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Abstract

We study the role of information and access in capacity-constrained selection problems with

fairness concerns. We develop a theoretical framework with testable implications that formalizes

the trade-off between the (potentially positive) informational role of a feature and its (negative)

exclusionary nature when members of different social groups have unequal access to this feature.

Our framework finds a natural application to recent policy debates on dropping standardized

testing in college admissions.

Our primary takeaway is that the decision to drop a feature (such as test scores) cannot

be made without the joint context of the information provided by other features and how

the requirement affects the applicant pool composition. Dropping a feature may exacerbate

disparities by decreasing the amount of information available for each applicant, especially

those from non-traditional backgrounds. However, in the presence of access barriers to a feature,

the interaction between the informational environment and the effect of access barriers on the

applicant pool size becomes highly complex. In this case, we provide a threshold characterization

regarding when removing a feature improves both academic merit and diversity. Finally, using

application and transcript data from the University of Texas at Austin, we illustrate that there

exist practical settings where dropping standardized testing improves or worsens all metrics.
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1 Introduction

Recent debates on the use of standardized testing in college admissions have increasingly garnered

national attention, particularly during the COVID-19 pandemic as test centers shut down and

schools were forced to reconsider their admissions practices (Anderson, 2020). Independently of the

COVID-19 pandemic, in an attempt to increase equity and diversity in admissions, the University

of California (UC) recently settled a lawsuit by eliminating all consideration of SAT and ACT

scores for admissions and scholarships through 2025, following an earlier decision to suspend testing

requirements and ultimately design its own test (Nieto del Rio, 2021).

These discussions primarily center on highly selective institutions and their efforts to shape

the student body through the admissions process.1 These schools promise great opportunities to

their students, but – due to perceived capacity constraints – limit their acceptances to students

that they deem to have high potential in academics, athletics, creative endeavors, or leadership and

service (Espenshade and Radford, 2013). They typically attempt to identify these students through

a combination of standardized tests, high school grades, letters of recommendation, personal essays,

and extracurricular activities (Espenshade and Radford, 2013; Zwick, 2002).

The question is whether each of these components, and the application as a whole, allows the

schools to assess individuals from different backgrounds effectively and ‘fairly,’ including students

from different racial, ethnic, and socioeconomic groups. Implicitly, the debate concerns how to

design an admission policy to aid fair and efficient decision-making, in terms of both deciding which

information to collect from applicants and how to use the information. Our exposition focuses on

the context of college admissions; however, our model and the questions we ask are more broadly

applicable to other settings of information design and fair decision-making in capacity-constrained

settings, such as labor markets, award committees, and social welfare programs.2 In each of these

cases, the decisions are being made on limited information but have far-reaching consequences for

employment or education opportunities. Thus, it is important to analyze these policies and their

potential disparate impact across different groups of applicants.

Background. The high-profile debates surrounding the use of standardized testing for admissions,

social scientists and education experts have highlighted specific fairness concerns. Test critics argue

that tests exhibit racial gaps (Reardon, 2011) and reinforce inequality in higher education (Reeves

and Halikias, 2017). Espenshade and Radford (2013) find that only 8% of lower-income compared

to 78% of high-income students use a test preparation service. The testing process is expensive and

time-consuming, discouraging low-income students from even applying. (Hyman, 2016) finds that

“for every ten poor students who score college-ready on the ACT or SAT, there are an additional

five poor students who would score college-ready but who take neither exam” and so cannot apply

1Most schools are not selective, accepting most applicants. The admissions considerations of these schools differ
substantially from those of more selective institutions (Selingo, 2020).

2Our model and insights apply in settings where there is a trade-off in the value of additional information and
the fraction of applicants who can provide it. For example, in means-testing welfare programs, requiring long forms
might help in better targeting benefits but also might discourage eligible recipients from applying (Hernanzi et al.,
2004).
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to colleges that require it.3

Supporters of testing argue that it is “a systematic means of collecting information,” and so

helps decision-making when used appropriately (Phelps, 2005). Some supporters claim that tests

actually help schools evaluate under-represented minorities; in the absence of standardized test-

ing, “a capable student from a little-known school in the South Bronx may be more challenging to

evaluate,” further benefiting students from privileged – and historically familiar – backgrounds (Bel-

lafante, 2020). A report released by University of California further states that test scores are more

accurate for minority groups, and “that consideration of test scores allows greater precision when

selecting from [under-represented minority] populations” (University of California Standardized

Testing Task Force, 2020). Other application components such as recommendation letters (Dutt

et al., 2016) and application essays (Alvero et al., 2021) may also be unreliable.4 A school that

does not consider test scores must rely more heavily on these components.

The competing claims from critics and supporters largely center around two issues: access

and information. We capture these arguments in favor of and against dropping test scores and

formalize the underlying trade-off. The model considers a Bayesian school that wishes to admit

students based on their skill level, which we refer to as “academic merit,” and also values the

“diversity” of the admitted class. The school admits students to meet a capacity constraint and

tries to maximize the average academic merit of the accepted cohort. However, it has imperfect

knowledge of the students skills and instead must rely on noisy and potentially biased signals, one

of which is the test score. The school can then choose whether or not to require the test score.

We evaluate the school’s admission policy in terms of the average academic merit, overall diversity,

and individual fairness of the students admitted (i.e., how the policy affects students of different

groups and skill levels).

We focus on the trade-off between two effects:

Differential informativeness. Colleges often have better information – through, e.g., familiar

letter writers and transcripts – on students from privileged backgrounds, and so can better

estimate their true academic merit. Standardized testing reduces this measurement gap, and

so in particular helps colleges identify well-qualified, non-traditional students.

Disparate access and applicant pool composition. Some students – especially those from

disadvantaged backgrounds – either do not take standardized tests or do not report their

scores,5 due to cost and other access barriers. Without a test score, students cannot apply

3After eliminating GRE requirements, UC Berkeley saw an 82% increase in the number of under-represented
minority applicants to master’s programs in the 2020-2021 cycle: “while overall graduate applications have increased
19 percent when compared to [the 2019-2020 cycle], the number of underrepresented minority (URM) doctoral
applicants increased by 42 percent and URM applicants to academic master’s programs increased by 82 percent”
(Aycock, 2021).

4For example, letter writers use different language to describe women and other under-represented groups, giving
weaker recommendations (Dutt et al., 2016), and application essays have a stronger correlation to reported household
income than do SAT scores (Alvero et al., 2021) (although they are not necessarily differentially scored).

5A University of California report on testing states that under-represented students might be discouraged from
applying based on their score, even if their score would be competitive (University of California Standardized Testing
Task Force, 2020).
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to a school with a test requirement, even if they are well-qualified. Dropping the require-

ment thus expands the applicant pool but also alters its composition at different rates across

groups.

Contributions. Given these effects, we study: Under what settings of informativeness and dis-

parate access should standardized testing be dropped from admissions, if a college values both diver-

sity and academic merit? Our technical contributions are as follows.

1. We introduce a Bayesian model with multiple application components that allows us to study

the design of the information structure used in the application process. We formalize a trade-off

between informativeness and access, two basic arguments in favor of and against the inclusion

of a given feature, and show how the set of features required influences the academic merit and

diversity through these two competing effects. Our main technical insight shows that differences

in the total variance of features lead to information disparities across groups: even though the

school manages to correct for the existing mean bias in the features of different groups, it is

generally impossible to correct for variance.

Our model leverages the statistical discrimination framework developed in Phelps (1972) and

Arrow (1971), which we extend by considering multiple features and access disparities. Within

this framework, we define two fairness notions: diversity and individual fairness. The former

captures disparities at a group level. The latter quantifies disparities in individual opportunities,

by measuring the difference in the admissions probability between two individuals of equal skill

but different demographic characteristics.

2. We provide a testable framework for evaluating the different trade-offs that arise in these deci-

sions. Using application and transcript data from the University of Texas at Austin, we demon-

strate how an admissions committee could measure the trade-off in practice to better decide

whether to drop their test scores requirement. We show that there exist practical settings both

in which dropping testing worsens or improves all metrics.

Our primary takeaway for practice is that the decision to drop testing cannot be made without

jointly considering the interaction between the information provided by other features relative to test

scores and the rate at which dropping the test requirement affects the applicant pool composition.

This interaction between information and access is complex. In the absence of access barriers to

the test, the information loss incurred by dropping the test requirement always decreases academic

merit, but has an ambiguous impact on diversity. However, in juxtaposition with unequal access

barriers, the informational disparities can be amplified or reduced by the effect that the expanded

access has on the applicant pool composition. We characterize the settings where dropping test

scores introduces a trade-off between diversity and academic merit and where it improves or worsens

all objectives.

More broadly, our work further provides a Bayesian framework for predicting the effect of adding

new features into the admissions process. Given some knowledge of the informativeness and access

barriers associated with the new feature, the model can be used to reason about how the new
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feature would interact with the current set of features. We thus believe that our work provides

a useful conceptual framework for studying emerging problems in fair decision-making and public

policy.

1.1 Related Work

Our work broadly relates to the study of discrimination and admissions in the economics and fair

machine learning communities.

Economics of discrimination. Many economics works study affirmative action in admissions

(Abdulkadiroğlu, 2005; Avery et al., 2006; Chade et al., 2014; Chan and Eyster, 2003; Epple et al.,

2006; Fershtman and Pavan, 2020; Fu, 2006; Immorlica et al., 2019; Kamada and Kojima, 2019),

and more broadly discrimination in markets (Coate and Loury, 1993; Fang and Moro, 2011; Foster

and Vohra, 1992; Lang and Manove, 2011; Levin, 2009; Temnyalov, 2018). In contrast to taste-

based discrimination theories (Becker, 1957), statistical discrimination theory (Arrow, 1971; Phelps,

1972) shows that group differences can arise in equilibrium even if groups are ex ante identically

skilled. In particular, in Phelps’ seminal Gaussian framework (Phelps, 1972), employers receive

a noisy signal about each worker’s skill and are incentivized to use information about a group’s

belonging to infer the true skill. This exact statistical discrimination approach is surprisingly rare

in the admissions literature (except Emelianov et al. (2020); Kannan et al. (2019)). To the best of

our knowledge, our work is the first to extend Phelps’ model to multiple features with non-identical

distributions and incorporate access asymmetries to some feature.

Fairness in machine learning and mechanism design. Recent machine learning work applies

fairness notions to college admissions and related allocation problems (Cai et al., 2020; Emelianov

et al., 2020; Faenza et al., 2020; Haghtalab et al., 2020; Hu et al., 2019; Immorlica et al., 2019;

Kannan et al., 2019; Kleinberg and Mullainathan, 2019; Liu et al., 2020; Mouzannar et al., 2019).

In a single-feature setting, several works analyze admissions or hiring decisions when evaluation

of one group is noisier than another (Emelianov et al., 2020; Fershtman and Pavan, 2020; Temnyalov,

2018). Most related, Emelianov et al. (2020) study how differential variance of a single feature

affects the admissions decisions of a school that greedily admits students with the highest test

scores, without factoring in the differential variance; they show that affirmative action can improve

both diversity and academic merit. In contrast, our work studies the impact of differential bias and

variance when students have multiple features and schools can potentially drop a feature.

Another line of literature considers different types of barriers, including implicit bias (Faenza

et al., 2020), downstream effects of school admissions in later employment (Kannan et al., 2019),

and when only one group can take the test multiple times (Kannan et al., 2021). These barriers

affect the treatment of applicants, but do not prevent students from even applying, as is our focus.

Finally, a follow-up paper (Liu and Garg, 2021) builds upon our work to provide (im)possibility

results under test-optional policies.
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2 Model

We develop a model where the school can design their admissions procedure and, in particular,

choose the information that it requires the applicants to submit.

We consider a continuum of students and a single school. A unit mass6 of students is applying

to college. Each student belongs to a group g ∈ {A,B}, and the mass of students in group B is

π. Each student has a latent (unobserved) skill level q, normally distributed according to N (µ, σ2)

identically for each group, as well as a set of observed features θ = (θ1, . . . , θK). Each θk is a noisy

function of q, i.e., θk = q+εk, k = 1, . . . , n, with Gaussian noise εk ∼ N(µgk, σ
2
gk). The distribution

of noise εk is feature- and group-dependent, but each εk is drawn independently across features and

students. Features represent application components like recommendation letters, grades, and test

scores.

Students differ in their access to the features: only a fraction γg of group g ∈ {A,B} has access

to the full set of features full = {1, . . . ,K}, i.e., θ = (θ1, . . . , θK); the remainder only has access

to the subset sub = {1, . . . ,K − 1}. Whether a student has access to all features is independent

of skill q and conditionally independent of the feature values given group membership. We assume

that when a student does not have access to feature K, then they cannot apply to a school that

requires it.

Admissions policy

We now turn to the question of interest: the design of the admissions policy. The school admits

a mass C of students. The school’s admissions procedure consists of a feature requirement policy,

skill estimation, and then selection given estimates.

The feature requirement policy choice is whether to require the full set of features or the subset.

If the school requires the full set, then students without full access cannot apply. If it only requires

the subset, then it observes only that subset for each student.

Then, given a student’s features θ, the school estimates a perceived skill q̃ of their true skill q.

The school is Bayesian, knows the distribution of q and the (group-dependent) distributions of εk,

and is group-aware: it can use the student’s group membership in constructing its estimate.7 The

resulting Bayesian estimate is the ‘best’ one can do, given the available information:

q̃(θ, g) , E[q | θ, g].

After estimating the skill level of each applicant, the school selects the mass C of students with

the highest skill estimates q̃. This selection process induces a threshold q̃∗S such that applicants with

perceived skill above the threshold are admitted. (In Section 4.3 we also study selection policies

6For exposition clarity, we describe the characteristics of individual students. Such statements should be inter-
preted as illustrative of the corresponding continuum system.

7Ignoring group attributes is an oft-proposed but often problematic policy proposal to combat bias in machine
learning tasks (Corbett-Davies and Goel, 2018). We evaluate group-unaware estimation in Appendix A.1.
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utilizing affirmative action, where the school uses potentially group-dependent thresholds.8)

Holding the estimation and selection policies fixed (except in Section 4.3), the admissions policy

is determined by the feature requirement decision. Let PS denote the admissions policy requiring

feature set S.

Academic merit and fairness metrics

We evaluate a policy P using three metrics on the admitted class. Let Y ∈ {0, 1} denote the

admission decision for a given student; Y = 1 means that the student is admitted.

Academic merit E[q | Y = 1, P ], the expected skill level of accepted students. We also use

group-specific measures, E[q | Y = 1, g, P ].

Diversity level τ(P ), the fraction of students admitted that are of group B. Policy P satisfies

group fairness if and only if the admission fraction matches the population, i.e., τ(P ) = π.

Individual fairness gap I(q;P ), the difference in admissions probability between two students

of identical true skill q, one belonging to group A and the other to group B:

I(q;P ) , P (Y = 1 | q, A, P )− P (Y = 1 | q,B, P ) .

Policy P satisfies individual fairness if and only if the gap is 0 for all skill levels q.

We characterize these three metrics as they depend on the policy P and the model parameters,

as well as how they trade off with one another.

College admissions and relationship to practice

While our model and results are more general, our exposition primarily considers undergradu-

ate college admissions in the United States and the debate to drop standardized testing as our

main running example. We focus on how policies differentially affect privileged (group A) versus

disadvantaged (group B) students.

We refer to the potentially inaccessible last feature, k = K, as the test score of a student in a

common standardized exam like the SAT or ACT, and assume that more privileged students have

access to testing; as Hyman (2016) notes, many well-qualified disadvantaged students do not have

access to standardized tests and so cannot apply to schools that require them. On the other hand,

as the University of California Standardized Testing Task Force (2020) and Bellafante (2020) posit,

without testing it may be especially difficult to evaluate students from non-traditional backgrounds,

as colleges instead rely on transcripts and recommendations from familiar (privileged) high schools.

This aspect could be captured—as we do for our simulations—by considering the first K − 1

features as substantially more informative for group A (σAk < σBk), with a smaller informativeness

discrepancy for the test score.

8We show, however, that these policies are insufficient for navigating the information-access tradeoff induced by
the information requirements. Thus we focus on policies without affirmative action and, unless otherwise noted, the
threshold on skill estimates is the same across all groups.
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The model’s focus differs from feature bias as traditionally understood, if a feature systemat-

ically under-values one group; e.g., weaker letters of recommendation for under-represented stu-

dents. In our model, the school fully corrects for such bias (cancelling out µgk); in practice, schools

interpret signals in context, for example benchmarking how many AP courses are offered by a stu-

dent’s school. In contrast, differential informativeness (function of σgk) and disparate access (γg)

are harder to correct at admissions time. The former represents an information-theoretic limit to

identifying the most qualified students, and the latter prevents some students from even applying.

As we show, these effects cannot even be completely mitigated using affirmative action,9 which is

particularly insufficient in identifying qualified disadvantaged students.

Without loss of generality, we suppose that the features are less informative for group B than

they are for group A. Specifically, let unequal precisions between groups mean
∑

k∈S σ
−2
Ak >∑

k∈S σ
−2
Bk, and equal precision mean

∑
k∈S σ

−2
Ak =

∑
k∈S σ

−2
Bk. In settings with barriers, we as-

sume that group A also has more access to the test, i.e., γA ≥ γB.10 Finally, the school is selective

and has capacity C < 1/2. These assumptions are for exposition; our model’s tractability allows

us to solve analogously for the omitted cases.

3 Intuition: The role of differential informativeness

We begin our analysis in Section 3.1 by deriving how a Bayesian optimal school estimates the

students’ skill level. Then, we preview our main results, illustrating how the relationship between

skill estimates and true skills of the applicant pool depends on the informativeness of features and

the access barriers, with implications for how admissions differ by group.

3.1 School’s optimal Bayesian estimation procedure

Our Bayesian school—with knowledge of the model parameters (feature noise means and variances)—

observes each student’s features and group membership and estimates their expected skill level,

using properties of normal distributions. Repeating this process for all applicants induces the

following distribution over the skill level estimates for each group.

Lemma 1 (Estimated skill). Consider a school that uses feature set S ⊆ {1, . . . ,K} for each

applicant. Then, the perceived skill of an applicant in group g ∈ {A,B} with feature values θ =

(θk)k∈S is:

q̃(θ, g) =
µσ−2 +

∑
k∈S(θk − µgk)σ−2

gk

σ−2 +
∑

k∈S σ
−2
gk

. (1)

9In Section 4.3, we study our policies under the following definition of affirmative action: a constraint on the
fraction of students from each group. This approach is common in the literature (Fang and Moro, 2011) and a proxy
of the practices adopted by universities. However, as shown by recent lawsuits against Harvard (Hartocollis, 2019)
and Yale (Hartocollis, 2020), the legal framework around affirmative action is ambiguous and restrictive. Explicit,
predetermined racial quotas are generally illegal; conversely, University of Texas admits students using a high school-
based quota system (The University of Texas, 2019).

10We further assume that, even in the presence of barriers, the market is over-demanded in the sense that the
school can not admit all applicants, i.e., C < (1− π)γA + πγB .
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q̃∗S
µ

q̃

q

q̃ | A,PS
q̃ | B,PS

Figure 1: The distribution of skill estimates q̃ at an aggregate level for each group, as it depends
on informativeness of the features. When application components are more precise for one group
(group A, in green), the variance in the skill estimates of their group is higher – there is more
signal for individuals to demonstrate that their skill is different than the mean. Then, more group
A have high skill estimates above threshold q̃∗S , and thus more are admitted. This effect occurs
even though the true skill q distribution is identical across groups. If dropping the test causes such
differential informativeness, then doing so may worsen both fairness and academic merit (estimated
skill of admitted students). Figure 2 illustrates how the differential informativeness interacts with
disparate access, due to which dropping test scores may improve all objectives.

Further, the skill level estimates for students in group g are normally distributed:

q̃ | g, PS ∼ N

(
µ, σ2

[ ∑
k∈S σ

−2
gk

σ−2 +
∑

k∈S σ
−2
gk

])
. (2)

As Equation (1) shows, when the school estimates the skill level q̃(θ, g) of an individual and

knows the skill and feature noise distributions, it perfectly cancels out the mean bias terms µgk such

that they do not affect estimation.11 The school also re-weights each feature θk proportionately

to the relative informativeness of this feature for group g: the less informative a feature is for a

group (smaller precision σ−2
gk ), the less it contributes to estimates. Thus, due to informational

differences in σ−2
gk across groups, two students from different social groups with the same features

θ are evaluated differently. However, even in this idealized scenario, the school cannot fully correct

for the variance terms σ2
gk; two students with same skill q but in different groups have different

skill estimates in expectation.

These individual estimation effects accumulate at the group level (Equation (2)) and drive our

results on disparities. The school knows that q ∼ N (µ, σ2) is identically distributed across social

groups. However, as illustrated in Figure 1, the distribution of its skill estimates q̃ | g, PS for each

group can differ across groups. For each group, the skill estimates are regularized toward the mean

11(University of California Standardized Testing Task Force, 2020): “test scores are considered in the context of
comprehensive review, which in effect re-scales the scores to help mitigate between-group differences.”
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Figure 2: Skill vs estimate joint distribution for each group. Above and to the right of each joint
distribution we plot the corresponding marginal distributions. The dashed diagonal lines correspond
to perfect estimation. Full model parameters, as for all figures, can be found in Appendix A.5.
Figure 2a represents a world without access barriers and when the features are approximately
equally informative across groups. Figure 2b illustrates the consequences of requiring a test when
group B (in pink) has access barriers: fewer can apply and so can be admitted. Figure 2c illustrates
potential consequences of dropping the test: the school may be unable to distinguish among group
B applicants, leading to worse estimates (rotated away from diagonal) and fewer admitted.

skill level µ. The regularization strength depends on the total precision
∑

k∈S σ
−2
gk : the larger the

total precision for a group is (or the more informative its features are), the higher the variance in

the estimated skills for that group is. In Figure 1, group A has larger total precision and for any

value q̄ > µ, there is a larger mass of students from group A than B with estimated skill higher

than q̄. When a college with capacity C < 1
2 admits students with the highest skill estimates, more

students in group A are admitted.

3.2 Intuition for impact of admissions policy

Before proceeding to our main results, we can now illustrate our main insight regarding the trade-

off between informativeness and applicant pool size. In Figure 2, each sub-figure shows, for one

scenario, the joint distribution between true skill q and the corresponding skill estimates q̃ for each

group – along with the respective marginal distributions. Since both groups have identical true skill

distributions, the joint distributions would ideally be identical for the two groups (and perfectly

aligned along the diagonal); a policy that thresholds on estimated skill would then lead to group

B composing a proportion π of the admitted class.

Consider the case where the potentially dropped feature (the “test score”) is equally informa-

tive for both groups, whereas the remaining features are more informative for group A. Figure 2a

illustrates the scenario when there are no access barriers to the test. Due to the differential informa-

tiveness induced by the other features, (slightly) more group A students are admitted: the college

can better estimate their true skill, as illustrated by the group A joint distribution being closer
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to the diagonal. Figure 2b illustrates the consequences of requiring test scores in the presence of

unequal access levels (γA = 1 and γB = 2
3). Among those who apply, the college can estimate true

skill as well as it could in Figure 2a. However, fewer group B students can apply, as indicated by

the smaller marginal count histogram, and so fewer are admitted. Figure 2c illustrates a scenario

where the school removes the test score. Estimates for both groups are worse, as reflected in the

joint distributions being further from the perfect estimation diagonal. However, skill estimates for

group B students are especially degraded as their other features may be less informative, and so

they make up a smaller proportion of the admitted class.

4 Theoretical results

In this section, we apply the insights from Section 3 on feature informativeness and skill estimation

to our college admissions setting.

In Section 4.1, we focus solely on the effect of differences in informativeness, assuming no access

barriers. We find that disparities arise with respect to all of our metrics of interest: academic merit,

diversity, and individual fairness.

In Section 4.2, we compare two admissions policies: with and without a certain feature (e.g.,

test scores). When students have full and equal access to testing, we demonstrate how removing

information might further decrease both fairness and academic merit under reasonable conditions.

However, when students have different levels of access to the test, there is a trade-off between the

barriers imposed by a test and the potentially valuable information a test may contain. Requiring

the test can give schools more information on the students who do apply, but removing the test

can increase the pool of skilled applicants. We characterize the school’s optimal policy to include

or exclude the test, depending on the relative sizes of these two effects.

Finally, in Section 4.3, we study the effect of affirmative action alongside the aforementioned

policies. Affirmative action by definition improves diversity and individual fairness. However, it

is insufficient in mitigating the differences in informativeness and, in the absence of barriers, its

effect on the academic merit is heterogeneous: academic merit decreases further for group B and

increases for group A.

4.1 Informational effects of fixed testing policies

In general, our fairness notions are not achievable – even though we assume that both groups have

the same true skill distributions. For differential access barriers, this result immediately follows

from the definitions: high skilled group B students who otherwise would be admitted can no longer

apply. The effects of differential variance are more heterogeneous and are formalized in the result

below.

Recall from Section 2 that q̃∗S denotes the admission threshold of the school under policy PS .

Let also Φ denote the CDF of the standard normal distribution N (0, 1).
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Proposition 1 (Metrics with a fixed policy). Suppose that a selective school uses admissions policy

PS. Group fairness and individual fairness fail except for equal precision. Given unequal precisions:

(i) Diversity level: Group B students are under-represented, i.e., τ(PS) < π.

Furthermore, larger informativeness gap leads to decreased diversity: fix group B precision,∑
k∈S σ

−2
Bk; then as group A precision increases, the diversity level τ(PS) decreases.

(ii) Individual fairness: High-skilled group B students are hard to target, i.e., I(q;PS) > 0, if and

only if

q > q̃∗S +
σ−2(q̃∗S − µ)√∑

k∈S σ
−2
Bk

√∑
k∈S σ

−2
Ak

.

Increasing the informativeness gap increases the individual fairness gap for high-skilled stu-

dents: fix group B precision,
∑

k∈S σ
−2
Bk; then as group A precision increases, I(q;PS) in-

creases for q > µ+ σΦ−1(1− C).

(iii) Academic merit: The policy achieves worse academic merit for admitted students from group

B.

This result suggests that, although the school’s Bayesian-optimal decision-making process can

eliminate bias from skill estimates (see Section 3), the informativeness gap—as quantified via the

difference in the total precision across groups—induces disparities in the admission outcomes even

of ex-ante identical groups of students. As Figure 3 illustrates, and as we prove in Online Ap-

pendix C.3, with overall equal precision (the vertical line) both groups are admitted according to

their population fractions (here, 1− π = π = 0.5); however, all fairness metrics degrade as the gap

in informativeness between the two groups increases. Access barriers (even if limited to one group)

have a similarly negative effect, albeit for a different reason: high-skilled students who otherwise

would be admitted cannot even apply as they have not taken the test, cf. Hyman (2016).

The errors in estimation due to unequal precision affect the academic merit of each admitted

group. Part (iii) establishes that under unequal precisions and no other disparities, students from

group A admitted to selective colleges will be of higher true skill (on average) compared to the

admitted students from group B, in contrast to existing theoretical results (cf., Faenza et al. (2020)).

This discrepancy is due to the fact that the school fails to identify the high-skilled students from

group B – part (ii) for individual fairness shows that high skilled students in group B are less likely

to be admitted than they would if they were in group A.

We note that although the individual fairness gap is positive for all sufficiently high-skilled

students, the magnitude of this gap varies. In fact, for students at the end of the right tail of the

true skill distribution, the individual fairness gap starts to decrease, since – despite the noise –

their estimates are high enough for admission. We prove this relationship in the following lemma.
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Figure 3: How the admitted students’ academic merit, fraction of each group, and individual fairness
gap change with group B test score variance and test access, respectively. With equal precision
and no barriers, groups are treated equitably. As the feature variance or barriers increase for
group B, both academic merit of admitted B students and fairness metrics worsen. We considered
π = 1− π = 0.5; the full parameter set can be found in Appendix A.5.

Lemma 2. Consider policy PS, and assume unequal precision. The individual fairness gap I(q;PS)

is decreasing in q for q > qe, where

qe , q̃∗S +

√
σ−4(µ− q̃∗S)2∑
k∈S σ

−2
Ak

∑
k∈S σ

−2
Bk

+
ln
(∑

k∈S σ
−2
Ak

)
− ln

(∑
k∈S σ

−2
Bk

)∑
k∈S σ

−2
Ak −

∑
k∈S σ

−2
Bk

.

Furthermore, limq→∞ I(q;PS) = 0.

Intuitively, a very high-skilled student has low probability to be incorrectly perceived as non-

eligible for admission. This is because high q̃ > q̃e overall leads to higher values of features θ which

in turn lead to a higher perceived skill q̃. Of course, the informational disadvantage of students in

group B still has an effect and so the individual fairness gap remains positive.

These results on how a single policy performs as the model parameters change further hint at the

difficulty in deciding whether to drop standardized testing. Doing so increases estimation variance

(perhaps differentially, as Bellafante (2020) and University of California Standardized Testing Task

Force (2020) posit), worsening all metrics, but also reduces access barriers, improving all metrics.

These effects interact to induce the overall effect. Our next section formalizes this interaction.
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4.2 Dropping test scores with and without barriers

In this subsection, we ask: under what conditions would ignoring a feature benefit the school and the

applicants?. We study this question by comparing the test-free policy Psub to the test-based policy

Pfull in two different scenarios: Theorem 1 and Theorem 2 consider settings with and without

barriers, respectively.

In Theorem 1 below, we study first the effect of dropping test scores on academic merit and

diversity in the presence of barriers.

Theorem 1 (Dropping tests with barriers). Consider policies Pfull and Psub and assume un-

equal precisions under Pfull. In the presence of barriers, dropping test scores has the following

implications:

(i) Diversity level: Holding other parameters fixed, there exists threshold γ̄ such that the diversity

level improves under Psub if and only if γB < γ̄.

(ii) Academic merit: For each group g, holding other parameters fixed, there exists a threshold ¯̄γg

such that academic merit of group g increases under Psub if and only if γg < ¯̄γg.

Perhaps surprisingly, Theorem 1 establishes that the academic merit of the admitted class may

improve after dropping the test score. Similarly, diversity may deteriorate after dropping test

scores. More specifically, Theorem 1 offers a threshold characterization, where the thresholds ¯̄γg

and γ̄ are functions of both the access levels of the two groups as well as the variance parameters,

with and without the test. We provide the full characterization of these two quantities in Online

Appendix C.5. We also include additional illustrations of the effects of dropping the test, with

changes in the variance and access parameters; in particular, Figure 8 illustrates that the decision

boundary in terms of the effect on diversity and the total and per-group academic merit can be

non-linear.

At a high level, Theorem 1 implies that the decision to drop the test requirement is not just a

matter of increasing access for the disadvantaged group. On the contrary, it depends on the complex

interaction between the informational environment and the access levels of both groups. First,

dropping test scores increases the applicant pool size but also affects its composition at different

rates for each group. Second, the information loss incurred by dropping the test may not necessarily

benefit students in group B. In particular, it is possible that the informational disadvantage faced

by group B students may be exacerbated by the absence of test score information even if test scores

are more noisy for group B than group A. In this case, the negative informational effect for group

B may not be counterbalanced sufficiently by the increase in the group’s pool size, especially when

both groups face unequal, yet relatively proportional barriers.

In addition to the ambiguous impact that dropping test scores can have on the diversity of the

admitted class and the academic merit of each group, the decision to drop the test introduces some

additional implicit trade-offs. For example, as part (ii) in Theorem 1 indirectly implies and Figure 8
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illustrates, only one group (e.g., group B) may be positively affected by this policy change,12 even

if the overall academic merit increases. Depending on the exact model parameters, this might be an

inevitable consequence of dropping the test score. Nevertheless, it raises interesting and important

fairness trade-offs for policy-makers.

Our next result studies the role of information loss in more depth, focusing on just the effect of

the variance parameters in a setting without access barriers.

Theorem 2 (Dropping tests without barriers). Consider policies Pfull and Psub, and assume

unequal precisions under Pfull.

(i) Diversity level: Diversity level improves after dropping feature K, τ(Psub) > τ(Pfull), if and

only if ∑
k∈sub σ

−2
Ak

(
σ−2 +

∑
k∈full σ

−2
Ak

)∑
k∈sub σ

−2
Bk

(
σ−2 +

∑
k∈full σ

−2
Bk

) < σ−2
AK

σ−2
BK

. (3)

(ii) Individual fairness: For each group g, there exist thresholds qg such that the admission prob-

ability for students of skill q in group g decreases under Psub if and only if q > qg. Further,

there exists a threshold q̂ ≥ max{qA, qB} such that the individual fairness gap increases for

all q > q̂, but may decrease otherwise.

(iii) Academic merit: Academic merit decreases for both groups g ∈ {A,B}, i.e.,

E[q | Y = 1, g, Pfull] > E[q | Y = 1, g, Psub].

In the absence of barriers, dropping a feature has mixed effects on the diversity level and

individual fairness gap. However, it always worsens academic merit for both groups: without test

scores, the school has access to fewer information signals and so skill estimates become noisier.

The exact effect on diversity depends on both the total precision of the remaining K − 1 features

and how much the test precisions σ−2
A,K , σ−2

B,K differ. More specifically, (3) is equivalent to the

following condition ∑
k∈sub σ

−2
Ak

σ−2+
∑
k∈sub σ

−2
Ak∑

k∈sub σ
−2
Bk

σ−2+
∑
k∈sub σ

−2
Bk

<

∑
k∈full σ

−2
Ak

σ−2+
∑
k∈full σ

−2
Ak∑

k∈full σ
−2
Bk

σ−2+
∑
k∈full σ

−2
Bk

, (4)

which intuitively encodes how informativeness for each group changes after dropping the test. If (3)

holds, then the diversity level improves as dropping the test narrows the relative informativeness

gap between the two groups. However, if (3) does not hold (as University of California Standardized

Testing Task Force (2020) attests), removing test scores exacerbates the informational disadvantage

of students in group B. In that case, dropping the test decreases diversity.

Similarly, dropping the test may worsen individual fairness. As part (ii) shows, the admission

probability of students with sufficiently high true skill, for either group, decreases after removing the

12As part (ii) in Proposition 2 shows, affirmative action has the same disproportionate effect across groups.
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test. Furthermore, for sufficiently high-skilled students, the individual fairness gap increases after

dropping test scores. This implication is independent of the actual effect on diversity; although the

school may manage to improve diversity by dropping the test, the targeting of high-skilled students

in both group becomes less effective, leaving high-skilled students in group B disproportionately

affected compared to their same-skilled peers in group A.

Even without access barriers, the result establishes the importance of understanding features

other than the test score – not just their biases (µgk, canceled out given full knowledge) but also

their informativeness. More generally, our theoretical results illustrate that, even in a simple model,

that the debate over dropping standardized testing cannot be had without the particulars of the

context: whether one cares about overall academic merit of the admitted class or our fairness

criteria, the effects depend on the relationships between access barriers, the information content of

the test, and the information content of other application components. In Section 5, we will further

demonstrate this result empirically and show how there exist real-world settings on either side of

the divide – when dropping test score requirements would improve or worsen all our metrics.

4.3 Policies utilizing affirmative action

Schools have often an additional lever in their choice for admissions policy: whether or not to use

affirmative action. In this section, we study the outcomes when schools can decide whether to

require standardized testing and whether to use affirmative action. The term affirmative action

describes admissions policies that partially base their decisions on applicants’ membership in social

groups with legally protected characteristics (e.g., race/ethnicity or gender), to support both equal

opportunity and educational experiences diversity brings (Alon, 2015). These policies may thus

use different admissions thresholds for different groups.

As a stylized model of affirmative action, we introduce a constraint on the diversity level τ(P )

achieved by a policy P , i.e., consider admissions policies of the form P τS , where τ ∈ (τ(PS), π] is

the target diversity level set by the school. Thus, the school still optimizes for academic merit but

under the additional constraint that a fraction τ of admitted students belong to group B. To do

so, the common admission decision threshold is now replaced by two group-dependent thresholds,

q̃∗A,S and q̃∗B,S .13 Note that τ(P τS ) = τ ; under affirmative action, diversity improves by definition,

and group fairness holds when the target diversity level is set to τ = π.14 Affirmative action

can be utilized on top of test-free or test-based policies. Whereas the testing policy determines

the amount of information available in the estimation process, the affirmative action changes the

selection process given information.

We find that although affirmative action increases diversity, it does not change the information

13In Proposition 2, the assumptions that γA ≥ 2(1−τ)C
1−π and γB ≥ 2τC

π
ensure that, even in the presence of barriers,

the admission to the school is over-demanded (in the sense that the school cannot admit all applicants) and selective
(meaning that the admission thresholds satisfy q̃∗g,S ≥ µ).

14Proposition 2 focuses only on diversity levels τ ∈ (τ(PS), π]. The lower bound is reasonable since τ(PS) is the
diversity level achieved by a school optimizing solely for academic merit (Theorem 1). The upper bound achieves
group fairness. Note that higher levels τ > π could have also been considered with similar results; however, higher
values of τ may be infeasible for certain values of C and (1− π) therefore are omitted.
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that schools have on students, and as a result the school still cannot identify high-skilled students

in group B as well as it can identify group A students. We show that with unequal precision,

affirmative action improves the individual fairness gap but does not eliminate it, as disparities in

the identification of the highest-skilled students remain. It further increases the gap in academic

merit across social groups. Affirmative action alone cannot address the fundamental issue caused

by variance in the features. As a result, we consider this decision as orthogonal.

Proposition 2 (Affirmative action with a fixed testing policy). Fix the target diversity level

τ(PS) < τ ≤ π and assume unequal precisions. Let also γB ≤ γA ≤ 1 such that γA ≥ 2(1−τ)C
1−π ,

γB ≥ 2τC
π . Then,

(i) Individual fairness: In comparison to PS, the individual fairness gap improves, i.e., I(q;P τS ) <

I(q;PS) for all q. However, group A students still have higher probability of admission than

same-skilled group B students, i.e., I(q;PS) > 0, if and only if

q >

(∑
k∈S σ

−2
Ak+σ−2√∑

k∈S σ
−2
Ak

)
q̃∗A,S −

(∑
k∈S σ

−2
Bk+σ−2√∑

k∈S σ
−2
Bk

)
q̃∗B,S√∑

k∈S σ
−2
Ak −

√∑
k∈S σ

−2
Bk

+
µσ−2√∑

k∈S σ
−2
Ak

√∑
k∈S σ

−2
Bk

.

Finally, there exist parameters such that I(q;P τS ) < 0 < I(q;PS) for some q.

(ii) Academic merit: Policy P τS always achieves worse academic merit for admitted group B

students than for group A students. Furthermore, in comparison to PS, the academic merit

of admitted students decreases for group B, while it increases for group A.

We now study how test-free and test-based policies with affirmative actions compare in a setting

with unequal barriers to test access. Recall that Theorem 1 shows (without affirmative action) that,

conditional on the information environment, if there are substantial barriers to test access, removing

the test requirement improves academic merit. The following theorem establishes the same result

for a school using affirmative action. Let the function HR denote the hazard rate of the normal

distribution Φ, HR(z) = φ(z)
1−Φ(z) .

Proposition 3 (Dropping tests under affirmative action with barriers). Fix group g ∈ {A,B}, vari-

ances σ2
gk, and target diversity level τ . Let τA , 1− τ and τB , τ . Dropping the test score require-

ment improves the academic merit of admitted students from group g, i.e., E[q | Y = 1, g, P τfull] <

E[q | Y = 1, g, P τsub], if and only if γg ≤ γ̂g, where

γ̂g =
τgC

1− Φ

HR−1


√√√√ ∑

k∈sub σ
−2
gk

σ−2+
∑
k∈sub σ

−2
gk√√√√ ∑

k∈full σ
−2
gk

σ−2+
∑
k∈full σ

−2
gk

HR(Φ−1(1− τgC
πg

))



. (5)

Fixing all other parameters, the threshold γ̂g increases as test variance σgK for group g increases.
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Figure 4: Performance of various policies – including with group-unaware estimation, in setting
where features are more informative for group A, and with testing barriers for group B. Affirmative
action in general improves both group diversity and individual fairness, while dropping the test score
has an ambiguous impact. Group-unaware policies generally perform the worst on all metrics.

The threshold γ̂g now depends only the characteristics of group g and τ , in contrast to Theorem

1, where the threshold depends on characteristics of both groups. The result further holds regardless

of the economic inequality γA − γB between the two groups; under affirmative action with a fixed

diversity level, the school conducts the selection process for the two groups separately. Finally, as

expected, if the test has a higher variance for a certain group, then it is more beneficial for that

group to drop the test.

Comparing the policies. Figure 4 compares, for one parameter setting, our policies: with and

without testing, and with and without affirmative action at various levels τ . In Figure 4a, the

Pareto curves trace the trade-off between diversity and academic merit, for each testing policy. In

this scenario, a constraint for group fairness (affirmative action at level τ = π = 1
2) does not sub-

stantially affect academic merit, while improving both group and individual fairness substantially.

Furthermore, dropping tests has an ambiguous effect: it worsens diversity levels and academic

merit, as well as the individual fairness gap in the case without affirmative action. However, it

(slightly) improves the individual fairness gap with affirmative action.

Figure 4 also includes group-unaware estimation policies, that ignore the social group that a stu-

dent belongs to; in this case, estimating student skill levels requires calculating the posterior from a

mixture of Normal distributions. Ignoring group attributes is an oft-proposed but often problematic

policy proposal to combat bias (Corbett-Davies and Goel, 2018). Perhaps unsurprisingly, group-

unaware estimation policies perform most poorly. It worsens both the average academic merit of

the admitted class and the diversity level, compared to the policy with group-aware estimation. It

also leads to large individual fairness gaps, especially for high-skilled students. More details can be

found in Online Appendix A.1.
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Of course, all these effects are dependent on the parameter setting; we now turn to estimating

these effects in data.

5 Calibrated simulations with college admissions data

Academic merit Diversity Level
Informational Case With test Without test With test Without test

Low informativeness 3.25 3.23 16.6% 5.3%
High informativeness 3.49 3.51 25.0% 30.9%

Table 1: How academic merit and diversity level of admitted students change with and without
requiring a test score, for two informational cases (how informative features other than the test
score are). Whether dropping the test improves the objectives depends heavily on the informational
environment: in one case, both objectives improve for all students after dropping test; in the
other case, they both worsen. Note that group B students (from economically disadvantaged high
schools) compose about 40% of the top 20% of students, but in all cases far fewer are accepted in
our simulations.

Using application and transcript data from the University of Texas at Austin, we now demon-

strate how an admissions committee could measure the trade-off in practice to better decide whether

to drop their test scores requirement.

Data. Our data is from the Texas Higher Education Opportunity Project (THEOP), a public

dataset of applications and transcripts for universities in Texas (Tienda and Sullivan, 2011). We

focus on data from the University of Texas at Austin, for students who applied in 1992-1997.15

For each applicant, we observe their high school class rank (rounded to nearest decile), stan-

dardized test score (SAT, or ACT score translated to equivalent SAT score); we also observe

demographic features (gender, ethnicity, citizenship status), characteristics of their high school

(relative economic privilege rounded to nearest quartile, public/private, whether it’s within Texas),

and the major and college to which they’re applying.16 We further observe admissions decisions

and, for accepted students, whether they enrolled. Finally, for those who enrolled, we observe rich

transcript data: their GPA, number of credit hours, and major/college for each enrolled semester.

Simulation setup. We consider our applicant population as those who in reality enrolled to UT

Austin (i.e., those for whom we observe college transcript data), and simulate a setting in which

these applicants are further applying to a selective program, e.g., honors programs, scholarships,

or college transfers. For each such individual, we use their cumulative college college GPA – not

counting their first year – to represent their true skill. Then, as features, we use their high school

class rank, college (e.g., Engineering, Business), and, in some cases, their standardized test score

and college first-year GPA. To form the two groups, we take the upper (group A) and lower (group

15This period represents all applications from before the time Texas adopted the Top Ten Percent rule, in which all
students at the top of their Texas public high school class were accepted regardless of other application components.

16The University of Texas admits students by college.
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B) halves of the high schools’ economic privilege index. We then simulate our model as follows. We

train models using OLS to predict college GPA from the features, using all the students.17 For each

simulation, we sample an equal number of students from each group (π = 0.5) from the population,

and assume that 2
3 of group B students (and all group A students) have access to the test. Finally,

we predict each student’s college GPA using the features, either with or without test score, in one

of two cases regarding how informative are features other than the test score:

Low informativeness Class rank and college are used as features.

High informativeness Class rank, college, and first-year GPA are used as features. The latter is

far more predictive of final college GPA than are the other features.

Results. Table 1 shows the academic merit and diversity level of admitted students, for each

informational case and with and without requiring the test. Results depend crucially on the in-

formational environment. When the college has access to a high quality signal on all students –

first-year GPA – dropping test scores increases both academic merit (for both groups) and diversity;

it allows more students to apply, without incurring a substantial informational loss. In contrast,

in the low informativeness case, without test scores the school must rely on students’ high school

ranks, which are especially uninformative for group B; then, such students are disproportionately

rejected without test scores; not using test scores especially hurts already disadvantaged students

as a group, even when 1
3 of them are deemed to not have access to the test. In Appendix A.2, we

show that these patterns are robust to the specific assumption on γB.

These findings underscore our theoretical results: the consequences of dropping test scores

depends crucially on the information content of other signals, and the decision to do so should (and

can) be made in a decision-driven manner.

Limitations. There are several major limitations to interpreting our analysis. First, we only

observe application data for those students who were able to submit an SAT or ACT score, and

so we rely on prior research (e.g., Hyman (2016)) to calibrate a population of students who could

have applied in a world without a test score requirement. Second, GPA data is only available

for students who are accepted to and who subsequently enroll at UT Austin. Thus, our data

cannot help determine whether the test score is predictive of GPA success at admissions time.18

Rather, our analysis should be interpreted as ranking those already admitted, such as for internal

scholarships, transfers to other universities, or admissions to honors programs and colleges. Third,

low-income and minority students face many challenges and barriers during their college education,

and so their final GPA is itself not reflective of their true skill or academic merit (Engle and Tinto,

2008). Fourth, we do not observe several features available to admissions committees (such as

recommendation letters), and so in practice test scores likely provide less marginal informativeness

17Results using a random forest model are qualitatively similar. We train a separate model for each group.
18In causal inference terms, being admitted is a collider between test scores and some unobserved true skill, which

influences factors available to the admissions committee but not us as researchers, e.g., recommendation letters. This
issue is a common barrier to measuring the predictive power of standardized testing (Weissman, 2020).

20



than in our simulation. Despite these limitations, however, we believe that our study demonstrates

how an admissions committee with better data and potential to carry out experiments could make

an informed decision on whether to drop testing requirements.

6 Discussion

Our work has policy implications beyond the formalization of the trade-off between information

access and barriers in a testable framework. In Section 4.3, we showed that affirmative action

(admitting the top students within each group) can improve diversity and individual fairness.

However, it is insufficient in addressing the inequalities that arise due to differential informativeness

and access barriers, as it neither helps schools identify the highest-performing students, nor does

it increase the applicant pool size. Colleges must further invest in better signals and in expanding

their applicant pools. In the setting where test scores are found to be highly effective for skill

estimation but also impose large barriers, our work further suggests the value of another option for

increasing fairness in admission: decreasing the access barriers. For example, several states have

implemented policies to make the SAT and/or ACT mandatory for all public school students, while

also reducing both financial and logistical barriers by paying the financial costs of test registration

and offering the tests at more convenient times (Hyman, 2016).

Further, in reality individual schools do not make the decision to keep or drop testing require-

ments in isolation, but rather must react to the decisions that other schools make. When one school

changes their own admission policy, and thus the pool of students they admit, other schools who

are competing for the same pool of students may be affected. In Online Appendix B, we extend

our model to study admissions decisions in settings where multiple schools compete for students

and provide preliminary results. We show how students’ preferences now affect the characteristics

of the student body and that schools may have differing diversity levels even when using the same

admission policy. We also begin to investigate the effect of one school’s policy change on both its

own students as well as those of the remaining schools.

Note that our theoretical results hold in a highly stylized setting where the school is Bayesian-

optimal and knows the parameters of the model. Such an idealized scenario is, in practice, unattain-

able. We show that even under this idealized setting, inequalities arise – the school cannot correct

for the differential informativeness in the features; our work thus presents an information-theoretic

limit to how well schools can identify the most qualified students. Even if a school had full knowl-

edge of each group’s feature distributions (i.e., were able to perfectly evaluate students’ skills in

context), the school could not completely mitigate inequalities in admissions.

Another assumption is that all distributions are normal, which allows us to study the effect of

variance in a transparent and tractable way. This assumption is not limiting: our results can be

extended to a more general class of distributions such that group A’s skill estimates are a mean-

preserving spread (Blackwell, 1953) of group B’s skill estimates, though analytic characterizations

of the thresholds as we derive may not longer be possible.

We also started from the fundamental assumption that the two groups of students are equally
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skilled; this approach is natural when the skill in our framework represents a student’s ‘potential.’

Given that disparities arise even in this scenario with equal skill variables, we expect inequality – in

terms of the individual fairness gap – to further worsen in a setting where one group is characterized

by lower skill on average. Furthermore, our notion of barriers is restrictive; additional factors such

as differential access to test preparation services (Park and Becks, 2015) and family support19

(Espenshade and Radford, 2013; McDonough, 1997) may also constitute significant barriers for

certain groups of students, though some of these may be captured in the noise bias term and

corrected for by the school. However, our calibrated simulations in Section 5 show that our insights

hold when these assumptions do not apply.

Overall, we believe that our work makes a novel modeling and conceptual contribution to the

growing literature of fairness in decision-making systems. Our multi-feature take on the seminal

model by Phelps (1972) naturally fits the study of fundamental questions related to fairness in op-

erations, and can serve as a useful technical and conceptual framework to study emerging problems

in fair algorithmic decision-making and public policy in education and beyond. More generally, our

work suggests that the design of input features to machine learning tasks is an important challenge.
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Árpád Baricz. 2008. Mills’ ratio: Monotonicity patterns and functional inequalities. J. Math. Anal.

Appl. 340, 2 (2008), 1362–1370.

Gary S Becker. 1957. The Economics of Discrimination. University of Chicago Press (1957).

Ginia Bellafante. 2020. Should Ivy League Schools Randomly Select Students (At Least for a

Little While)? New York Times (December 2020). www.nytimes.com/2020/12/18/nyregion/

ivy-league-admissions-lottery.html

David Blackwell. 1953. Equivalent comparisons of experiments. The annals of mathematical statis-

tics (1953), 265–272.

William Cai, Johann Gaebler, Nikhil Garg, and Sharad Goel. 2020. Fair Allocation Through

Selective Information Acquisition. In Proceedings of the AAAI/ACM Conference on AI, Ethics,

and Society (New York, NY, USA) (AIES ’20). 22–28.

Hector Chade, Gregory Lewis, and Lones Smith. 2014. Student Portfolios and the College Admis-

sions Problem. Review of Economic Studies 81, 3 (2014), 971–1002.

Jimmy Chan and Erik Eyster. 2003. Does Banning Affirmative Action Lower College Student

Quality? American Economic Review 93, 3 (2003), 858–872.

Stephen Coate and Glenn C Loury. 1993. Will Affirmative-Action Policies Eliminate Negative

Stereotypes? American Economic Review (1993), 1220–1240.

Sam Corbett-Davies and Sharad Goel. 2018. The Measure and Mismeasure of Fairness: A Critical

Review of Fair Machine Learning. arXiv Preprint arXiv:1808.00023 (2018).

Bo Cowgill, Fabrizio Dell’Acqua, Samuel Deng, Daniel Hsu, Nakul Verma, and Augustin Chain-

treau. 2020a. Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing

AI Ethics. In Proceedings of the 21st ACM Conference on Economics and Computation (Virtual

Event, Hungary) (EC ’20). 679–681.

Bo Cowgill, Fabrizio Dell’Acqua, Sam Deng, Daniel Hsu, Nakul Verma, and Augustin Chaintreau.

2020b. Replication Data (A) for ‘Biased Programmers or Biased Data?’: Individual Measures of

Numeracy, Literacy and Problem Solving Skill – And Biographical Data – For a Representative

Sample of 200K OECD Residents. https://doi.org/10.7910/DVN/JAJ3CP

23



Kuheli Dutt, Danielle L Pfaff, Ariel F Bernstein, Joseph S Dillard, and Caryn J Block. 2016. Gen-

der Differences in Recommendation Letters for Postdoctoral Fellowships in Geoscience. Nature

Geoscience 9, 11 (2016), 805–808.

Vitalii Emelianov, Nicolas Gast, Krishna P Gummadi, and Patrick Loiseau. 2020. On Fair Selection

in the Presence of Implicit Variance. In Proceedings of the 21st ACM Conference on Economics

and Computation. 649–675.

Jennifer Engle and Vincent Tinto. 2008. Moving beyond access: College success for low-income,

first-generation students. Pell Institute for the Study of Opportunity in Higher Education (2008).

Dennis Epple, Richard Romano, and Holger Sieg. 2006. Admission, Tuition, and Financial Aid

Policies in the Market for Higher Education. Econometrica 74, 4 (2006), 885–928.

Thomas J Espenshade and Alexandria Walton Radford. 2013. No Longer Separate, Not Yet Equal:

Race and Class in Elite College Admission and Campus Life. Princeton University Press.

Yuri Faenza, Swati Gupta, and Xuan Zhang. 2020. Impact of Bias on School Admissions and

Targeted Interventions. arXiv Preprint arXiv:2004.10846 (2020).

Hanming Fang and Andrea Moro. 2011. Theories of Statistical Discrimination and Affirmative

Action: A Survey. In Handbook of Social Economics. Vol. 1. Elsevier, 133–200.

Daniel Fershtman and Alessandro Pavan. 2020. Soft affirmative action and minority recruitment.

arXiv preprint arXiv:2004.14953 (2020).

Dean P Foster and Rakesh V Vohra. 1992. An Economic Argument for Affirmative Action. Ratio-

nality and Society 4, 2 (1992), 176–188.

Qiang Fu. 2006. A Theory of Affirmative Action in College Admissions. Economic Inquiry 44, 3

(2006), 420–428.

Nika Haghtalab, Nicole Immorlica, Brendan Lucier, and Jack Wang. 2020. Maximizing Welfare

With Incentive-Aware Evaluation Mechanisms. In 29th International Joint Conference on Arti-

ficial Intelligence.

Anemona Hartocollis. 2019. Harvard Does Not Discriminate Against Asian-Americans in Admis-

sions, Judge Rules . New York Times (October 2019). www.nytimes.com/2019/10/01/us/

harvard-admissions-lawsuit.html

Anemona Hartocollis. 2020. Justice Dept. Accuses Yale of Discrimination in Application Process

. New York Times (August 2020). www.nytimes.com/2020/08/13/us/yale-discrimination.

html

24



Virginia Hernanzi, Franck Malherbeti, and Michele Pellizzari. 2004. Take-Up of Welfare Benefits

in OECD Countries. https://www.oecd-ilibrary.org/social-issues-migration-health/

take-up-of-welfare-benefits-in-oecd-countries_525815265414

Lily Hu, Nicole Immorlica, and Jennifer Wortman Vaughan. 2019. The Disparate Effects of Strategic

Manipulation. In Proceedings of the 2019 ACM Conference on Fairness, Accountability, and

Transparency. 259–268.

Joshua Hyman. 2016. ACT for All: The Effect of Mandatory College Entrance Exams on Postsec-

ondary Attainment and Choice. Education Finance and Policy 12 (05 2016), 1–69.

Nicole Immorlica, Katrina Ligett, and Juba Ziani. 2019. Access to Population-Level Signaling as

a Source of Inequality. In Proceedings of the 2019 ACM Conference on Fairness, Accountability,

and Transparency. 249–258.

Yuichiro Kamada and Fuhito Kojima. 2019. Fair Matching Under Constraints: Theory and Appli-

cations. Technical Report.

Sampath Kannan, Mingzi Niu, Aaron Roth, and Rakesh Vohra. 2021. Best vs. All: Equity and

Accuracy of Standardized Test Score Reporting. arXiv:2102.07809 [physics] (Feb 2021). http:

//arxiv.org/abs/2102.07809 arXiv: 2102.07809.

Sampath Kannan, Aaron Roth, and Juba Ziani. 2019. Downstream Effects of Affirmative Action.

In Proceedings of the 2019 ACM Conference on Fairness, Accountability, and Transparency. 240–

248.

Jon Kleinberg and Sendhil Mullainathan. 2019. Simplicity Creates Inequity: Implications for

Fairness, Stereotypes, and Interpretability. arXiv:1809.04578 [cs, stat] (Jun 2019). arXiv:

1809.04578.

Kevin Lang and Michael Manove. 2011. Education and Labor Market Discrimination. American

Economic Review 101, 4 (2011), 1467–96.

Jonathan Levin. 2009. The Dynamics of Collective Reputation. The BE Journal of Theoretical

Economics 9, 1 (2009).

Lydia T Liu, Ashia Wilson, Nika Haghtalab, Adam Tauman Kalai, Christian Borgs, and Jennifer

Chayes. 2020. The Disparate Equilibria of Algorithmic Decision Making When Individuals In-

vest Rationally. In Proceedings of the 2020 ACM Conference on Fairness, Accountability, and

Transparency. 381–391.

Zhi Liu and Nikhil Garg. 2021. Test-optional Policies: Overcoming Strategic Behavior and Infor-

mational Gaps. arXiv preprint arXiv:2107.08922 (2021).

Patricia M McDonough. 1997. Choosing colleges: How social class and schools structure opportunity.

Suny Press.

25



Hussein Mouzannar, Mesrob I Ohannessian, and Nathan Srebro. 2019. From Fair Decision Making

to Social Equality. In Proceedings of the Conference on Fairness, Accountability, and Trans-

parency. 359–368.

Giulia McDonnell Nieto del Rio. 2021. University of California Will No Longer Consider

SAT and ACT Scores. New York Times (May 2021). www.nytimes.com/2021/05/15/us/

SAT-scores-uc-university-of-california.html

Julie J Park and Ann H Becks. 2015. Who benefits from SAT prep?: An examination of high school

context and race/ethnicity. The Review of Higher Education 39, 1 (2015), 1–23.

Edmund S Phelps. 1972. The Statistical Theory of Racism and Sexism. American Economic Review

62, 4 (1972), 659–661.

Richard Phelps. 2005. Defending standardized testing. Psychology Press.

Sean F Reardon. 2011. The Widening Academic Achievement Gap Between the Rich and the Poor:

New Evidence and Possible Explanations. (2011).

Richard Reeves and Dimitrios Halikias. 2017. Race Gaps in SAT Scores Highlight Inequality and

Hinder Upward Mobility. Washington, DC: Brookings Institute (2017).

Jeffrey Selingo. 2020. Who Gets In and Why: A Year Inside College Admissions. Scribner.

Emil Temnyalov. 2018. An Economic Theory of Differential Treatment. SSRN Electronic Journal

(2018).

The University of Texas. 2019. Top 10 Percent Law. news.utexas.edu/key-issues/

top-10-percent-law/

Marta Tienda and Teresa A Sullivan. 2011. Texas Higher Education Opportunity Project. Inter-

university Consortium for Political and Social Research.

University of California Standardized Testing Task Force. 2020. Report of the UC Academic Council

Standardized Testing Task Force. https://senate.universityofcalifornia.edu/_files/

underreview/sttf-report.pdf

Michael B Weissman. 2020. Do GRE scores help predict getting a physics Ph.D.? A comment on

a paper by Miller et al. Science Advances 6, 23 (2020).

Rebecca Zwick. 2002. Fair Game?: The Use of Standardized Admissions Tests in Higher Education.

Psychology Press.

26



A Supplementary results and figures

A.1 Group-unaware estimation

In the main text, we primarily consider a “group-aware” estimation procedure, in which the school

uses students’ group membership in its estimation procedure (and thus is able to plug in group-

specific noise biases and variances). We now briefly discuss “unaware” estimation when it cannot

do so. Ignoring group attributes is an oft-proposed but often problematic policy proposal to combat

bias in machine learning tasks (Corbett-Davies and Goel, 2018), and so we evaluate its consequences.

Ignoring group membership complicates the skill estimation challenge. When the feature dis-

tributions differ across groups but the school cannot observe the group of a student, the resulting

estimated skill distribution is a mixture of normal distributions. The mixture weights depend on

the noise means and variances of each group g. In contrast to the group-aware case, where the

school manages to correct for the feature noise biases (but not variance), the biases now play an

important rule in each feature’s implications.

We derive this distribution below. However, we primarily study the effects through simulation

in Figure 4.

Unaware estimation derivation. Conditional on the true skill level q, the features are still

distributed according to a group-specific Normal distribution:

θk|q, g ∼ N(q + µgk, σ
2
gk) ∀k = 1 . . .K

But under group-unaware estimation, the school does not know or cannot use g, so the posterior

is now a mixture of Normal distributions. Specifically, let f(q | θ) denote the pdf of the posterior

distribution, q | θ; similarly, we use the notation f(θ) and f(q | θ, g). Thus,

f(q|θ) =
∑

g∈{A,B}

f(q|θ, g)P(g|θ)

=
∑

g∈{A,B}

f(q|θ, g)

[
f(θ |g)P(g)

f(θ)

]

=
∑

g∈{A,B}

w(θ, g)f(q|θ, g), w(θ, g) ,

[
f(θ |g)P(g)

f(θ)

]
.

Then, the posterior q|θ is distributed as a mixture of Normal distributions, where each Normal

is as in the group-aware case:

q|θ ∼
∑

g∈{A,B}

w(θ, g)N
(
q̃(θ, g), σ̃2(θ, g)

)
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For the weights, we find that

w(θ, g) ,
f(θ |g)P(g)

f(θ)
=

∫∞
∞ Πkf(θk|g, q) dF (q) · P(g)

f(θ)

and for K features,

∫ ∞
∞

Πkf(θk|g, q) dF (q) =
e

−∑Kk=1

[
(µ+µgk−θk)

2
σ−2σ−2

gk

]
+
∑
k 6=`

[
((µ`g−θ`)−(µgk−θk))

2
σ−2
`g

σ−2
gk

]
2 (σ−2+

∑K
k=1

σ−2
gk )


2 (1− π)K/2σ (Πkσgk)

√
σ−2 +

∑K
k=1 σ

−2
gk

(6)

Thus, we have

w(θ, g) ,
f(θ |g)P(g)

f(θ)
=

∫∞
∞ Πkf(θk|g, q) dF (q)P(g)

f(θ)

∝
P(g) exp

{(
−
∑K
k=1

[
(µ+µgk−θk)

2
σ−2σ−2

gk

]
+
∑
k 6=`

[
((µ`g−θ`)−(µgk−θk))

2
σ−2
`g σ

−2
gk

]
2 (σ−2+

∑K
k=1 σ

−2
gk )

)}
[Πkσgk]

√
σ−2 +

∑K
k=1 σ

−2
gk

Derivation for equation (6). We explicitly show the algebra for K = 1 and K = 2 features, and

the pattern continues for K features.

For one feature:

w(θ1, g) ,
f(θ1|g)P(g)

f(θ1)
=

∫∞
∞ f(θ1|g, q) dF (q)P(g)

f(θ1)

=

1√
2(1−π)(σ2+σ2

g1)
exp

[
− (µ+µg1−θ1)2

2(σ2+σ2
g1)

]
P(g)

f(θ1)
=

1√
(σ2+σ2

g1)
exp

[
− (µ+µg1−θ1)2

2(σ2+σ2
g1)

]
P(g)

∑
g

[
1√

(σ2+σ2
g1)

exp

[
− (µ+µg1−θ1)2

2(σ2+σ2
g1)

]
P(g)

]

For two features θ1, θ2:

w(θ, g) ,
f(θ |g)P(g)

f(θ)
=

∫∞
∞ Πkf(θk|g, q) dF (q)P(g)

f(θ)

∫ ∞
∞

Πkf(θk|g, q) dF (q) =
e

(
−((µg1−θ1)−(µg2−θ2))

2
σ−2
g1 σ

−2
g2 +(µ+µg2−θ2)

2
σ−2σ−2

g2 +(µ+µg1−θ1)
2
σ−2σ−2

g1

2 (σ−2+σ−2
g1 +σ−2

g2 )

)

2 (1− π)σσg1σg2

√
σ−2 + σ−2

g1 + σ−2
g2
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Figure 5: Additional information for the Low Information case, when the standardized test scores
provide much more information to the school than do the other features. In this setting, keeping
test scores is best for both objectives, except for extremely low γB.

A.2 UT Austin data simulations supplementary plots

Figures 5 and 6 show additional information for the Low and High informativeness cases, respec-

tively. The results demonstrate that the values reported in Table 1 in the main text are robust to

our assumption on the fraction of group B students γB that have access to the test score: in these

cases, the informativeness differences between the cases determine whether dropping test scores

benefits the dual-objectives.

A.3 Second data setting: OECD study

We now repeat our calibrated simulation analysis, using an alternate data source, to analyze the

robustness of our methods and insights.

Data. We now use a rich cross-national dataset consisting of demographic information and the

results of a standardized test for about 200,000 people, collected starting in 2008 by the Organ-

isation for Economic Co-operation and Development (OECD) as part of the Programme for the
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Figure 6: Additional information for the High Information case, when the standardized test scores
do not provide much more information to the school than do the other features. In this setting,
dropping test scores is best for both objectives, across the range of γB.
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International Assessment of Adult Competencies.20
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Figure 7: Calibrated simulation results for setting described in Appendix A.3.

Simulation setup. For each individual, we observe their birth region, total years of education,

years of education needed for their current job, normalized monthly income, and their test score.21

We use birth region as the person’s group membership, limiting to two regions: North America and

Western Europe (group A), and Central and Eastern Europe (group B). As we do not observe

the “true” skill level of each student, we use years of education as their skill level. Then, years of

education needed for current job and test scores make up our two features. Finally, we threshold22

on normalized monthly income to determine whether the individual faces barriers to taking the

test. Group A students on average have much higher incomes in the data; 73% of them have

access to the test, versus 23% of group B. Note that this thresholding approach allows for general

correlations between the features and ability to afford the test, unlike in our theoretical setting.

We then simulate our model, as in Section 5.

Results. Figure 7 contains results. As in the High Informativeness setting with the THEOP data,

20We access a cross-country merged dataset (Cowgill et al., 2020b) compiled by Cowgill et al. (2020a).
21Test score is derived as described in the release notes of Cowgill et al. (2020b).
22We arbitrarily choose a threshold of $2000, but the result is robust to this choice.
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we find that in this setting dropping the “test” feature substantially improves both diversity and

academic merit, in comparison to requiring an inaccessible test.
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Figure 8: Difference between test-based and test-free policies with respect to various objective
functions. The more negative (red) the difference, the more that dropping the test improves that
metric compared to test-based policies. Simulation is with budgets case, using parameters as given
in Appendix A.5. The plot reads as follows: in Figure 8a, a difference of 0.6 means that the average
academic merit with a test-based policy is 0.6 higher than that with a test-free policy.

A.4 Supplemental simulation figures

Figure 8 supplements the results in Theorem 1 and Proposition 3, regarding the thresholds at which

academic merit and diversity improve after dropping the test. In particular, they illustrate that

for high enough test score variance or high enough barriers, dropping the test score improves the

objectives.

A.5 Simulation parameters

Figure 2. C = 0.2, π = 0.5, q, θA0, θA1 ∼ N(0, 1), θB0 ∼ N(−4, 5), θB1 ∼ N(−4, 1), γA = 1, γB = 2
3 .
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Figure 3. Same as Figure 2, except with θB1 ∼ N(−4, σ2
B1), where σ2

B1 ∈ (0, 5), and γB = 1.

Figure 4. Same as Figure 2.

Figure 8. Same as Figure 2, except with test score precision varying together for both groups

σ2
A1 = σ2

B1 ∈ (0, 3), and group B test access varying, γB ∈ (0, 1).

B Multiple Schools

In reality, individual schools do not make the decision to keep or drop testing requirements in

isolation, but rather must react to the decisions that other schools make. When one school changes

their own admission policy, and thus the pool of students they admit, other schools who are

competing for the same pool of students may be affected. In this section, we describe how to

extend the model described in Section 2 to study admissions decisions in settings where multiple

schools compete for students. We provide some preliminary results to suggest possible directions

to study in this setting.

When there are multiple schools, a student who is admitted to more than one school can choose

which school they prefer. Thus the students’ preferences create a discrepancy between the set of

students admitted to a school and the set of students who choose to attend a school. We investigate

the impact of interventions on the set of students who ultimately attend the school, in terms of

both academic merit and fairness.

We show that this competition between schools creates additional diversity concerns not present

in the single-school case. Furthermore, when one school makes a change to their admissions policy,

this change has downstream effects on other schools.

B.1 Multiple school model

The model is as defined in Section 2, with the following changes.

Schools. A finite set of schools A1, . . . , AN separately admit students. Each school Aj has capacity

Cj for the mass of students who attend the school. The market is over-demanded:
∑N

j=1Cj < 1.

Each school can choose their own estimation and admissions policy. Let P (Aj) denote the

admissions policy of school Aj . Let P denote the vector of policies for schools A1, . . . , AN . Note

that schools with different estimation policies may assign different perceived skills to a given student,

and so the ranking of students according to perceived skill may not be consistent across schools.

Students’ preferences. Students have common preferences over schools, A1 � . . . � AN . Stu-

dents prefer any school over their outside option Ao (i.e., AN � Ao) and so they apply to all

schools, unless they are prevented from doing so by testing barriers. We make the assumption of

common preferences for simplicity, although the model can easily be extended so that students have

heterogeneous preferences.

Admission outcomes. As in the single school case, each school chooses a selection policy, inducing

an admissions threshold, and admits all students with perceived skill greater than the threshold.
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Then, each student attends the school that they most prefer, among the set of schools to which they

were admitted. If the student was not admitted to any school, then they choose their outside option

Ao. These outcomes correspond to a matching of students to schools. Extending the notation from

Section 2, for a given student let Yj ∈ {0, 1} denote whether the student attends school Aj .
23

There exists a unique set of thresholds, which depends on the entire vector of policies chosen

by the schools, such that each school fills its capacity with its most preferred students not accepted

to a higher-ranked school.24

B.2 Benchmark: Identical school policies

First we consider the case when all schools employ the same admission policy PS . In this case, we

can characterize the stable matching of the system as follows.

Proposition 4 (Equilibrium with identical policies.). Suppose that students have a common rank-

ing of the schools and that schools all see the same feature set S ⊆ {1, . . . ,K} and use a group-aware

admissions policy where they admit on perceived quality q̃.

Then, a stable matching is characterized by a set of cutoffs q̃∗1 > . . . > q̃∗j > . . . > q̃∗N such that

school A1 is matched to students with perceived quality q̃(θ, g, PS) ≥ q̃∗1 and for j ≥ 2, school Aj is

matched to students with perceived skill q̃∗j ≤ q̃(θ, g, PS) < q̃j−1.

The cutoffs can be found by solving the equations

Cj = π

∫ q∗j

q∗j−1

fq̃|A,PS (q̃)dq̃ + (1− π)

∫ q∗j

q∗j−1

fq̃|B,PS (q̃)dq̃.

Proof. The result follows directly from an application of (Azevedo and Leshno, 2016).

Recall that in the single school case with a selective school, Proposition 1 shows that disadvan-

taged students are under-represented unless equal precision holds. In general, this result does not

hold for all schools in the multiple school setting.

The following proposition shows that whether a group is under-represented at a given school

depends on the capacity constraints of other schools. We define three classes of schools, top-tier,

mid-tier, and low-tier, which depend on both the students’ ranking of the schools and the schools’

capacities. We then show that whether disadvantaged students are under-represented at a school

depends on the tier of the school.

Proposition 5 (Identical school policies). Assume unequal precision and that all schools are selec-

tive with capacity at most 0.5. Suppose that schools use admissions policy PS for some set feature

set S. For a school Aj, define Dj =
∑

j′≤j Cj′ to be the cumulative capacity of school Aj and all

schools A1, . . . , Aj−1 that students prefer over Aj.

23In Section 2, we defined Y = 1 for students who are admitted, but this set of students is equivalent to those who
attend in the single school case.

24Our model is a special case of the two-sided market framework of Azevedo and Leshno (2016), with a common
ranking of schools. The set of thresholds corresponds to a stable matching, unique under mild conditions. See
Proposition 4.
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Figure 9: Diversity levels for each school in the multiple school setting, when all schools use the
benchmark group-aware, test-based policy. Ten schools, each with capacity C = 0.05. Student
parameters as in Figure 4.

Then there exists two capacity cutoffs 0 < X1 < X2 < 1 such that:

• Top-tier schools: When 1−Dj > X2, group B students are under-represented.

• Mid-tier schools: When X1 < 1−Dj−1 < X2 and X1 < 1−Dj < X2, group B students are

not under-represented.

• Low-tier schools: When 1−Dj−1 < X1, group B students are under-represented.

Proof. Consider the distributions of q̃ | A,PS and q̃ | B,PS and the respective pdfs fq̃|A,PS , fq̃|B,PS .

Both distributions are normally distributed with the same and potentially difference variance.

Assuming
∑

k∈S σ
−2
Ak 6=

∑
k∈S σ

−2
Bk, then Var(q̃ | A) 6= Var(q̃ | B,PS) and fq̃|A,PS and fq̃|B,PS cross

at exactly two points q that solve the following equation:

2
Var(q̃ | A,PS) ·Var(q̃ | B,PS)

Var(q̃ | B,PS)−Var(q̃ | A,PS)
log

(√
Var(q̃ | B,PS)√
Var(q̃ | A,PS)

)
= (q − µ)2.

Denote the solutions q1, q2, with q1 < q2.

Note that for any interval [c, d], the mass of students in group A with q̃(θ, A) ∈ [c, d] is

π

∫ d

c
fq̃|A,PS (q̃)dq̃

and the mass of students in group B with q̃(θ, B) ∈ [c, d] is∫ d

c
fq̃|B,PS (q̃)dq̃.
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Now define the capacity cutoffs

X1 = π

∫ ∞
q1

fq̃|A,PS (q̃)dq̃ + (1− π)

∫ ∞
q1

fq̃|B,PS (q̃)dq̃

X2 = π

∫ ∞
q2

fq̃|A,PS (q̃)dq̃ + (1− π)

∫ ∞
q2

fq̃|B,PS (q̃)dq̃.

If
∑K

k=1 σ
−2
Ak >

∑K
k=1 σ

−2
Bk, then fq̃|A,PS (q̃) < fq̃|B,PS (q̃) for q̃ ∈ [q1, q2] and fq̃|A,PS (q̃) > fq̃|B,PS (q̃)

otherwise. Consider what we define as a high tier school Sj : a school where its capacity and the total

capacity of all higher ranked school is larger than X2. Then this school admits all students with

perceived quality higher than q2. Since fq̃|A,PS (q̃) > fq̃|B,PS (q̃) on this interval, the proportion τj of

matched students in group B is smaller than 1− π thus group B students are under-represented.

The cases for the remaining intervals follow similarly.

Figure 9 illustrates these results. Diversity levels change with tiers25 due to the joint effects of

estimation differences across groups and competition between schools. Differential variances lead

to different skill estimate distributions q̃ | g, PS for different groups. In the single school setting,

the difference leads to fairness concerns (Proposition 1): more privileged students have perceived

skill above the admissions threshold, even conditional on true quality.

In the multiple school setting, the set of students that ultimately attend a school Aj corresponds

to a band of perceived skill q̃: the students admitted to school Aj but not to any higher ranked

school Ai � Aj . Whether disadvantaged students are under-represented at a school then depends

on the mass of each group with perceived skill in that band. Competition across schools leads to

different diversity levels, even when all schools choose the same admissions policy.

B.3 One school adopts an intervention

Now we consider a setting where one school deviates from the benchmark model and changes their

admission policy. We study the resulting impact on the matching of schools and students. In this

setting, one might expect the impact on the system to change depending on whether a low-ranked

school or a high-ranked school makes the change. To isolate this effect, we assume that there are

two schools A1 and A2, where students prefer A1 � A2, and that school A1 changes their policy to

adopt a test-free policy.

Note that when schools observe a different set of features for a student, the schools may have

different (though correlated) preferences over the students. In the following proposition, we show

that the adoption of test-free policies by the top-rank school leads to the decrease in the average

true skill of admitted students of each social group but also an increase in the average true skill of

admitted students at the low-rank school.

25The tiers are mutually exclusive but not necessarily exhaustive. Group B students may be under-represented in
a school not included in any of the three tiers.

36



Proposition 6. Assume C1 +C2 ≤ 0.5. When A1 uses a test-free policy and A2 uses a test-based

policy, the academic merit of students of group g ∈ {A,B} decreases at school A1 and increases at

school A2, compared to when both schools use a test-based policy:

E[q | Y1 = 1, g, (Psub, Pfull)] ≤ E[q | Y1 = 1, g, (Pfull, Pfull)]

E[q | Y2 = 1, g, (Psub, Pfull)] ≥ E[q | Y2 = 1, g, (Pfull, Pfull)].

Proof. The result for school A1 follows directly from part (iii) in Theorem 2.

Let η be the set of features k = 1 to K − 1. For school A2, from the distribution of q | q̃, g, Pa,d
for d = K − 1,K and the fact that A1 has the same capacity C1 in both scenarios, it follows that,

for any constant c > 0 and group g,

P[q > c | q̃(θ, g) < q̃∗A1
((Pfull, Pfull))] ≤ P[q > c | q̃(η, g) < q̃∗A1

((Psub, Pfull))]

since the two Normal distributions have the same mean and the variance increases for K − 1.

Since school A2 has the same policy in both the baseline setting and this scenario, the last

equation further implies that that

q̃∗A2
((Pa,sub, Pfull)) ≥ q̃∗A2

((Pfull, Pfull)).

Consequently, A2 sees an increase in the academic merit of admitted students in g, that is

E[q | q̃∗A1
((Psub, Pfull)) > q̃(θ, g) ≥ q̃∗A2

((Psub, Pfull))]

≥ E[q | q̃∗A1
((Psub, Pfull)) > q̃(θ, g) ≥ q̃∗A2

((Pfull, Pfull))]

≥ E[q | q̃∗A1
((Pfull, Pfull)) > q̃(θ, g) ≥ q̃∗A2

((Pfull, Pfull))]

where the last inequality follows from the academic merit decrease that A1 experiences for each

group g, i.e.,

E[q | q̃(η, g) ≥ q̃∗A1
((Psub, Pfull))] ≤ E[q | q̃(θ, g) ≥ q̃∗A1

((Pfull, Pfull))].

Note that the admission outcomes depend on the vector of policies chosen by both schools, and

hence the expectation over true skill is conditioned on this vector.

In this scenario, A1 drops the test score and is less effective at identifying the top students.

This change decreases the average skill level of the students who are admitted to (and thus, the

students who attend) A1. Thus, after A1 drops the test score, there are high-skilled students that

would have been admitted under a test-based policy that are no longer admitted to A1. These

high-skilled students will now attend A2, if accepted, increasing the expected skill at A2.

This discussion illustrates how a change made by one school can have downstream effects on aca-
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demic merit at other schools. These results are preliminary, but suggestive of possible applications

of our model to study the multiple school context.

C Proofs of Statements

In this appendix, we provide and prove the full statement of each result appearing in the main text.

C.1 Auxiliary lemmas

Let Φ denote the CDF of N (0, 1) and HR(x) = φ(x)
1−Φ(x) the Hazard Rate of X ∼ N (0, 1).

Lemma C.1. Let X |M ∼ N (M,σ2) and M ∼ N (µ0, σ
2
0). Then, X ∼ N (µ0, σ

2 + σ2
0).

Lemma C.2. Let X |M ∼ N (M,σ2) and M ∼ N (µ0, σ
2
0). Then,

M | X ∼ N
(

σ2
0

σ2 + σ2
0

X +
σ2

σ2 + σ2
0

µ0,
1

σ−2 + σ−2
0

)
.

Lemma C.3. Let X ∼ N (µ, σ2). Then, for any a ∈ R, E[X | X > a] = µ + σ φ(t)
1−Φ(t) , where

t = a−µ
σ .

Lemma C.4. The hazard rate HR(x) = φ(x)
1−Φ(x) , x ∈ R has the following properties:

(i) Its derivative equals dHR(x)
dx = HR(x)(HR(x)− x);

(ii) It holds that HR(x) > x for all x > 0;

Lemma C.5. Let a > 0. The function h(x) = x
aHR(ax) is increasing in x > 0.

Proof. Let y = a/x. We study the monotonicity of ĥ(y) = HR(y)/y. The derivative of ĥ(y) equals

dĥ(y)

dy
=

dHR(y)
dy y −HR(y)

y2
.

For any y > 0, it holds that dĥ(y)
dy < 0 if and only if dHR(y)

dy y − HR(y) < 0. Using part (i) in

Lemma C.4, we get that

dHR(y)

dy
y −HR(y) = HR(y)

(
HR(y) y − y2 − 1

)
,

which is negative for y > 0 if and only if HR(y) y − y2 − 1 < 0 for all y > 0.

By Theorem 2.3 in (Baricz, 2008), we know that HR(y) < y
2 +

√
y2+4
2 . Thus, using this inequality,

we can bound the quantity HR(y) y − y2 − 1 as follows:

HR(y) y − y2 − 1 <
y2

2
+ y

√
y2 + 4

2
− y2 − 1 =

y

2
(−y +

√
y2 + 4)− 1,
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which is negative for any y ∈ R. Therefore, dĥ(y)
dy < 0 for all y > 0. Finally, since ĥ(y) is decreasing

in y > 0 and y = a
x , a > 0, is decreasing in x > 0, it follows that h(x) = ĥ

(
a
x

)
is increasing in

x > 0.

C.2 Group-aware estimation

Gaussian social learning with feature set S ⊆ {1, . . . ,K}. Given that q ∼ N (µ, σ2),

εkg ∼ N (µgk, σ
2
gk) and the noise is drawn independently, each feature k ∈ S is also normally

distributed conditional on q, i.e., θk | q, g ∼ N (q + µgk, σ
2
gk). Then, we inductively find that

q | θ, g ∼ N
(
q̃(θ, g), σ̃2(θ, g)

)
, where

q̃(θ, g) =
µσ−2 +

∑
k∈S(θk − µgk)σ−2

gk

σ−2 +
∑

k∈S σ
−2
gk

, σ̃2(θ, g) =
1

σ−2 +
∑

k∈S σ
−2
gk

. (7)

Perceived skill conditional on true skill. (7) gives us the skill estimate q̃ of a student condi-

tional on features θ. Another useful distribution is the skill estimate conditional on the student’s

true skill q and group g, i.e., q̃ | q, g, PS , which is also Gaussian. Indeed, observe that q̃(θ, g) in (7)

is a linear combination of independent (conditional on q) Gaussian variables θk = q + εkg, k ∈ S.

Thus,

q̃ | q, g, PS ∼ N

µσ−2 + q
∑

k∈S σ
−2
gk

σ−2 +
∑

k∈S σ
−2
gk

,

∑
k∈S σ

−2
gk(

σ−2 +
∑

k∈S σ
−2
gk

)2

 . (8)

Lemma C.6. For group-aware estimation policies, the following properties hold:

(i) E[q̃ | q, A, PS ] > E[q̃ | q,B, PS ] if and only if (q − µ)
(∑

k∈S σ
−2
Ak −

∑
k∈S σ

−2
Bk

)
> 0.

(ii) Var[q̃ | q,A, PS ] > Var[q̃ | q,B, PS ] if and only if(
σ−4 −

∑
k∈S

σ−2
Ak

∑
k∈S

σ−2
Bk

)(∑
k∈S

σ−2
Ak −

∑
k∈S

σ−2
Bk

)
> 0.

Proof. The proof follows immediately from simple algebra thus it is ommitted.

Distribution of skill estimates per group. We find the distribution q̃ | g, PS , that we denote

by Fq̃|g,PS .

Lemma C.7 (Lemma 1). Consider a school that uses feature set S ⊆ {1, . . . ,K} for each applicant.

For g ∈ {A,B}, the skill level estimates for students in group g are normally distributed:

q̃ | g, PS ∼ N

(
µ, σ2

[ ∑
k∈S σ

−2
gk

σ−2 +
∑

k∈S σ
−2
gk

])
.
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Proof. An application of Lemma C.1 for X = q̃ and M =
µσ−2+q

∑
k∈full σ

−2
gk

σ−2+
∑
k∈full σ

−2
gk

gives us the result.

Analytically, the parameters of this distribution can be computed as follows:

E[q̃ | g, PS ] =Eq[E[q̃ | q, g, PS ]] =
µσ−2 + µ

∑
k∈S σ

−2
gk

σ−2 +
∑

k∈S σ
−2
gk

= µ,

Var[q̃ | g, PS ] =E[q̃2 | g, PS ]− µ2 = Eq[E[q̃2 | q, g, PS ]]− µ2

=Eq

Var[q̃ | q, g, PS ] +

(
µσ−2 + q

∑
k∈S σ

−2
gk

σ−2 +
∑

k∈S σ
−2
gk

)2
− µ2

=Eq [Var[q̃ | q, g, PS ]] + Var

[
µσ−2 + q

∑
k∈S σ

−2
gk

σ−2 +
∑

k∈S σ
−2
gk

]

=

∑
k∈S σ

−2
gk

(σ−2 +
∑

k∈S σ
−2
gk )2

+ σ2

( ∑
k∈S σ

−2
gk

σ−2 +
∑

k∈S σ
−2
gk

)2

=σ2

∑
k∈S σ

−2
gk

σ−2 +
∑

k∈S σ
−2
gk

.

Corollary 1. Var[q̃ | A,PS ] > Var[q̃ | B,PS ] if and only if
∑

k∈S σ
−2
Ak >

∑
k∈S σ

−2
Bk.

Definition 1. Let X and Y be two random variables with support R and CDFs F and G, respec-

tively. We say that X second-order stochastically dominates Y , X �SSD Y , if for every t ∈ R,∫ t
−∞G(y)dy ≥

∫ t
−∞ F (x)dx.

Corollary 2 (Second-order stochastic dominance). If
∑

k∈S σ
−2
Ak >

∑
k∈S σ

−2
Bk, then (q̃ | B,PS) �SSD

(q̃ | A,PS) and q̃ | A,PS is a mean-preserving spread of q̃ | B,PS.

Distribution of true skill conditional on skill estimate. To answer questions about the

academic merit of the admitted student body, we need to be able to compute the expected value

of q conditional on acceptance and the social group g of a student, i.e., E[q | Y = 1, g, PS ]. Thus,

we first the conditional distribution q | q̃, g, PS in the following lemma.

Lemma C.8. Suppose that the school uses policy PS. Then, the true skill level q of students in

group g ∈ {A,B} conditional on the estimated skill level q̃ is normally distributed as follows

q | q̃, g, PS ∼ N

(
q̃,

1

σ−2 +
∑

k∈S σ
−2
gk

)
. (9)

Proof. We apply Lemma C.2 by using the transformation M =
µσ−2+q

∑
k∈S σ

−2
gk

σ−2+
∑
k∈S σkσ

−2
gk

and X = q̃. More

specifically, let

X |M ∼ N

(
M,

∑
k∈S σ

−2
gk

(σ−2 +
∑

k∈S σ
−2
gk )2

)
, M ∼ N

µ, σ2

( ∑
k∈S σ

−2
gk

σ−2 +
∑

k∈S σ
−2
gk

)2
 .
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Then, by Lemma C.2, we get that

E[M | q̃, g, PS ] =
σ2 (

∑
k∈S σ

−2
gk )2

(σ−2+
∑
k∈S σ

−2
gk )2

q̃ + µ
∑
k∈S σ

−2
gk

(σ−2+
∑
k∈S σ

−2
gk )2

σ2
(
∑
k∈S σ

−2
gk )2

(σ−2+
∑
k∈S σ

−2
gk )2

+
∑
k∈S σ

−2
gk

(σ−2+
∑
k∈S σ

−2
gk )2

=

∑
k∈S σ

−2
gk q̃ + µσ−2∑

k∈S σ
−2
gk + σ−2

Var[M | q̃, g, PS ] =

( ∑
k∈S σ

−2
gk

(σ−2 +
∑

k∈S σ
−2
gk )2

)−1

+ σ−2

( ∑
k∈S σ

−2
gk

σ−2 +
∑

k∈S σ
−2
gk

)−2
−1

=

(∑
k∈S σ

−2
gk

)2

(
σ−2 +

∑
k∈S σ

−2
gk

)3 .

Therefore, M | q̃, g, PS ∼ N
(∑

k∈S σ
−2
gk q̃+µσ

−2∑
k∈S σ

−2
gk +σ−2

,
(
∑
k∈S σ

−2
gk )

2

(σ−2+
∑
k∈S σ

−2
gk )

3

)
. Finally, using the linear transfor-

mation

q =
M
(
σ−2 +

∑
k∈S σ

−2
gk

)
− µσ−2∑

k∈S σ
−2
gk

,

we get that q | q̃, g, PS ∼ N
(
q̃, 1

σ−2+
∑
k∈S σ

−2
gk

)
.

C.3 Baseline policy in the absence of barriers

Let q̃∗S denote the optimal decision threshold used by the school under policy PS . Using the

distribution Fq̃|g,PS , it follows that threshold q̃∗S is the solution to the equation

(1− π)Fq̃|A,PS (q̃∗S) + πFq̃|B,PS (q̃∗S) = 1− C. (10)

By Lemma 1, the Gaussian mixture of Fq̃|A,PS , Fq̃|B,PS with weights 1 − π, π has mean µ and

variance

(1− π)σ2

[ ∑
k∈S σ

−2
Ak

σ−2 +
∑

k∈S σ
−2
Ak

]
+ πσ2

[ ∑
k∈S σ

−2
Bk

σ−2 +
∑

k∈S σ
−2
Bk

]
.

Recall that for a Gaussian random variable X ∼ N(µ0, σ
2
0), it holds that X−µ0

σ0
∼ N(0, 1). Thus,

(10) can be equivalently written as

Φ

(q̃∗S − µ)

(
(1− π)σ2

[ ∑
k∈S σ

−2
Ak

σ−2 +
∑

k∈S σ
−2
Ak

]
+ πσ2

[ ∑
k∈S σ

−2
Bk

σ−2 +
∑

k∈S σ
−2
Bk

])−1/2
 = 1− C. (11)

We also introduce some additional definitions. Given any fixed value of
∑

k∈S σ
−2
Bk, the informa-

tiveness gap ∆ is defined as ∆ =
∑

k∈S σ
−2
Ak −

∑
k∈S σ

−2
Bk. Given all parameters, except

∑
k∈S σ

−2
Ak
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fixed, let Fq̃|g,PS (q; ∆) denote the CDF Fq̃|g,PS parameterized by ∆ ≥ 0 and q̃∗S(∆) and τ(PS ; ∆)

denote the corresponding admission threshold and diversity level, respectively, for any ∆ ≥ 0 under

the baseline policy PS .

We now provide the proof to Proposition 1. Note that the result below considers a general

feature set S where the assumption on unequal precisions holds.

Proposition 1 (Metrics with a fixed policy). Suppose that a selective school uses admissions policy

PS. Group fairness and individual fairness fail except for equal precision. Given unequal precisions:

(i) Diversity level: Group B students are under-represented, i.e., τ(PS) < π.

Furthermore, larger informativeness gap leads to decreased diversity: fix group B precision,∑
k∈S σ

−2
Bk; then as group A precision increases, the diversity level τ(PS) decreases.

(ii) Individual fairness: High-skilled group B students are hard to target, i.e., I(q;PS) > 0, if and

only if

q > q̃∗S +
σ−2(q̃∗S − µ)√∑

k∈S σ
−2
Bk

√∑
k∈S σ

−2
Ak

.

Increasing the informativeness gap increases the individual fairness gap for high-skilled stu-

dents: fix group B precision,
∑

k∈S σ
−2
Bk; then as group A precision increases, I(q;PS) in-

creases for q > µ+ σΦ−1(1− C).

(iii) Academic merit: The policy achieves worse academic merit for admitted students from group

B.

Proof of part (i). We break the proof into two steps.

Step 1: We show that group fairness fails except for equal precision. Given unequal precisions, we

further show that τ(PS) < π. If
∑

k∈S σ
−2
Ak =

∑
k∈S σ

−2
Bk, then the two distributions Fq̃|A,PS , Fq̃|B,PS

are identical so it trivially holds that Fq̃|A,PS (q̃∗S) = Fq̃|A,PS (q̃∗S) = 1 − C. Consequently, group

fairness is achieved.

Next, assume that
∑

k∈S σ
−2
Ak >

∑
k∈S σ

−2
Bk. Then, by Lemma 1 and Corollary 2, (q̃ | B,PS) �SSD

(q̃ | A,PS) and q̃ | A,PS is a mean-preserving spread of q̃ | B,PS . Thus, the CDFs Fq̃|A,PS and

Fq̃|B,PS cross once at q̃ = µ. Furthermore, Fq̃|A,PS (q̃) < Fq̃|B,PS (q̃), for q̃ > µ and Fq̃|A,PS (q̃) >

Fq̃|B,PS (q̃), for q̃ < µ.

Since C < 0.5 = Fq̃|A,PS (µ) = Fq̃|B,PS (µ), then q̃∗S > µ. Therefore, Fq̃|A,PS (q̃∗S) < Fq̃|B,PS (q̃∗S),

which due to (10) implies that 1− Fq̃|B,PS (q̃∗S) < C thus

τ(PS) =
π(1− Fq̃|B,PS (q̃∗S))

C
< π.

Step 2: We show that the marginal effect of ∆ on τ(PS) is negative. Consider 0 ≤ ∆ < ∆′. Since

Fq̃|B,PS (q; ∆) depends only on
∑

k∈S σ
−2
Bk, it remains unchanged under both ∆,∆′.
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Recall that the admission threshold is the solution to (11). Solving for q̃∗S(∆) gives us

q̃∗S(∆) = µ+ Φ−1(1− C) ·

(
(1− π)σ2

[ ∑
k∈S σ

−2
Bk + ∆

σ−2 +
∑

k∈S σ
−2
Bk + ∆

]
+ πσ2

[ ∑
k∈S σ

−2
Bk

σ−2 +
∑

k∈S σ
−2
Bk

])1/2

,

(12)

which is an increasing function of ∆. Thus, q̃∗S(∆′) > q̃∗S(∆).

Therefore, given that the capacity remains constant at C, the diversity level decreases as ∆

increases since

τ(PS ; ∆′) =
π(1− Fq̃|B,PS (q̃∗S(∆′); ∆′))

C
=
π(1− Fq̃|B,PS (q̃∗S(∆′); ∆))

C
<
π(1− Fq̃|B,PS (q̃∗S(∆); ∆))

C
= τ(PS ; ∆).

Proof of part (ii). We prove each claim in different steps.

Step 1: We show that I(q;PS) > 0 if and only if

q > q̃∗S +
σ−2(q̃∗S − µ)√∑

k∈S σ
−2
Bk

√∑
k∈S σ

−2
Ak

.

Recall that for a Gaussian variable X ∼ N(µ0, σ
2
0), it holds that X−µ0

σ0
∼ N(0, 1). Thus, given

policy PS , the probability of admission for a student in group g equals

P[Y = 1 | q, g, PS ] = 1− Fq̃|q,g,PS (q̃∗S) = 1− Φ

σ−2 +
∑

k∈S σ
−2
gk√∑

k∈S σ
−2
gk

(
q̃∗S −

µσ−2 + q
∑

k∈S σ
−2
gk

σ−2 +
∑

k∈S σ
−2
gk

) ,

(13)

where

E[q̃ | q, g, PS ] =
µσ−2 + q

∑
k∈S σ

−2
gk

σ−2 +
∑

k∈S σ
−2
gk

,Var[q̃ | q, g, PS ] =

∑
k∈S σ

−2
gk(

σ−2 +
∑

k∈S σ
−2
gk

)2 .

Consequently, due to the monotonicity of Φ, it holds that I(q;PS) > 0 if and only if

σ−2 +
∑

k∈S σ
−2
Ak√∑

k∈S σ
−2
Ak

(
q̃∗S −

µσ−2 + q
∑

k∈S σ
−2
Ak

σ−2 +
∑

k∈S σ
−2
Ak

)
<
σ−2 +

∑
k∈S σ

−2
Bk√∑

k∈S σ
−2
Bk

(
q̃∗S −

µσ−2 + q
∑

k∈S σ
−2
Bk

σ−2 +
∑

k∈S σ
−2
Bk

)

⇐⇒
q̃∗Sσ

−2 + q̃∗S
∑

k∈S σ
−2
Ak − µσ

−2 − q
∑

k∈S σ
−2
Ak√∑

k∈S σ
−2
Ak

<
q̃∗Sσ

−2 + q̃∗S
∑

k∈S σ
−2
Bk − µσ

−2 − q
∑

k∈S σ
−2
Bk√∑

k∈S σ
−2
Bk

⇐⇒

√∑
k∈S

σ−2
Bk −

√∑
k∈S

σ−2
Ak

σ−2(q̃∗S − µ) + (q − q̃∗S)

√∑
k∈S

σ−2
Bk

√∑
k∈S

σ−2
Ak

 < 0.

(14)
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Due to our assumption on unequal precisions, the last inequality further translates to

(q̃∗S − q)
√∑
k∈S

σ−2
Bk

√∑
k∈S

σ−2
Ak < σ−2(q̃∗S − µ),

where the RHS is always positive due to school selectivity which implies that q̃∗S > µ. Thus, we

conclude that I(q;PS) > 0 if and only if

q > q̃∗S +
σ−2(q̃∗S − µ)√∑

k∈S σ
−2
Bk

√∑
k∈S σ

−2
Ak

.

Step 2: We show that individual fairness fails except for equal precisions. As an immediate corollary

of the previous analysis in Step 1, observe that individual fairness fails unless the LHS in (14) equals

0 for all q; equivalently, individual fairness fails except for equal precision, i.e.,
√∑

k∈S σ
−2
Bk −√∑

k∈S σ
−2
Ak = 0.

Step 3: Finally, we show that for q > µ + σΦ−1(1 − C), I(q;PS) increases as the informativeness

gap increases. We begin with group B. By (8), it follows that

P[Y = 1 | q,B, PS ,∆] = 1− Fq̃|B,PS (q̃∗S(∆); ∆) = 1− Φ

σ−2 +
∑
k∈S σ

−2
Bk√∑

k∈S σ
−2
Bk

(
q̃∗S(∆)−

µσ−2 + q
∑
k∈S σ

−2
Bk

σ−2 +
∑
k∈S σ

−2
Bk

) .

By (12), it further follows that q̃∗S(∆) is increasing in ∆. Consequently, the above probability is

decreasing in ∆ since Φ is an increasing function and all terms except for q̃∗S(∆) do not depend on

∆. Therefore, we conclude that the admission probability of group B students decreases for any q

as ∆ increases.

Next, for group A, note that students with q > µ+ σΦ−1(1− C) are exactly those students in

group A who – given perfectly observable skills q – would be admitted to the class; due to imperfect

information, a group A student of true skill q > µ+ σΦ−1(1−C) has a non-zero probability to get

rejected. Next, observe that as ∆ increases, the total precision
∑

k∈S σ
−2
Ak of group A must increase.

Consequently, the variance Var[q̃ | q, A, PS ] decreases thus the estimates q̃ | q, A, PS of all group A

students (including those with true skill q > µ + σΦ−1(1 − C)) become more precise. Combining

this observation with the facts that the capacity C remains constant and the admission probability

of group B students decreases, it follows that the probability that the top-skilled group A students

with q > µ + σΦ−1(1 − C) are rejected (either in favor of lower-skilled students in A or students

in B) decreases as ∆ increases. Equivalently, their admission probability P[Y = 1 | q,A, PS ,∆]

increases as ∆ grows.

Putting everything together, we conclude that, given q > µ + σΦ−1(1 − C), the individual

fairness gap I(q;PS) increases as the informativeness gap ∆ increases.

Proof of part (iii). We break the proof into the following steps.
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Step 1 : We compute the expected value E[q̃ | Y = 1, g, PS ] and show that E[q̃ | Y = 1, A, PS ] ≥
E[q̃ | Y = 1, B, PS ]. Applying Lemma C.3, we get that

E[q̃ | Y = 1, g, PS ] = E[q̃ | q̃ ≥ q̃∗S , g, PS ] = E[q̃ | g] +
√

Var[q̃ | g, PS ]
φ(tg)

1− Φ(tg)

= µ+ σ

√√√√ ∑
k∈S σ

−2
gk

σ−2 +
∑

k∈S σ
−2
gk

· φ(tg)

1− Φ(tg)
,

(15)

where tg =
q̃∗S−E[q̃|g,PS ]√

Var[q̃|g,PS ]
. Due to school selectivity, we have q̃∗S > µ. By Lemma C.5, the function

h(x) = x
φ
(
q̃∗S−µ
x

)
1− Φ

(
q̃∗S−µ
x

) = xHR

(
q̃∗S − µ
x

)

is increasing in x > 0 for q̃∗S > µ. Thus, by Corollary 1, we get that that

E[q̃ | q̃ ≥ q̃∗S , A, PS ] ≥ E[q̃ | q̃ ≥ q̃∗S , B, PS ].

Step 2 : We compute the expected value E[q | q̃ ≥ q̃∗K , g, PS ]. Specifically,

E[q | Y = 1, g, PS ] = E[q | q̃ ≥ q̃∗K , g, PS ] = Eq̃[Eq[q | q̃, g, PS ] | q̃ ≥ q̃∗K , g, PS ] = E[q̃ | q̃ ≥ q̃∗K , g, PS ],

(16)

where the last equality follows from Lemma C.8.

Step 3: We show that E[q | Y = 1, A, PS ] > E[q | Y = 1, B, PS ]. Given our assumptions on

unequal precisions and school selectivity, the proof follows immediately from Steps 1 and 2. I.e., if∑
k∈S σ

−2
Ak >

∑
k∈S σ

−2
Bk and C < 0.5, then E[q | Y = 1, A, PS ] > E[q | Y = 1, B, PS ].

Explaining why the individual fairness gap decreases for high-skilled students. We

include an observation about the individual fairness gap. Although the individual fairness gap is

positive for sufficiently high-skilled students, the magnitude of this gap varies. For students at the

end of the right tail of the true skill distribution, the individual fairness gap starts to decrease.

This property can be graphically observed in Figure 4b.

Lemma 2. Consider policy PS, and assume unequal precision. The individual fairness gap I(q;PS)

is decreasing in q for q > qe, where

qe , q̃∗S +

√
σ−4(µ− q̃∗S)2∑
k∈S σ

−2
Ak

∑
k∈S σ

−2
Bk

+
ln
(∑

k∈S σ
−2
Ak

)
− ln

(∑
k∈S σ

−2
Bk

)∑
k∈S σ

−2
Ak −

∑
k∈S σ

−2
Bk

.

Furthermore, limq→∞ I(q;PS) = 0.
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Proof. By (8), the individual fairness gap equals

I(q;PS) =

1− Φ

σ−2 +
∑

k∈S σ
−2
Ak√∑

k∈S σ
−2
Ak

(
q̃∗S −

µσ−2 + q
∑

k∈S σ
−2
Ak

σ−2 +
∑

k∈S σ
−2
Ak

)
−

1− Φ

σ−2 +
∑

k∈S σ
−2
Bk√∑

k∈S σ
−2
Bk

(
q̃∗S −

µσ−2 + q
∑

k∈S σ
−2
Bk

σ−2 +
∑

k∈S σ
−2
Bk

) .

Taking the derivative of I(q;PS) with respect to q, we find that

dI(q;PS)

dq
=φ

σ−2 +
∑

k∈S σ
−2
Ak√∑

k∈S σ
−2
Ak

(
q̃∗S −

µσ−2 + q
∑

k∈S σ
−2
Ak

σ−2 +
∑

k∈S σ
−2
Ak

)√∑
k∈S

σ−2
Ak

− φ

σ−2 +
∑

k∈S σ
−2
Bk√∑

k∈S σ
−2
Bk

(
q̃∗S −

µσ−2 + q
∑

k∈S σ
−2
Bk

σ−2 +
∑

k∈S σ
−2
Bk

)√∑
k∈S

σ−2
Bk.

Thus, to prove that dI(q;PS)
dq < 0, it suffices to show that

ln

φ
σ−2 +

∑
k∈S σ

−2
Ak√∑

k∈S σ
−2
Ak

(
q̃∗S −

µσ−2 + q
∑

k∈S σ
−2
Ak

σ−2 +
∑

k∈S σ
−2
Ak

)√∑
k∈S

σ−2
Ak


< ln

φ
σ−2 +

∑
k∈S σ

−2
Bk√∑

k∈S σ
−2
Bk

(
q̃∗S −

µσ−2 + q
∑

k∈S σ
−2
Bk

σ−2 +
∑

k∈S σ
−2
Bk

)√∑
k∈S

σ−2
Bk

 .

The above condition is equivalent to

−
(
(q̃∗S − µ)σ−2 + (q̃∗S − q)

∑
k∈S σ

−2
Ak

)2∑
k∈S σ

−2
Ak

+ ln

(∑
k∈S

σ−2Ak

)
< −

(
(q̃∗S − µ)σ−2 + (q̃∗S − q)

∑
k∈S σ

−2
Bk

)2∑
k∈S σ

−2
Bk

+ ln

(∑
k∈S

σ−2Bk

)

⇐⇒

(∑
k∈S

σ−2Ak −
∑
k∈S

σ−2Bk

)(
σ−4(µ− q̃∗S)2 −

∑
k∈S

σ−2Ak

∑
k∈S

σ−2Bk(q − q̃∗S)2

)
+
∑
k∈S

σ−2Ak

∑
k∈S

σ−2Bk ln

(∑
k∈S σ

−2
Ak∑

k∈S σ
−2
Bk

)
< 0.

Given our assumption on unequal precision, i.e.,
∑

k∈S σ
−2
Bk <

∑
k∈S σ

−2
Ak , we further get that this

condition is satisfied for

q > qe , q̃∗S +

√
σ−4(µ− q̃∗S)2∑
k∈S σ

−2
Ak

∑
k∈S σ

−2
Bk

+
ln
(∑

k∈S σ
−2
Ak

)
− ln

(∑
k∈S σ

−2
Bk

)∑
k∈S σ

−2
Ak −

∑
k∈S σ

−2
Bk

.

Therefore, the individual fairness gap I(q;PS) is decreasing in q for q > qe as desired.

Furthermore, by the definition of I(q;PS) and the fact that limq′→∞Φ(q′) = 1, we immediately

get that limq→∞ I(q;PS) = 0.
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C.4 Dropping a feature in the absence of barriers

We are interested in comparing group-aware policies Pfull and Psub. By our previous result in

Lemma 1, we get that

q̃ | g, Psub ∼ N

(
µ, σ2

∑
k∈sub σ

−2
gk

σ−2 +
∑

k∈sub σ
−2
gk

)
, q̃ | g, Pfull ∼ N

(
µ, σ2

∑
k∈full σ

−2
gk

σ−2 +
∑

k∈full σ
−2
gk

)
.

Lemma C.9. The variance of q̃ | g, Psub is lower than that of q̃ | g, Pfull but their means are both

equal to µ.

Proof. The proof follows trivially from the fact that the function h(x) = x
σ−2+x

is increasing in

x > 0 and ∑
k∈full

σ−2
gk =

K∑
k=1

σ−2
gk >

K−1∑
k=1

σ−2
gk =

∑
k∈sub

σ−2
gk

for any g.

Let q̃∗sub be the decision threshold of a school considering only features k = 1 to K−1. By (10),

q̃∗sub is the solution to the following equation

(1− π)Fq̃|A,Psub
(q̃∗sub) + πFq̃|A,Psub

(q̃∗sub) = 1− C,

whereas q̃∗full is the solution to

(1− π)Fq̃|A,Pfull
(q̃∗full) + πFq̃|A,Pfull

(q̃∗full) = 1− C.

Lemma C.10. The admission threshold decreases after dropping feature k = K, i.e., q̃∗sub < q̃∗full.

Proof. The proof follows from the definitions of q̃∗sub, q̃
∗
full, and Lemma C.9.

Theorem 2 (Dropping tests without barriers). Consider policies Pfull and Psub, and assume

unequal precisions under Pfull.

(i) Diversity level: Diversity level improves after dropping feature K, τ(Psub) > τ(Pfull), if and

only if ∑
k∈sub σ

−2
Ak

(
σ−2 +

∑
k∈full σ

−2
Ak

)∑
k∈sub σ

−2
Bk

(
σ−2 +

∑
k∈full σ

−2
Bk

) < σ−2
AK

σ−2
BK

. (3)

(ii) Individual fairness: For each group g, there exist thresholds qg such that the admission prob-

ability for students of skill q in group g decreases under Psub if and only if q > qg. Further,

there exists a threshold q̂ ≥ max{qA, qB} such that the individual fairness gap increases for

all q > q̂, but may decrease otherwise.

(iii) Academic merit: Academic merit decreases for both groups g ∈ {A,B}, i.e.,

E[q | Y = 1, g, Pfull] > E[q | Y = 1, g, Psub].
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Proof of part (i). Diversity improves if and only if

τ(Psub) = 1− Fq̃|A,Psub
(q̃∗sub) > 1− Fq̃|A,Pfull

(q̃a) = τ(Pfull).

By the definition of diversity level and Lemma 1, this is equivalent to the following condition

1− Φ

 q̃∗sub − µ

σ

√ ∑
k∈sub σ

−2
Bk∑

k∈sub σ
−2
Bk+σ−2

 > 1− Φ

 q̃∗full − µ

σ

√ ∑
k∈full σ

−2
Bk∑

k∈full σ
−2
Bk+σ−2

 .

Replacing q̃∗full, q̃
∗
sub with their definitions as in (11), the above inequality becomes

Φ

Φ−1(1− C)

√√√√√√(1− π)

∑
k∈sub σ

−2
Ak

σ−2+
∑
k∈sub σ

−2
Ak∑

k∈sub σ
−2
Bk

σ−2+
∑
k∈sub σ

−2
Bk

+ π

 < Φ

Φ−1(1− C)

√√√√√√(1− π)

∑
k∈full σ

−2
Ak

σ−2+
∑
k∈full σ

−2
Ak∑

k∈full σ
−2
Bk

σ−2+
∑
k∈full σ

−2
Bk

+ π

 ,

which – due to the monotonicity of Φ – holds if and only if

∑
k∈sub σ

−2
Ak

σ−2+
∑
k∈sub σ

−2
Ak∑

k∈sub σ
−2
Bk

σ−2+
∑
k∈sub σ

−2
Bk

<

∑
k∈full σ

−2
Ak

σ−2+
∑
k∈full σ

−2
Ak∑

k∈full σ
−2
Bk

σ−2+
∑
k∈full σ

−2
Bk

.

Using the substitution
∑

k∈full σ
−2
gk =

∑
k∈sub σ

−2
gk + σgK , the last relation equivalently simplifies

to (3).

Proof of part (ii). We prove each claim at a separate step.

Step 1: We show that, for group B, P(Y = 1 | q,B, Pfull) < P(Y = 1 | q,B, Psub) if and only if

q < qB , µ+
σΦ−1(1− C)√∑

k∈full σ
−2
Bk −

√∑
k∈sub σ

−2
Bk

√σ−2 +
∑

k∈full
σ−2
Bk

√√√√√√(1− π)

∑
k∈full σ

−2
Ak

σ−2+
∑
k∈full σ

−2
Ak∑

k∈full σ
−2
Bk

σ−2+
∑
k∈full σ

−2
Bk

+ π

−
√
σ−2 +

∑
k∈sub

σ−2
Bk

√√√√√√(1− π)

∑
k∈sub σ

−2
Ak

σ−2+
∑
k∈sub σ

−2
Ak∑

k∈sub σ
−2
Bk

σ−2+
∑
k∈sub σ

−2
Bk

+ π

 ,
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Similarly, for group A, it holds that P(Y = 1 | q, A, Pfull) > P(Y = 1 | q, A, Psub) if and only if

q < qA , µ+
σΦ−1(1− C)√∑

k∈full σ
−2
Ak −

√∑
k∈sub σ

−2
Ak

√σ−2 +
∑

k∈full
σ−2
Ak

√√√√√√(1− π) + π

∑
k∈full σ

−2
Bk

σ−2+
∑
k∈S σ

−2
Ak∑

k∈full σ
−2
Ak

σ−2+
∑
k∈full σ

−2
Bk

−
√
σ−2 +

∑
k∈sub

σ−2
Ak

√√√√√√(1− π) + π

∑
k∈sub σ

−2
Bk

σ−2+
∑
k∈sub σ

−2
Bk∑

k∈sub σ
−2
Ak

σ−2+
∑
k∈sub σ

−2
Ak

 ,

Assume g = B; the proof for group A is analogous. Replacing q̃∗S from (11) in (13), we find that
for policy PS , the admissions probability (conditional on true skill q and group g) equals

P(Y = 1 | q,B, PS) = 1−Φ

(µ− q)
√∑
k∈S

σ−2
Bk + σΦ−1(1− C)

√
σ−2 +

∑
k∈S

σ−2
Bk

√√√√√√ (1− π)
∑
k∈S σ

−2
Ak

σ−2+
∑
k∈S σ

−2
Bk

+ π
∑
k∈S σ

−2
Bk

σ−2+
∑
k∈S σ

−2
Bk∑

k∈S σ
−2
Bk

σ−2+
∑
k∈S σ

−2
Bk

 .

Thus, the admission probability increases after dropping test scores, if and only if

(µ− q)

√ ∑
k∈full

σ−2
Bk −

√ ∑
k∈sub

σ−2
Bk

 + σΦ−1(1− C)

√
σ−2 +

∑
k∈full

σ−2
Bk

√√√√√√(1− π)

∑
k∈full σ

−2
Ak

σ−2+
∑
k∈full σ

−2
Ak∑

k∈full σ
−2
Bk

σ−2+
∑
k∈full σ

−2
Bk

+ π

− σΦ−1(1− C)

√
σ−2 +

∑
k∈sub

σ−2
Bk

√√√√√√(1− π)

∑
k∈sub σ

−2
Ak

σ−2+
∑
k∈sub σ

−2
Ak∑

k∈sub σ
−2
Bk

σ−2+
∑
k∈sub σ

−2
Bk

+ π > 0.

(17)

This is equivalent to q < qB, i.e.,

q < µ+
σΦ−1(1− C)√∑

k∈full σ
−2
Bk −

√∑
k∈sub σ

−2
Bk

√σ−2 +
∑

k∈full

σ−2Bk

√√√√√√(1− π)

∑
k∈full σ

−2
Ak

σ−2+
∑
k∈full σ

−2
Ak∑

k∈full σ
−2
Bk

σ−2+
∑
k∈full σ

−2
Bk

+ π

−
√
σ−2 +

∑
k∈sub

σ−2Bk

√√√√√√(1− π)

∑
k∈sub σ

−2
Ak

σ−2+
∑
k∈sub σ

−2
Ak∑

k∈sub σ
−2
Bk

σ−2+
∑
k∈sub σ

−2
Bk

+ π

 ,

Step 2: We show that there exists a threshold q̂ ≥ max{qA, qB} such that the individual fairness

gap increases for all q > q̂. Otherwise, it may decrease. Let

q , arg min
q∈R

(µ− q)
√∑
k∈S

σ−2gk + σΦ−1(1− C)

√
σ−2 +

∑
k∈S

σ−2gk

√√√√√√ (1− π)
∑
k∈S σ

−2
Ak

σ−2+
∑
k∈S σ

−2
Ak

+ π
∑
k∈S σ

−2
Bk

σ−2+
∑
k∈S σ

−2
Bk∑

k∈S σ
−2
gk

σ−2+
∑
k∈S σ

−2
gk

≤ 0,∀g, S

 .

Next, consider only q > max{q, qA, qB}. Since Φ is monotone and convex in (−∞, 0] and q > q̂,

and by Step 1 for any group g, it also holds that P(Y = 1 | q, g, Pfull) > P(Y = 1 | q, g, Psub) for
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all q > qg, a sufficient condition for I(q;Pfull) > I(q;Psub), to hold is

σ−2 +
∑

k∈sub σ
−2
Ak√∑

k∈sub σ
−2
Ak

(
q̃∗sub −

µσ−2 + q
∑

k∈sub σ
−2
Ak

σ−2 +
∑

k∈sub σ
−2
Ak

)
−
σ−2 +

∑
k∈full σ

−2
Ak√∑

k∈full σ
−2
Ak

(
q̃∗full −

µσ−2 + q
∑

k∈full σ
−2
Ak

σ−2 +
∑

k∈full σ
−2
Ak

)

<
σ−2 +

∑
k∈sub σ

−2
Bk√∑

k∈sub σ
−2
Bk

(
q̃∗sub −

µσ−2 + q
∑

k∈sub σ
−2
Bk

σ−2 +
∑

k∈sub σ
−2
Bk

)
−
σ−2 +

∑
k∈full σ

−2
Bk√∑

k∈full σ
−2
Bk

(
q̃∗full −

µσ−2 + q
∑

k∈full σ
−2
Bk

σ−2 +
∑

k∈full σ
−2
Bk

)
.

Let

q , arg min
q∈R

σ−2 +
∑
k∈sub σ

−2
Ak√∑

k∈sub σ
−2
Ak

(
q̃∗sub −

µσ−2 + q
∑
k∈sub σ

−2
Ak

σ−2 +
∑
k∈sub σ

−2
Ak

)
−
σ−2 +

∑
k∈full σ

−2
Ak√∑

k∈full σ
−2
Ak

(
q̃∗full −

µσ−2 + q
∑
k∈full σ

−2
Ak

σ−2 +
∑
k∈full σ

−2
Ak

)

<
σ−2 +

∑
k∈sub σ

−2
Bk√∑

k∈sub σ
−2
Bk

(
q̃∗sub −

µσ−2 + q
∑
k∈sub σ

−2
Bk

σ−2 +
∑
k∈sub σ

−2
Bk

)
−
σ−2 +

∑
k∈full σ

−2
Bk√∑

k∈full σ
−2
Bk

(
q̃∗full −

µσ−2 + q
∑
k∈full σ

−2
Bk

σ−2 +
∑
k∈full σ

−2
Bk

) .

Define q̂ , max{q, q, qA, qB}. Then, by the previous conditions, we have I(q;Pfull) > I(q;Psub)

for all q > q̂, thus the individual fairness gap decreases. Furthermore, q̂ ≥ max{qA, qB} as required.

Finally, if qA < qB, then for all qA < q < qB, P(Y = 1 | q, A, Pfull) > P(Y = 1 | A, g, Psub) but

P(Y = 1 | q,B, Pfull) < P(Y = 1 | B, g, Psub) (by Step 1). Thus, I(q;Pfull) > I(q;Psub).

Proof of part (iii). Since Var[q̃ | g, Psub] < Var[q̃ | g, Pfull] and, by Corollary C.10, q̃∗sub < q̃∗full,

the expected estimated skill of each admitted group decreases, that is

E[q̃ | q̃ ≥ q̃∗sub, g, Psub] < E[q̃ | q̃ ≥ q̃∗full, g, Pfull].

(16) further implies that E[q | Y = 1, g, Psub] < E[q | Y = 1, g, Pfull].

C.5 Admissions with barriers to testing

In a setting with barriers to testing and policy Pfull, let w̃∗full the decision threshold of the school

with policy Pfull. Then, observe that w̃∗full < q̃∗full, where

(1− π)γA(1− Fq̃|A,Pfull
(w̃∗full)) + πγB(1− Fq̃|B,Pfull

(w̃∗full)) = C. (18)

We now study the trade-off between barriers and informativeness. For brevity, we use πA = 1−π,

πB = π.

Theorem 3 (Theorem 1). Consider policies Pfull and Psub and assume unequal precisions under

Pfull.

(i) For each group g there exists a constant ∆g(ξg, ρ
g
sub) such that the academic merit of group g

increases if and only if

βg(γA, γB, ρ
g
full) ≤ ∆g(ξg, ρ

g
sub), (19)
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where

ρAS =
1

ρBS
,

∑
k∈S σ

−2
Bk

σ−2 +
∑

k∈S σ
−2
Bk

( ∑
k∈S σ

−2
Ak

σ−2 +
∑

k∈S σ
−2
Ak

)−1

,

ξg =

∑
k∈sub σ

−2
gk

σ−2 +
∑

k∈sub σ
−2
gk

( ∑
k∈full σ

−2
gk

σ−2 +
∑

k∈full σ
−2
gk

)−1

,

βg(γg, γg′ , ρ
g
S) , Φ−1

(
1− C

πgγg + πg′γg′

)√√√√ πg′γg′
πgγg

ρgS + 1

1 +
πg′γg′
πgγg

,

∆g(ξg, ρ
g
sub) = HR−1

(
ξgHR

(
Φ−1(1− C)

√
πg + πg′ρ

g
sub

))
.

As barriers to group g increase (γg decreases), then βg(γA, γB, ρ
g
sub) decreases. Thus, given

any group g and γg′ ∈ (0, 1], g′ 6= g, there exists threshold ¯̄γg ∈ (0, 1], such that academic

merit of group g improves by dropping feature K if and only if γg < ¯̄γg.

(ii) Diversity strictly improves after dropping test scores if and only if η(1, 1, ρBsub) > η(γA, γB, ρ
B
full),

where

η(γA, γB, ρ
B
S ) ,

(1− π)γB
C

1− Φ

Φ−1

(
1− C

(1− π)γA + πγB

)√
(1− π)γAρBS + πγB

(1− π)γA + πγB

 .

Given any γA ∈ (0, 1], there exists a threshold γ̄ ∈ (0, 1], such that diversity strictly improves

after dropping test scorers if and only if γB < γ̄.

Proof of part (i). We break the proof into the following parts.

Step 1: We show that the academic merit of group g increases if and only if (19) holds. We

adopt an argument similar to the proof of Proposition 3. We prove the statement for g = A. The

argument for group B is similar.

First, similarly to (11), we derive that

w̃∗full = µ+ Φ−1

(
1− C

(1− π)γA + πγB

)
σ

√√√√(1− π)γA

∑
k∈full σ

−2
Ak

σ−2+
∑
k∈full σ

−2
Ak

+ πγB

∑
k∈full σ

−2
Bk

σ−2+
∑
k∈full σ

−2
Bk

(1− π)γA + πγB
.

(20)

Second, requiring that E[q | Y = 1, A, Pfull] ≤ E[q | Y = 1, A, Psub] and adapting Lemma C.3
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to our setting with barriers gives us

√ ∑
k∈full σ

−2
Ak

σ−2 +
∑
k∈full σ

−2
Ak

HR


Φ−1

(
1− C

(1−π)γA+πγB

)√√√√ (1−π)γA
πγB

∑
k∈full σ

−2
Ak

σ−2+
∑
k∈full σ

−2
Ak

+
∑
k∈full σ

−2
Bk

σ−2+
∑
k∈full σ

−2
Bk

1+
(1−π)γA
πγB√ ∑

k∈full σ
−2
Ak

σ−2+
∑
k∈full σ

−2
Ak



≤

√ ∑
k∈sub σ

−2
Ak

σ−2 +
∑
k∈sub σ

−2
Ak

HR

Φ−1(1− C)

√
(1− π)

∑
k∈sub σ

−2
Ak

σ−2+
∑
k∈sub σ

−2
Ak

+ π
∑
k∈sub σ

−2
Bk

σ−2+
∑
k∈sub σ

−2
Bk√ ∑

k∈sub σ
−2
Ak

σ−2+
∑
k∈sub σ

−2
Ak

 .

Replacing with the definitions of ∆A, ρ
A
full, we finally obtain that

Φ−1

(
1− C

(1− π)γA + πγB

)√√√√ (1−π)γA
πγB

+ ρAfull

1 + (1−π)γA
πγB

≤ ∆A(ξA, ρ
A
sub).

Equivalently, using the definition of βg, we finally get that academic merit in group A improves

after dropping feature K if and only if βA(γA, γB, ρ
A
full) ≤ ∆A(ξA, ρ

A
sub).

Step 2: We show that, for each group g ∈ {A,B}, βg(γg, γg′ , ρgfull) is increasing in γg. Given some

group g, fix all parameters except γg. Then, the function Φ−1
(

1− C
(1−π)γA+πγB

)
is increasing in

γg since Φ−1 is increasing in its argument and 1 − C
(1−π)γA+πγB

is an increasing function of both

γA, γB.

Now consider the expression in the second term of β:√√√√ πg′γg′
πgγg

ρgS + 1

1 +
πg′γg′
πgγg

. (21)

We show that this function is increasing in γg, for both g = A and g = B. More specifically, for

group g = A, the derivative of (21) with respect to γA equals

∂

∂γA


√√√√ (1−π)γA

πγB
+ ρAfull

1 + (1−π)γA
πγB

 =
(1− π)πγB(1− ρAfull)
2((1− π)γA + πγB)2

(√
(1− π)γA + πγBρAfull

(1− π)γA + πγB

)−1

,

and is positive since ρAfull < 1. A similar argument applies for group g = B since ρBfull > 1.

Step 3: We show that for any given group g and γg′ ∈ (0, 1], g′ 6= q, there exists threshold ¯̄γg ∈ (0, 1]

such that academic merit of group g improves if and only if γg < ¯̄γg. Fix group A; the proof is

analogous for group B. It suffices to show that (a) ¯̄γA is the unique solution to βA(¯̄γA, γB, ρ
A
full) =

∆A(ξA, ρ
A
sub) and (b) ¯̄γA ∈ (0, 1].

Conditional on the existence of ¯̄γA, uniqueness in (a) follows immediately from the monotonicity

of βA shown in Step 2. Existence in turn can be shown as follows. In the absence of barriers part (iii)
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in Theorem 2 guarantees that the academic merit of group g decreases after dropping test scores,

thus βA(1, γB, ρ
A
full) > ∆A(ξA, ρ

A
full). Furthermore, observe that for γA = 0, academic merit

trivially improves from βA(0, γB, ρ
A
full) = 0 to a positive value ∆A(ξA, ρ

A
sub) > 0 after dropping

test scores. Thus, by the continuity of βA(γA, γB, ρ
A
full), such a ¯̄γA exists. For part (b), continuity

of βA further implies that there must exist an interval [0, ε), ε) > 0, such that βA(γA, γB, ρ
B
full) <

∆A(ξA, ρ
A
sub) for all γA ∈ [0, ε). Consequently, ¯̄γA ≥ ε > 0.

Proof of part (ii). Plugging (20) into the definition of diversity with and without test scores, respec-

tively, it immediately follows that diversity improves if and only if η(1, 1, ρBsub) > η(γA, γB, ρ
B
full).

Step 1: Fix all parameters (including γA ∈ (0, 1]) except for γB ∈ (0, 1]. We show that diversity

strictly increases as barriers decrease (γB increases), i.e., η(γA, γ
′
B, ρ

B
full) > η(γA, γB, ρ

B
full) for

γ′B > γB.

By (20), the admission threshold increases as γB increases. Indeed, q̃∗sub is the solution to

(1− π)γA(1− Fq̃|A,Psub
(q̃∗sub)) + πγB(1− Fq̃|B,Psub

(q̃∗sub)) = 1− C. Thus, as γB increases, the solu-

tion q̃∗sub must decrease since each Fq̃|g,Psub
is increasing in its argument.

Then, since the admission threshold q̃∗sub increases but the capacity C, barriers γA (thus the

mass of students in group A who are eligible to apply), and the perceived skill distributions for

both groups remain constant, it follows that a lower mass of students are admitted from group A.

As a result, the remaining capacity is filled with more students from group B, which in turn implies

that diversity increases.

Step 2: We show that, given all other parameters fixed including γA, there exists a threshold γ̄B(γA)

such that diversity increases after dropping the test if and only if γB < γ̄. It suffices to show that

(a) γ̄ is the unique solution to η(1, 1, ρBsub) = η(γA, γ̄, ρ
B
full) and (b) γ̄ ∈ (0, 1]. The proof follows

as in Step 3 in Part (i).

C.6 Affirmative action

We examine policies P τS with affirmative action, meaning that the school sets a target diversity level

τ(P τS ) = τ . Thus, the common threshold q̃∗S in (10) is replaced by two group-dependent thresholds,

q∗A,S and q∗B,S :

(1− π)γA(1− Fq̃|A,PS (q∗A,S)) = (1− τ)C, πγB(1− Fq̃|B,PS (q∗B,S)) = τC. (22)

Note further that the distribution Fq̃|g,PS ≡ Fq̃|g,P τS , g ∈ {A,B}, remains unchanged under both

admissions policies P τS and PS , as both share the same group-aware estimation policy and feature

set S.

Proposition 2 (Affirmative action with a fixed testing policy). Fix the target diversity level

τ(PS) < τ ≤ π and assume unequal precisions. Let also γB ≤ γA ≤ 1 such that γA ≥ 2(1−τ)C
1−π ,

γB ≥ 2τC
π . Then,
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(i) Individual fairness: In comparison to PS, the individual fairness gap improves, i.e., I(q;P τS ) <

I(q;PS) for all q. However, group A students still have higher probability of admission than

same-skilled group B students, i.e., I(q;PS) > 0, if and only if

q >

(∑
k∈S σ

−2
Ak+σ−2√∑

k∈S σ
−2
Ak

)
q̃∗A,S −

(∑
k∈S σ

−2
Bk+σ−2√∑

k∈S σ
−2
Bk

)
q̃∗B,S√∑

k∈S σ
−2
Ak −

√∑
k∈S σ

−2
Bk

+
µσ−2√∑

k∈S σ
−2
Ak

√∑
k∈S σ

−2
Bk

.

Finally, there exist parameters such that I(q;P τS ) < 0 < I(q;PS) for some q.

(ii) Academic merit: Policy P τS always achieves worse academic merit for admitted group B

students than for group A students. Furthermore, in comparison to PS, the academic merit

of admitted students decreases for group B, while it increases for group A.

Proof of Part (i). First, note that (22) gives us

q̃∗A,S = F−1
q̃|A,PS

(
1− 1− τ

(1− π)γA
C

)
, q̃∗B,S = F−1

q̃|B,PS

(
1− τ

πγB
C

)
. (23)

Since τ > τ(PS) and γB ≤ γA ≤ 1, it follows that q̃∗B,S < q̃∗S < q̃∗A,S . Due to our assumptions that

γA ≥ 2(1−τ)C
1−π and γB ≥ 2τC

π , we also get that µ < q̃∗B,S < q̃∗S < q̃∗A,S .

For the first statement of part (i), observe that, due to q̃∗A,S > q̃∗S and q̃∗B,S < q̃∗S for all τ(PS) <

τ ≤ π, P[q̃ ≥ q̃∗A,S | q, A, P τS ] < P[q̃ ≥ q̃∗S | q, A, PS ], and P[q̃ ≥ q̃∗B,S | q,B, P τS ] > P[q̃ ≥ q̃∗S | q,B, PS ],

since the distribution of q̃ | q, P remains the same under both P ∈ {PS , P τS}. Consequently,

I(q;P τS ) < I(q;PS).

For the proof of the second statement in Part (i), we apply the argument used in Proposition 1,

Part (ii). Thus, we get that I(q;P τS ) > 0 if and only if

q̃∗A,Sσ
−2 + q̃∗A,S

∑
k∈S σ

−2
Ak − µσ−2 − q

∑
k∈S σ

−2
Ak√∑

k∈S σ
−2
Ak

<
q̃∗B,Sσ

−2 + q̃∗B,S
∑
k∈S σ

−2
Bk − µσ−2 − q

∑
k∈S σ

−2
Bk√∑

k∈S σ
−2
Bk

,

which is equivalent to

q >

(∑
k∈S σ

−2
Ak+σ

−2√∑
k∈S σ

−2
Ak

)
q̃∗A,S −

(∑
k∈S σ

−2
Bk+σ

−2√∑
k∈S σ

−2
Bk

)
q̃∗B,S√∑

k∈S σ
−2
Ak −

√∑
k∈S σ

−2
Bk

+
µσ−2√∑

k∈S σ
−2
Ak

√∑
k∈S σ

−2
Bk

.

Finally, we prove the third statement in Part (ii). Consider an instance Ω where√∑
k∈S

σ−2
Bk

√∑
k∈S

σ−2
Ak > σ−2, (24)
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and under P τS , the condition in Part (ii) in Proposition 1, holds with equality for some q̂, i.e.,

(q̃∗A,S − q̂)
√∑
k∈S

σ−2
Bk

√∑
k∈S

σ−2
Ak = σ−2(q̃∗A,S − µ).

Therefore, P[q̃ > q̃∗A,S | q̂, A] = P[q̃ > q̃∗A,S | q̂, B]. Since q̃∗B,S < q̃∗A,S , it further holds that

P[q̃ > q̃∗B,S | q̂, B] > P[q̃ > q̃∗A,S | q̂, B]. Thus, I(q̂;P τS ) < 0.

However, for q = q̂, we also have that

(q̃∗S − q̂)
√∑
k∈S

σ−2
Bk

√∑
k∈S

σ−2
Ak < σ−2(q̃∗S − µ).

To see why, observe that given the condition in (24), the function

g(q̃) = (q̃ − q̂)
√∑
k∈S

σ−2
Bk

√∑
k∈S

σ−2
Ak − σ

−2(q̃ − µ)

is increasing in q̃ since
dg(q̃)

dq̃
=

√∑
k∈S

σ−2
Bk

√∑
k∈S

σ−2
Ak − σ

−2 > 0.

Consequently, for q̃∗S < q̃∗A,S , g(q̃∗S) < g(q̃∗A,S) = 0. Part (ii) in Proposition 1 further guarantees

that I(q̂;PS) > 0 for instance Ω. Finally, we have constructed a problem instance Ω such that

I(q̂;PS) > 0 > I(q̂;P τS ) for some q̂. Thus, such an instance exists.

Proof of Part (ii). We use an argument similar to part (iii) in Proposition 1 (note that this part

holds for any common threshold greater than µ and not only q̃∗S). Similarly to (16), we derive

that for both g ∈ {A,B}, E[q | q̃ ≥ q̃∗g,S , g, P τS ] = E[q̃ | q̃ ≥ q̃∗g,S , g, P τS ]. By the same part (iii) in

Proposition 1, replacing q̃∗S with threshold q̃∗A,S > µ implies that E[q̃ | q̃ ≥ q̃∗A,S , A, P
τ
S ] > E[q̃ | q̃ ≥

q̃∗A,S , B, P
τ
S ]. Next, we have that

E[q̃ | Y = 1, B, P τS ] =E[q̃ | q̃ ≥ q̃∗B,S , B, P τS ]

=
1

1− Fq̃|B,PS (q̃∗B,S)

∫ ∞
q̃∗B,S

q̃dFq̃|B,PS (q̃)

=
1

1− Fq̃|B,PS (q̃∗B,S)

(∫ q̃∗A,S

q̃∗B,S

q̃dFq̃|B,PS (q̃) +

∫ ∞
q̃∗A,S

q̃dFq̃|B,PS (q̃)

)

=
Fq̃|B,PS (q̃∗A,S)− Fq̃|B,PS (q̃∗B,S)

1− Fq̃|B,PS (q̃∗B,S)
E[q̃ | q̃∗A,S > q̃ ≥ q̃∗B,S , B, P τa,K ]

+
1− Fq̃|B,PS (q̃∗A,S)

1− Fq̃|B,PS (q̃∗B,S)
E[q̃ | q̃ ≥ q̃∗A,S , B, P τa,K ].

The fact that E[q̃ | q̃∗A,S > q̃ ≥ q̃∗B,S , B, P
τ
S ] < E[q̃ | q̃ ≥ q̃∗A,S , B, P

τ
S ], together with the
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inequalities above, finally imply that

E[q | Y = 1, B, P τS ] = E[q̃ | q̃ ≥ q̃∗B,S , B, P τS ] < E[q̃ | q̃ ≥ q̃∗A,S , A, P τS ] = E[q | Y = 1, A, P τS ].

Regarding the second statement of part (ii), recall that the distributions Fq̃|g,PS and Fq̃|g,P τS are

identical. Since q̃∗B,S < q̃∗S < q̃∗A,S , it follows that the conditional expectations satisfy

E[q | Y = 1, A, P τS ] = E[q̃ | q̃ ≥ q̃∗A,S , A, P τS ] > E[q̃ | q̃ ≥ q̃∗S , A, PS ] = E[q | Y = 1, A, PS ],

E[q | Y = 1, B, P τS ] = E[q̃ | q̃ ≥ q̃∗B,S , B, P τS ] < E[q̃ | q̃ ≥ q̃∗S , B, PS ] = E[q | Y = 1, B, PS ].

Thus, the academic merit of admitted students increases for group A while it decreases for group

B.

Tension between barriers and informativeness (with affirmative action). We study how

test-free and test-based policies with affirmative actions compare to each other in a setting with

barriers to testing.

Proposition 3 (Dropping tests under affirmative action with barriers). Fix group g ∈ {A,B}, vari-

ances σ2
gk, and target diversity level τ . Let τA , 1− τ and τB , τ . Dropping the test score require-

ment improves the academic merit of admitted students from group g, i.e., E[q | Y = 1, g, P τfull] <

E[q | Y = 1, g, P τsub], if and only if γg ≤ γ̂g, where

γ̂g =
τgC

1− Φ

HR−1


√√√√ ∑

k∈sub σ
−2
gk

σ−2+
∑
k∈sub σ

−2
gk√√√√ ∑

k∈full σ
−2
gk

σ−2+
∑
k∈full σ

−2
gk

HR(Φ−1(1− τgC
πg

))



. (5)

Fixing all other parameters, the threshold γ̂g increases as test variance σgK for group g increases.

Proof. Let w̃∗g,full be the group-dependent threshold in a policy with barriers and affirmative action.

Define

tg =
w̃∗g,full − µ

σ

√ ∑
k∈full σ

−2
gk

σ−2+
∑
k∈full σ

−2
gk

, t′g =
q̃∗g,sub − µ

σ

√ ∑
k∈sub σ

−2
gk

σ−2+
∑
k∈sub σ

−2
gk

.

For such a policy with admission thresholds w̃∗g,full, g ∈ {A,B}, Lemma C.3 implies that the

expected skill level of admitted students in group g equals

E[q | Y = 1, g, P τfull] = µ+ σ

√√√√ ∑
k∈full σ

−2
gk

σ−2 +
∑

k∈full σ
−2
gk

· φ(tg)

1− Φ(tg)
.

Similarly, for a policy using affirmative action but no tests, and admission thresholds q̃∗g,sub, we get
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that

E[q | Y = 1, g, P τsub] = µ+ σ

√√√√ ∑
k∈sub σ

−2
gk

σ−2 +
∑

k∈sub σ
−2
gk

·
φ(t′g)

1− Φ(t′g)
.

To compute the threshold γ̂g, we require that E[q | Y = 1, g, P τsub] = E[q | Y = 1, g, P τfull].

Based on the above equations, this condition is equivalent to

√√√√ ∑
k∈sub σ

−2
gk

σ−2 +
∑

k∈sub σ
−2
gk

HR

 q̃∗g,sub − µ

σ

√ ∑
k∈sub σ

−2
gk

σ−2+
∑
k∈sub σ

−2
gk

 =

√√√√ ∑
k∈full σ

−2
gk

σ−2 +
∑

k∈full σ
−2
gk

HR

 w̃∗g,full − µ

σ

√ ∑
k∈full σ

−2
gk

σ−2+
∑
k∈full σ

−2
gk

 .

Letting τB = τ , τA = 1− τ and using (23) to compute the thresholds w̃∗g,full, q̃
∗
g,sub, we get that√√√√ ∑

k∈sub σ
−2
gk

σ−2 +
∑

k∈sub σ
−2
gk

HR

(
Φ−1

(
1− τgC

πg

))
=

√√√√ ∑
k∈full σ

−2
gk

σ−2 +
∑

k∈full σ
−2
gk

HR

(
Φ−1

(
1− τgC

πgγ̂g

))

Thus, solving for γ̂g, we finally get (5). Note that the expected skill level of admitted students in

the test-based policy is given – due to Lemma C.3 – by

µ+ σ

√√√√ ∑
k∈full σ

−2
gk

σ−2 +
∑

k∈full σ
−2
gk

HR

(
Φ−1

(
1− τgC

πgγ̂g

))
.

By Lemma C.4, it follows that HR is increasing. However, Φ−1
(

1− τgC
πg γ̂g

)
is decreasing in γ̂g.

Therefore, the academic merit of g must be decreasing in γ̂g. Thus, dropping the test increases

academic merit for g if and only if γg ≤ γ̂g.

Finally, we prove the second claim. As σgK increases,

√ ∑
k∈full σ

−2
gk

σ−2+
∑
k∈full σ

−2
gk

decreases. Thus, the

quantity √ ∑
k∈sub σ

−2
gk

σ−2+
∑
k∈sub σ

−2
gk√ ∑

k∈full σ
−2
gk

σ−2+
∑
k∈full σ

−2
gk

HR

(
Φ−1

(
1− τgC

πg

))

increases. By Lemma C.4, the hazard rare (HR) is increasing so its inverse HR−1 is also increasing.

Since the CDF Φ is increasing, their composition Φ(HR−1(·)) must be also increasing, which in

turn implies that the denominator in (5) is decreasing in σgK . Consequently, γ̂g increases as σgK

increases.
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