uses information obtained in the course of an experiment in order
to optimize the treatment assignment for later study participants. For example, if job seekers
arrive at a job center over time, a policymaker can use the outcomes of earlier job seekers
in order to improve the assignment of labor market interventions for later participants
(Caria et al., 2020). Building on the large literature on multi-armed bandits, adaptive
experimentation has been used to maximize the welfare of study participants (Berry, 2006)
and to inform subsequent policy choices (Kasy and Sautmann, 2021).

In many policy settings, however, policymakers do not simply choose between a few
interventions. Instead, they need to select an entire allocation of resources—which we call a
matching—among participants. These resources are typically scarce, and feasible matchings
can be subject by combinatorial constraints. Moreover, returns from the different matchings
are unknown, but can be learned. Our motivating example of such an allocation problem is
refugee resettlement, where a resettlement agency needs to match arriving refugee families
to hosting communities while trying to maximize the employment outcomes of refugees.

There are many other applications with a similar structure. For example, if the policy-
maker wants to allocate students to classrooms when classroom composition affects student
outcomes (Graham et al., 2010), she must ensure that all students are assigned to class-
rooms, that the capacity of classrooms is not exceeded, and that the allocation respects
the demographic composition of students in the population. If the policymaker wants to
match children to foster families when families impact the outcomes of the children, she
needs to ensure that siblings are placed together and that foster homes are close to schools
and family homes (MacDonald, 2019; Robinson-Cortés, 2019). If the policymaker wants
to match tenants to social housing, she needs to ensure that housing matches the needs
of tenants and respects waiting-list priorities (Thakral, 2016; Waldinger, 2018; van Dijk,
2019). If the policymaker wants to allocate combinations of therapies to different patients
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in order to overcome a disease, she needs to ensure that the therapies are actually available
at the appropriate time and can be combined.

Combinatorial resource constraints make adaptive experimentation more difficult relative
to the unconstrained case (which is typically considered in the multi-armed bandit litera-
ture), since the number of possible matchings can be vast. For example, the number of ways
to allocate students to classrooms grows exponentially in the number of students. This might
cause both computational difficulties (requiring optimization over a large discrete space),
and statistical difficulties (the expected rewards for many different matchings have to be
learned). We show that, remarkably, despite these difficulties, learning performance close
to the case without combinatorial constraints can be achieved. In this paper we consider
an adaptive allocation policy extending the idea of Thompson sampling (Thompson, 1933).
Thompson sampling is a classic heuristic for standard bandit problems; it requires that
each action is picked with probability equal to the posterior probability that this action
is optimal. Our characterization implies that this policy is close to optimal for maximiz-
ing the outcomes of experimental participants in matching problems with combinatorial
constraints.

Setup We consider the following experimental setting. The decision-maker has access
to a finite number of matches but is constrained to selecting only matchings (i.e., com-
binations of matches) that satisfy the resource constraints (e.g., a one-to-one matching).
Participants arrive in batches every period. The decision-maker selects a matching and ob-
serves the outcome of each selected match. The outcome of each match results in a reward.
The decision-maker’s objective is to maximize the expected cumulative rewards from all
the matches she picked over time; equivalently, the decision-maker aims to minimize ex-
pected regret, i.e., the expected difference relative to the reward for the optimal matching
in each period. The decision-maker faces a trade-off between selecting a myopically optimal
matching which benefits the current batch (“exploitation”) and experimenting by trying
another matching which helps the decision-maker learn about the rewards from different
matches thereby improving future allocations (“exploration”). Such a setting is sometimes
referred to as a combinatorial semi-bandit setting with linear rewards (Audibert et al.,
2014). “Combinatorial” because the decision-maker can choose combinations of matches;
“semi-bandit” because the decision-maker can observe the outcomes of every match, not
just of the entire matching; and “linear rewards” because the objective function is the sum
of the rewards of all matches made.

Our main theoretical result is a bound on the worst-case regret obtained when using
Thompson sampling in our setting. Our theoretical result is appealing for three reasons.
First, the worst-case expected regret does not depend on the batch size even though the
number of possible actions (i.e., matchings) grows exponentially in the batch size. Second,
our bound holds in finite-samples and does not rely on asymptotic approximations. Third,
our bound is prior-independent and allows for arbitrary prior dependence of the expected
outcomes of different matches.

Application We apply our approach to the problem of matching resettled refugees to
local communities in the United States (Bansak et al., 2018; Ahani et al., 2021). Our data
cover the placement of all refugees by HIAS, an American resettlement agency, between 2011
and 2020. Our objective is to maximize the probability of employment of refugees in the first
three months after their arrival. The allocation of refugees to local communities is subject to
capacity constraints. Local communities have a quota on the total number of refugees they
can resettle in a given year and placement decisions are made in batches at regular intervals.
In our simulations using a Bayesian model, we can optimize employment for each batch of
arriving refugees, given a draw of parameters from the posterior, via linear programming
(Bansak et al., 2018). We find that our Thompson sampling algorithm achieves half of the
employment gains delivered by an oracle-optimal matching. However, there is substantial
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redistribution in employment rates across communities and across refugees with different
characteristics.

Literature Our paper is closely related to the literature on multi-armed bandit prob-
lems. Rather than attempting to characterize analytical solutions (e.g., Gittins 1979), we fo-
cus on analyzing properties of the well-known probability matching heuristic due to Thomp-
son (1933). Adaptive experimentation using the Thompson algorithm has been proposed for
applications such as drug trials (Berry, 2006), recommender systems (Kawale et al., 2015),
and customer acquistion (Schwartz et al., 2017). More recently, adaptive experimentation
has been deployed in field experiments in development contexts (Caria et al., 2020; Kasy and
Sautmann, 2021). Agrawal and Goyal (2012) and Kaufmann et al. (2012) have shown, for
the fixed parameter case, that the asymptotic bound on expected regret of the Thompson
algorithm in bandit settings matches the lower bound on regret for any bandit algorithm,
which was derived by Lai and Robbins (1985). Wager and Xu (2021) derive characteriza-
tions of Thompson sampling based on local-to-zero asymptotics. The closest setting to ours
is discussed by Wang and Chen (2018) who provide a distribution-dependent regret bound
for the Thompson algorithm in the combinatorial semi-bandit setting; in contrast, our re-
sult is distribution-free. Other work has studied adversarial combinatorial (semi-) bandits
(Audibert et al., 2014) where the outcomes are assumed to be chosen by an adversary and
algorithm performance is compared to the best constant policy; and looked at algorithm
performance for the upper tail of regret (Audibert et al., 2009).

The proof of our main theorem builds on the information-theoretic approach pioneered by
Russo and Van Roy (2016) (in particular their Lemmata 1 and 2 and Proposition 6), as well
as on the componentwise entropy approach introduced by Bubeck and Sellke (2020). While
the core ideas of our proof are present in these papers, our main theorem provides a bound
not stated there. The closest result in Russo and Van Roy (2016) is their Proposition 6. Their
result, however, requires statistical independence of the prior and posterior distribution for
the components of the parameter vector for all time periods. By contrast, our main result
allows for arbitrary dependence. This dependence is especially relevant for the matching
setting, where independence in the prior distribution would be quite hard to justify. The
closest result in Bubeck and Sellke (2020) is their Theorem 21. The main interest of Bubeck
and Sellke (2020) is an asymptotic refinement of regret bounds that scales in the best
achievable regret, allowing for the latter to converge to 0; this is something which our result
does not aim to do.

Also related is the analysis of Zimmert and Lattimore (2019) (see also Lattimore and
Gyorgy 2021, and Lattimore and Szepesvári 2020, especially chapter 30), who build on the
work of Russo and Van Roy (2016) to derive adversarial regret bounds for online mirror
descent algorithms. Their approach covers general linear partial monitoring games, which
include (adversarial) semi-bandits as a special case. They draw connections between (modi-
fied) Thompson sampling and online stochastic mirror descent. Lastly, Perrault et al. (2020)
also consider the stochastic semi-bandit framework, as we do. They provide asymptotic re-
gret bounds for fixed parameter values, in the tradition of Agrawal and Goyal (2012).
They allow for statistical dependency between outcomes across matches, while requiring
prior independence across matches; this contrasts with our substantively motivated focus
on allowing prior dependence across matches.

Roadmap The rest of the paper is organized as follows. Section 2 describes our combi-
natorial semi-bandit setting and the Thompson heuristic; Section 2.1 then discusses several
examples covered by this general framework. Section 3 gives our main theoretical result
and the intuition for its proof. Section 4 covers several considerations for implementation
in practice, including the choice of model and prior as well as methods for sampling from
the posterior. Section 5 discusses calibrated simulations based on our refugee resettlement
application. Section 6 concludes. Appendix A provides a brief review of information theory,
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which is needed for the proof of our main result. All proofs can be found in Appendix B.
Appendix C discusses randomization inference. Appendix D contains additional empirical
results.

2. SETUP

We denote all random variables with capital letters (e.g., A) and the realizations of random
variables with lower-case letters (e.g., a).

Feasible matches and actions The decision-maker has access to possible matches
j ∈ 1, . . . , J , but only has sufficient resources to select M ≤ J of these. We denote by
A ⊆ {a ∈ {0, 1}J : ‖a‖1 = M} a collection of matchings, i.e., feasible combinations of
matches.1 A is a strict subset if the decision-maker faces additional allocation constraints.
The decision-maker’s action a ∈ A is a matching.

Timing, potential outcomes, and observability The program takes places in a
finite number of periods t = 1, . . . , T . In each period, there is a vector Yt ∈ [0, 1]J of
potential outcomes, where Yjt is the potential outcome for match j in period t.2 The vectors
Yt are i.i.d. across periods. We denote the average potential outcome (or average structural
function) for match j by Θj , that is, Θj = E[Yjt|Θ]. The decision-maker holds a prior belief
over the vector Θ ∈ [0, 1]J , where we allow for arbitrary dependence of this prior across the
matches j.

In each period, the decision-maker chooses an action At ∈ {0, 1}J . If the decision-maker
chooses action a, they observe the outcomes of the chosen matches j (the matches j for
which aj = 1), that is, the vector

Yt(a) = (aj · Yjt : j = 1, . . . , J). (2.1)

We assume “stable unit treatment values” (i.e., no spillovers or interference) across
matches j, in the sense that Yjt does not depend on the chosen action aj′t for any j′.
Note that this assumption is consistent with settings where Yjt is itself the equilibrium
outcome of interactions across multiple individuals comprising a match j, as is the case for
example in the applications to peer effects or matching discussed below.

Given our assumption about observability, the information available at the beginning of
period t is given by

Ft = {(At′ , Yt′(At′)) : 1 ≤ t′ < t} . (2.2)

Throughout this paper, the subscript t on Et indicates that the expectation is evaluated
under the posterior distribution Pt(·) = P(· | Ft), where Ft is the information available at
the beginning of period t. The decision-maker can choose their action At at the beginning
of each period t based on the information Ft, as well as possibly based on a randomization
device that is statistically independent across periods and independent of the sequence of
potential outcomes (Yt)

T
t=1.

Objective and policy If the decision-maker chooses action a in period t, they receive
a reward which is equal to 〈a, Yt〉. Therefore, upon taking action a the decision-maker’s
expected reward given Θ, which is the same across periods t, equals

R(a) = Et[〈a, Yt〉|Θ] = 〈a,Θ〉. (2.3)

The decision-maker would like to maximize cumulative expected rewards,

E1

[
T∑

t=1

R(At)

]
. (2.4)

1More generally, matches can be thought of as “options” and matchings as “allocations”.
2To avoid interfering superscripts, use subscript jt to denote match j in period t throughout the paper.
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The expectation in this expression is taken over the randomness in the choice of actions
At, the sampling distribution of potential outcomes Yt, and over the prior distribution of
Θ. Denote by A∗ a feasible action that maximizes the expected reward conditional on Θ
(but not conditional on the vector Yt), that is,

A∗ ∈ argmax
a∈A

R(a) = argmax
a∈A

〈a,Θ〉. (2.5)

Therefore, A∗ is an oracle-optimal action. The decision-maker’s objective is equivalent to
minimizing expected regret at T

E1

[
T∑

t=1

(R(A∗)−R(At))

]
. (2.6)

Expected regret is the difference between the cumulative expected rewards from the oracle-
optimal action (which is based on perfect knowledge of Θ) and the cumulative expected re-
wards from the actions actually taken by the decision-maker. Solving this dynamic stochastic
combinatorial optimization problem is computationally quite costly. Rather than solving it,
we propose that the decision-maker adopt the following heuristic policy. In each period the
decision-maker should take an action a from the feasible set A according to the posterior
probability that a is optimal, that is, for each a ∈ A,

Pt(At = a) = Pt(A
∗
t = a). (2.7)

This assumption implies in particular that Et[At] = Et[A
∗]. This heuristic approach is

known as Thompson sampling, and was originally introduced by Thompson (1933) for
treatment assignment in adaptive experiments.

2.1. Examples

In the following we discuss several examples that are covered by our general framework,
and thus in particular by the regret bound provided in Theorem 3.1 below. These examples
correspond to practically relevant policy problems. They also illustrate how various combi-
natorial allocation problems that have been studied in the literature fit into our framework,
such as assignment to peers, one-to-one matching, many-to-one matching, knapsack prob-
lems, etc.

For each of these examples, several matches might correspond to the same underlying
parameter, so that Θj = Θj′ with prior probability 1, for some j, j′. In the case of one-to-one
matching, for instance, each matched pair corresponds to one match, but Θj is the same
for all matched pairs j with the same observed covariates on both sides of the match.

Example 2.1. (Allocation of refugees to local communities) American refugee
resettlement agencies need to make weekly decisions about the allocation of arriving refugee
families to local communities. An action a is a matching of refugee families to local com-
munities. The number of matches J is the number of distinct matches between different
family-locality pairs, and the batch size M is equal to the number of refugee families arriv-
ing in a given week. We will consider this example in greater detail in Section 5 below.

Example 2.2. (Foster parent allocation) Foster families are typically able to host
several foster children at the same time (MacDonald, 2019; Robinson-Cortés, 2019). An
action a is a many-to-one matching between families and children. The feasible actions a
require that no family receives more children than it can host, that all siblings are matched
to the same foster family, and that children are hosted near their school and activities.
The parameters Θj are again perfectly dependent across matches j that are observationally
identical, i.e., across matches of children and families with the same observed covariates.
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Example 2.3. (Peer effects and classroom composition) Suppose that a policymaker
would like to choose the gender composition of classrooms in order to maximize student per-
formance (Graham et al., 2010). Assume students are of two types, boys and girls. Class-
rooms have a fixed number of students. An action a allocates (i.e., groups) the students
into classrooms. Classroom identity does not matter, but the identity of peers does matter,
for student outcomes. The number of matches J is equal to the number of classroom-sized
subsets of the set of all students. The batch size M is equal to the number of classrooms. If
students are observationally indistinguishable from each other, except for gender, then the
prior exhibits perfect dependence across classrooms with the same number of girls and boys.

Example 2.4. (Therapy combinations) Many diseases, such as cancers, are best treated
by a combination of therapies rather than by a single therapy (Mokhtari et al., 2017). The
policymaker wishes to maximize a health-related objective, such as survival, but is con-
strained in the the total amount of each therapy that is available to arriving patients. The
number of matches J is therefore the number of distinct matches between different patients
and combinations of therapies (some therapy combination might be incompatible). An action
a is then a feasible many-to-many matching between therapies and patients.

3. PERFORMANCE GUARANTEE

We now state our main theoretical result which provides a tight worst-case guarantee for
the expected regret of Thompson sampling in our setup.

Theorem 3.1. Under the assumptions of Section 2,

E1

[
T∑

t=1

(R(A∗)−R(At))

]
≤
√

1

2
JTM ·

[
log
(

J
M

)
+ 1
]
.

Discussion of Theorem 3.1 Several features of the regret bound in Theorem 3.1 are
worth emphasizing. First, this bound is a finite sample bound. There is no large sample
limit and no remainder term. Second, this bound does not depend on the prior distribution
for Θ in any way. Furthermore, it allows for prior distributions with arbitrary statistical
dependence across the components of Θ, as required by our motivating examples. Third,
this bound implies that Thompson sampling in our setting achieves the efficient rate of
convergence for regret: As shown by Audibert et al. (2014), the minimax regret in our
setting grows at a rate of

√
JTM , up to logarithmic terms.

Theorem 3.1 bounds the worst case expected regret across all possible priors, summed
across units. To get the worst case expected regret per unit, divide this expression by

TM , which yields the bound
√
J ·
[
log
(

J
M

)
+ 1
] /

(2TM). This bound goes to 0 at a rate

of 1 over the square root of the sample size, that is, at a rate of 1/
√
TM . The theorem

furthermore shows that this worst case expected regret grows, as a function of the number
of possible matches J , like

√
J (neglecting the logarithmic term). Remarkably, worst case

regret does not grow in the batch size M . This is despite the fact that the setup of Section
2 allows for action sets of size

(
J
M

)
. For comparison, application of the worst case regret

bound for Thompson sampling in bandits with dependent arms provided by Proposition
3 in Russo and Van Roy (2016) yields a much larger bound which grows in proportion

to
√(

J
M

)
log
(
J
M

)
. Instead, the regret bound in Theorem 3.1 grows like that for a simple

multiarmed bandit with J arms.

Intuition for the proof of Theorem 3.1 The proof of Theorem 3.1 is provided in
Appendix B. This proof builds on several definitions and standard results from information
theory which are reviewed in Appendix A. Here we just sketch some of the key steps in our
proof.
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First, we use Pinsker’s inequality in order to relate expected regret to the information
about the optimal action A∗ provided by observations, where information is measured by
the KL-distance of posteriors and priors. Pinsker’s inequality implies, for Bernoulli random
variables B and B′, that (E[B] − E[B′])2 ≤ 1

2DKL(B,B′). Lemma B.1 applies Pinsker’s
inequality to terms showing up in the definition of expected regret which are of the form
Et[Θj |A∗j = 1]−Et[Θj ]. This use of Pinsker’s inequality is at the core of the proofs in Russo
and Van Roy (2016).

Second, following some of the ideas introduced in Bubeck and Sellke (2020), Lemma B.2
relates the KL-distance to the entropy of the events A∗j = 1. The combination of these
two lemmata allows us to bound the expected regret for match j in terms of the entropy
reduction for the posterior of A∗j .

Third and lastly, Lemma B.3 shows that the total reduction of entropy across the matches
j, and across the time periods t, can be no more than the sum of the prior entropy for each
of the events A∗j = 1, which is bounded by M ·

[
log
(

J
M

)
+ 1
]
. The proof of Theorem 3.1

then combines these three Lemmata.

4. IMPLEMENTATION OF THOMPSON SAMPLING FOR MATCHING PROBLEMS

4.1. Model and prior for matching settings

In order to achieve good performance in practice, our proposed procedure relies on specifying
an appropriate model for the data generating process, and an appropriate prior distribution
for the underlying parameters. We generally advocate for the use of default priors that are
diffuse and symmetric across types, while incorporating reasonable assumptions about the
dependency structure between different matches j.

Table 1 proposes some variants of models and priors for matching settings, covering our
leading motivating examples, including those used in our empirical application. For each of
these variants, we assume that the matches j consist of two-sided matches between types
uj and types vj . For each possible match, the potential outcomes Yjt are drawn from some
distribution with mean Θj . We need to specify this distribution of Yjt, as well as a joint
prior distribution of the parameters Θj across j.

Each of these models assumes that the match-effect Θj is determined by the sum of type-
effects Γu

uj
and Γv

vj , plus an interaction effect Γuv
uj ,vj . For continuous outcomes, we assume

that Θj is directly given by this sum. For binary or discrete outcomes, we assume that Θj

is given by the logit link function applied to this sum.
For the model for outcomes with discrete bounded support, the distribution of Yjt is

governed by the mean parameter Θj as well as a dispersion parameter m. The latter is
necessary to allow for larger dispersions relative to a more restrictive Binomial model,
which might put excessive weight on the information content of single observations.

4.2. Sampling from the posterior

In order to implement Thompson sampling, we need to sample from the posterior for Θ.
This posterior is also relevant for statistical inference on parameter values. Such inference is
often a secondary goal, in addition to the primary goal of maximizing participant outcomes.
Such inference might be Bayesian, using the same posterior distributions that go into the
assignment algorithm. Alternatively, such inference might be based on permutation tests
as described in Appendix C.

For hierarchical priors, such as those discussed in Section 4.1, posterior distributions are
not available in closed form, in general. We can, however, sample from the posterior for Θ
using Markov Chain Monte Carlo (MCMC) methods. Such MCMC methods only require
us to specify the posterior up to a multiplicative constant (typically, up to the denominator
of the posterior density, which is given by the marginal density of the observed data).
MCMC methods are based on constructing a Markov Chain which converges to an ergodic
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Table 1. Models and priors for matching

Continuous outcomes

Yjt ∼ N(Θj , σ
2)

Θj = Γu
uj

+ Γv
vj + Γuv

uj ,vj

Γu
uj
∼ N(0, τ2

Γu), Γv
vj ∼ N(0, τ2

Γv ), Γuv
uj ,vj ∼ N(µ, τ2

Γuv ),

Binary outcomes

Yjt ∼ Bernoulli(Θj)

Θj =
1

1 + exp
(
−
(

Γu
uj

+ Γv
vj + Γuv

uj ,vj

))
Γu
uj
∼ N(0, τ2

Γu), Γv
vj ∼ N(0, τ2

Γv ), Γuv
uj ,vj ∼ N(µ, τ2

Γuv ),

Discrete outcomes with bounded support {0, . . . , ȳ}

Yjt ∼ Beta-Binomial(αj , βj , ȳ)

Aj = m ·Θj , Bj = m · (1−Θj)

Θj =
1

1 + exp
(
−
(

Γu
uj

+ Γv
vj + Γuv

uj ,vj

))
Γu
uj
∼ N(0, τ2

Γu), Γv
vj ∼ N(0, τ2

Γv ), Γuv
uj ,vj ∼ N(µ, τ2

Γuv ),

Notes: For each of these cases we assume that the components of Γu,Γv ,Γuv are mutually independent
given the hyper-parameters. The hyper-parameters are given by σ2, τ2

Γu , τ2
Γv , τ2

Γuv and µ for continuous

outcomes, by τ2
Γu , τ2

Γv , τ2
Γuv and µ for binary outcomes, and by τ2

Γu , τ2
Γv , τ2

Γuv and µ for discrete outcomes
with bounded support. We propose to use some diffuse prior for these hyper-parameters.

distribution that is given by the posterior of interest. There are various ways of constructing
such Markov Chains; one of them is Hamiltonian Monte Carlo. In our applications, we
sample from the posterior using Hamiltonian Monte Carlo as implemented in the software
STAN (Carpenter et al., 2017).

Let Θ̂t be a draw from the posterior given Ft, generated by MCMC, after a sufficiently
long warm-up period. Choose

At = argmax
a∈A

〈a, Θ̂t〉. (4.8)

Then At follows the distribution required for Thompson sampling, that is, it satisfies Equa-
tion (2.7).

In order to form 1− α credible sets for the parameters Θj given the history Ft, one can

sample a large number of draws Θ̂t from the posterior, and form a credible interval based
on the α/2 and 1− α/2 quantiles of Θ̂jt across these draws.
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5. APPLICATION: REFUGEE RESETTLEMENT

The United States has historically been the world’s largest destination of resettled refugees.3

President Joe Biden has pledged to resettled 125,000 refugee in the fiscal year starting
from October 2021. There is substantial empirical evidence that the initial match between
refugees and local communities dramatically affects the socioeconomic outcomes of refugees
(Bansak et al., 2018; Ahani et al., 2021). However, local community capacities are tightly
regulated by the U.S. government. As a result, HIAS, one of nine U.S. resettlement agencies,
optimizes the placement of the resettled refugees using its recommendation system called
Annie™ moore. However, Annie™’s estimates of refugee employment are static and come
from a LASSO regression run annually (Ahani et al., 2021). We draw on the data used by
Annie™ in order to run calibrated simulations for our proposed algorithm subject to simple
capacity constraints (in the spirit of Bansak et al. 2018) with the view to informing actual
refugee placement by Annie™ in the future.

Data Our data covers all refugees resettled by HIAS between January 2011 and De-
cember 2019. Refugee families are resettled to local communities where HIAS runs their
affiliates. For each primary applicant in the arriving refugee family, we observe three binary
variables: whether the applicant is of prime working age (25-54), their gender, and whether
they are English-speaking. We also observe whether the primary applicant had any U.S.
ties. Applicants with U.S. ties (e.g., U.S. resident friends or family) are automatically re-
settled to the affiliate where their U.S. ties reside. Applicants with no U.S. ties (NUST)
can be resettled to any of the affiliates run by HIAS. Finally, we can observe which affil-
iate each refugee family was resettled to and whether or not the primary applicant was
employed within 90 days of arrival. This is a key metric used by the U.S. Department of
State to assess the performance of American resettlement agencies. Based on the available
observables, we classify refugees into 8 “types” u.

There are 57 affiliates in our raw data. We drop any affiliate with fewer than 150 resettled
cases over the whole period under consideration, leaving us with 17 affiliates and 2441
refugee families without U.S. ties.4 All affiliates are anonymized. We treat each of the
17 affiliates as a separate “type” v. This means that there are 8 · 17 = 136 parameters
(probabilities of finding employment) that we might wish to learn. Affiliates have a limited
capacity in hosting refugees. The annual capacity is suggested by the resettlement agencies
and approved by the U.S. Department of State, but the capacities can sometimes change
throughout the course of the year.

For our simulations, we conservatively set the available annual capacities to be the total
number of refugees families without U.S. ties actually resettled to each affiliate in a given
year.5

As soon as a refugee family is allocated to a resettlement agency, the agency is responsible
for allocating the family to an affiliate. Refugee families typically arrive to the U.S. between
3–6 months after being allocated. We therefore set the batch frequency to quarterly. The
quarterly quota for each affiliate is therefore equal to the number of NUST arrivals for that
affiliate in that quarter.

Model We fit the hierarchical Bayesian model for binary outcomes described in Table 1
to these data, and set Θ0 to the posterior mean for this model, as described in Section 4.1.

3The resettlement process which benefits only a small fraction of the world’s 25 million refugees is highly
regulated and well organized. Many people, of course, also seek asylum by arriving irregularly.
4In their analysis, Ahani et al. (2021) also pool some affiliates because of small numbers of observations.
5In practice, the quotas apply to the total number of refugees rather than families resettled in each affiliate

(Ahani et al., 2021) and resettlement agencies are allowed to exceed their official capacity by 10% without
further approval. Moreover, there are feasibility constraints on which refugees can be placed in which
affiliate (e.g., not all affiliates can host single-parent refugee families). Since our application is illustrative,
we abstract away from these practical issues (see also Ahani et al. (2021) for a discussion of dynamic quota
management).
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In the simulations described next, we sample counterfactual outcomes for refugees allocated
using the Thompson algorithm based on the estimated parameter values Θ0.

This model assumes that potential outcome distributions are stationary. Figure 4 in Ap-
pendix D shows that employment probabilities of different refugee types are indeed approx-
imately stationary: The observed employment rate in each year closely tracks the estimated
employment rate, which is based on the parameters Θ0 and the actual demographics of
arrivals and their allocation to affiliates.

Simulation design Our simulated matching process works as follows. We use calendar
year 2011 as “burn-in” period for the Thompson algorithm and start rematching in January
2012.

For each quarter t in the available data, we consider all the refugees who were resettled by
HIAS in that quarter. For example, we match all refugees who arrived between 1 October
and 1 January to their affiliates on 1 October because of the lags between matching and
arrival. Because employment is measured after 90 days, when we match refugees in period
t, we only have the employment information for refugee families who arrived up to and
including quarter t− 2.6

We match refugees with U.S. ties to their actual affiliates. For all the refugees without
U.S. ties, we match them to affiliates using the Thompson algorithm. This matching has to
satisfy the capacity constraints of affiliates described above. We can solve for the optimal
matching for a given draw Θ̂ from the posterior using linear programming (Bansak et al.,
2018). Since we set total quarterly quota of the affiliates is equal to the number of refugees
arriving that quarter and each refugee family has a weakly positive employment probability
in every affiliate, the optimal matching assigns every family to some affiliate in its arrival
quarter.

Results Figure 1 summarizes the key takeaway message from the simulations: there are
substantial gains from adaptive matching in refugee resettlement. The Thompson algorithm
is able to obtain around half of the gains from oracle-optimal matchings, i.e., the optimal
matchings obtained with the full knowledge of Θ0 for each refugee type. Figure 1 shows that
the oracle-optimal matching boosts employment by around 5 percentage points compared
to the actual assignment, from around 40 percent to around 45 percent. However, adaptive
matching alone can lift employment rates by 2-3 percentage points compared to the actual
assignment. Learning happens quickly and the gains can be seen starting in the first year.

Figure 2 shows the simulated trajectories across the eight refugee types and reveals sub-
stantial redistribution of employment across types compared to the actual assignment.
Working-age men, who constitute the most common household-head types, experience sub-
stantial gains from adaptive matching (and from oracle-optimal matching) while households
with non-working-age, non-English-speaking women as primary applicants lose out. This
illustrates that maximization of overall employment rates might not lead to an increase in
employment rates for each subgroup.

Figure 3 in Appendix C shows that using the Thompson algorithm increases employment
rates in 13 out of 17 affiliates (in some cases substantially). These gains align with those
obtained by oracle-optimal matching.

6For example on 1 October, we observe all employment of all the refugees who arrived up to the April-June
quarter but we do not yet observe the employment of refugees who arrived in the July-September quarter.
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Figure 1. Simulated expected employment rates by year.

Notes: Simulations based on refugee resettlement data described in Section 5. Grey lines: 32 simulation runs

of the Thompson algorithm. Black line: average of the 32 simulation runs of the Thompson algorithm. Red

line: Expected employment based on the actual assignment of refugees to locations. Green line: Expected

employment for the optimal assignment given knowledge of Θ0, subject to actual capacity constraints.

6. CONCLUSION

In many policy choice problems the policymaker is required to match many resources to
many participants in each period. Since the number of possible matchings available to the
policymaker can be vast, it is not clear whether exploration can take place quickly enough
to improve welfare. We derive a tight, finite-sample, prior-independent regret bound for
the Thompson algorithm in such a combinatorial semi-bandit setting that does not depend
on the batch size. We test how our algorithm could increase employment rates of refugees
resettled in the U.S. Our simulations suggest that the Thompson algorithm would be able to
achieve substantial and persistent employment gains for refugees of different characteristics.

In our setting, which allows for arbitrary statistical dependence of the prior across
matches, Thompson sampling achieves the efficient rate of convergence for regret. Of course,
in many settings there might be additional structure on the parameters that would allow one
to derive tighter bounds. For example, in the refugee resettlement context there might be
refugees who are observationally identical in a given batch therefore their parameters would
be perfectly correlated. We leave further improvements of our bound in specific settings for
future research.
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A. A BRIEF REVIEW OF INFORMATION THEORY

In this section we review some basic definitions and facts about entropy, mutual information,
and KL-divergence. For further background, see MacKay (2003) (in particular chapter 8),
as well as Section 3 in Russo and Van Roy (2016). For our purposes, it is enough to
restrict attention to the Bernoulli case, so that we can introduce the following definitions
in elementary form. Let A be a Bernoulli random variable with expectation p, and let A′

be a Bernoulli random variable with expectation q. We overload notation by allowing the
arguments A and p to be used interchangeably.

• Entropy:

H(A) = H(p) = − [p log(p) + (1− p) log(1− p)] . (A1)

• KL divergence:

DKL(A,A′) = DKL(p, q) = p log
(

p
q

)
+ (1− p) log

(
1−p
1−q

)
. (A2)

• Pinsker’s inequality:

(E[A]−E[A′])
2

= |p− q| ≤ 1
2DKL(p, q) = 1

2DKL(A,A′). (A3)

• Mutual information as expected divergence of the posterior:
For any random variable or vector F , let p(f) = E[A|F = f ]. Then

I(A;F ) = E[DKL(p(F ), p)]. (A4)

• Conditional entropy:

H(A|F ) = E [H(p(F ))] . (A5)

• Entropy reduction form of mutual information:

I(A;F ) = H(A)−H(A|F ). (A6)

• Data processing inequality: For any transformation g(F ) of a random variable or
vector F ,

I(A; g(F )) ≤ I(A;F ). (A7)

• Chain rule of mutual information:

I(A; (F,G)) = I(A;F ) + I(A;G|F ). (A8)

B. PROOFS

For ease of reference, we begin by restating our notation and assumptions.

Yt,Θ, At ∈ RJ Outcome, parameter, and action vectors

At ∈ A ⊆ {a ∈ {0, 1}J : ‖a‖1 = M} Feasible allocations and batch size

Yjt ∈ [0, 1] Bounded outcomes

Θ = Et[Yt|Θ] Parameters are expectation of outcomes

Θ̄t = Et[Θ] = Et[Yt] Prior expectation of the parameter (at t)

R(a) = Et[〈a, Yt〉|Θ] = 〈a,Θ〉 Linear (combinatorial) expected rewards

Yt(a) = (aj · Yjt : j = 1, . . . , J) Observable outcomes (semi bandit)

A∗ ∈ argmax
a∈A

R(a) = argmax
a∈A

〈a,Θ〉 Optimal action

Θ̄∗jt = Et[Θj |A∗j = 1] = Et[Yjt|A∗j = 1] Conditional expectation of parameters

pt = Et[A
∗] Expected optimal action

For Thompson sampling we have that At has the same distribution as A∗, and therefore

Et[At] = Et[A
∗] = pt.



16 Kasy and Teytelboym

We next prove three preliminary Lemmata, before combining them in the proof of The-
orem 3.1 itself.

Lemma B.1. (Bounding regret by the component-wise information)

Et[R(A∗)−R(At)] ≤

√√√√J

2
·

J∑
j=1

p2
jt ·DKL

(
Θ̄∗jt, Θ̄jt

)
.

Proof of Lemma B.1:

Et[R(A∗)−R(At)] = Et[〈A∗ −At,Θ〉] (B1)

= 〈pt, Θ̄∗〉 − 〈pt, Θ̄t〉 (B2)

≤

√√√√J ·
J∑

j=1

p2
jt ·
(
Θ̄∗jt − Θ̄jt

)2
(B3)

≤

√√√√J

2
·

J∑
j=1

p2
jt ·DKL

(
Θ̄∗jt, Θ̄jt

)
(B4)

These steps hold for the following reasons.

(B1) By definition of R.

(B2) By splitting the inner product, and using (i) iterated expectations, conditioning on
A∗j = 1 for each component j in turn, and (ii) independence of At and Θt and the
definition of Thompson sampling.

(B3) By Cauchy Schwarz (for the inner product with a J-vector of 1s).

(B4) By Pinsker’s inequality, applied to Bernoulli random variables with expectation Θ̄∗jt, Θ̄jt.
2

Lemma B.2. (Divergence and component-wise information gain)

p2
jt ·DKL

(
Θ̄∗jt, Θ̄jt

)
≤ It(A∗j ;Yt(At), At).

Proof of Lemma B.2:
For the purpose of this proof, construct a Bernoulli random variable Ỹjt with expectation

Yjt, independently of everything else. Note that Et[Ỹjt] = Θ̄jt. DKL

(
Θ̄∗jt, Θ̄jt

)
can be

interpreted as the KL-divergence between the distribution of Ỹjt conditional on A∗j = 1 and

the (unconditional) distribution of Ỹjt. Taking the expectation over A∗j of the KL-divergence

yields the mutual information between A∗j and Ỹjt, It(A
∗
j ; Ỹjt):

It(A
∗
j ; Ỹjt) = pjt·DKL

(
Et[Θjt|A∗j = 1], Θ̄jt

)
+(1− pjt)·DKL

(
Et[Θjt|A∗j = 0], Θ̄jt

)
, (B5)

and thus

p2
jt ·DKL

(
Θ̄∗jt; Θ̄jt

)
≤ pjt · It(A∗j ; Ỹjt) (B6)

≤ pjt · It(A∗j ;Yjt) (B7)

= It(A
∗
j ;Ajt · Yjt, Ajt) (B8)

≤ It(A∗j ;Yt(At), At). (B9)

These steps hold for the following reasons.
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(B6) Because the second term in Equation (B5) is non-negative.

(B7) By the data-processing inequality, applied to the mapping from Yjt to Ỹjt.

(B8) By the law of iterated expectations, applied to It(A
∗
j ;Ajt · Yjt, Ajt), averaging over

the distribution of Ajt (under Thompson sampling).

(B9) By the data processing inequality, again. 2

Lemma B.3. (Bounding the sum of component-wise information)

T∑
t=1

J∑
j=1

It(A
∗
j ;Yt(At), At) ≤M ·

[
log
(

J
M

)
+ 1
]

Proof of Lemma B.3:

T∑
t=1

J∑
j=1

It(A
∗
j ;Yt(At), At) =

J∑
j=1

I1(A∗j ; (Yt(At), At : t = 1, . . . , T )) (B10)

≤
J∑

j=1

H1(A∗j ) (B11)

= −
J∑

j=1

[pj,1 log(pj,1) + (1− pj,1) log(1− pj,1)] (B12)

≤ J ·
(

M
J log

(
J
M

)
+
(
J−M

J

)
log
(

J
J−M

))
(B13)

≤M ·
[
log
(

J
M

)
+ 1
]

(B14)

These steps hold for the following reasons.

(B10) The chain rule of mutual information.

(B11) The entropy reduction form of mutual information and the non-negativity of (condi-
tional) entropy.

(B12) The definition of entropy for A∗j .

(B13) Jensen’s inequality.

(B14) The inequality log(1 + x) ≤ x for x = m/(d−m). 2

Proof of Theorem 3.1:

E1

[
T∑

t=1

(R(A∗)−R(At))

]
= E1

[
T∑

t=1

Et [R(A∗)−R(At)]

]
(B15)

≤ E1

 T∑
t=1

√√√√J

2

J∑
j=1

It(A∗j ;Yt(At), At)

 (B16)

≤

√√√√√1

2
JTE1

 T∑
t=1

J∑
j=1

It(A∗j ;Yt(At), At)

 (B17)

≤
√

1

2
JTM ·

[
log
(

J
M

)
+ 1
]
. (B18)

These steps hold for the following reasons.
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(B15) The law of iterated expectations.
(B16) Lemma B.1.
(B17) Cauchy-Schwarz for the inner product with a T -vector of 1s.
(B18) Lemma B.3. 2

C. RANDOMIZATION INFERENCE

An alternative to Bayesian inference discussed in Section 4.2 is randomization (permutation)
inference. In the context of treatment effect estimation, randomization inference can be used
to test the null hypothesis that treatment does not affect any outcome, so that for instance
Y 1
i = Y 0

i for all units i and treatment value 0, 1.
In the context of our setting, we need to modify this null hypothesis. Permutation infer-

ence requires that we specify the counterfactual outcome vector Y 0
t (a) for any counterfactual

action a ∈ A under the null hypothesis H0, given knowledge of Yt(At) for the realized action
At. In many cases of interest, there might be more than one plausible way to specify such
a null hypothesis and the corresponding counterfactual outcome vectors.

To illustrate, consider the case of many-to-one matching (of refugees to local communities,
say), where each match j corresponds to a match of a refugee family to a local community.
We could formalize the null hypothesis that “the matching does not matter” in two different
ways. We could consider the hypothesis that refugee outcomes are the same, no matter which
community they are allocated to. Or we could consider the hypothesis that outcomes in a
community are the same, no matter which refugees are allocated to be there.

Given some specification of counterfactual outcomes, we can sample counterfactual his-
tories F̃t by re-running the Thompson sampling algorithm iteratively. In each period s,
draw Θ̃t′ and the corresponding Ãt′ from the posterior given F̃t′ . Impute a counter-factual
outcome vector Y 0

t′ (Ãt′), based on the null hypothesis to be tested. Update the history Ft′

by adding Ãt′ , Y
0
t′ (Ãt′), and iterate for the next period. Once t′ = t, calculate a realization

of the test-statistic as a function of F̃t. Repeat this process to generate a sampling distri-
bution of the test-statistic, and corresponding critical values and p-values for testing the
null hypothesis under consideration.

D. ADDITIONAL EMPIRICAL RESULTS
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Figure 3. Actual and counterfactual expected employment rates by affiliate.

Notes: Simulations based on refugee resettlement data described in Section 5. Grey: average of 32 simulation

runs of the Thompson algorithm. Red: Expected employment based on the actual assignment of refugees

to locations. Green: Expected employment for the optimal assignment given knowledge of Θ0, subject to

actual capacity constraints.

Figure 4. Observed versus estimated employment rates.

Notes: Based on refugee resettlement data described in Section 5. This figure compares observed employment

rates in each year (grey) to estimated employment rates based on the estimated parameters Θ0 and the

actual demographics of arrivals and their allocation to affiliates. This figure validates our hierarchical

Bayesian model and suggests that stationarity of Θ is a reasonable approximation.


