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Abstract

We analyze the effects of centralized assignment mechanisms on downstream outcomes
in higher education. To do so, we study the relevance of incorporating dynamic incentives
and eliciting private information about students’ preferences to improve their welfare and
outcomes beyond their initial assignment, including their decisions to switch or drop out.
We show that the most common assignment mechanism, the Deferred Acceptance (DA) al-
gorithm, can result in significant inefficiencies as it fails to elicit cardinal information on stu-
dents’ preferences. We collect novel data about students’ preferences, their beliefs on admis-
sion chances, and their college outcomes for the Chilean college system. We analyze two main
behavioral channels that explain students’ dynamic decisions. First, by exploiting discontinu-
ities on admission cutoffs, we show that not being assigned to ones’ top-reported preference
has a positive causal effect on the probability of re-applying to the centralized system and
switching one’s major/college, suggesting that students switch to more preferred programs
due to initial mismatches. Second, we find that a significant fraction of students change their
preferences during their college progression, and that these changes are correlated with their
grades, suggesting that students may learn about their match-quality. Based on these facts,
we build and estimate a structural model of students’ college progression in the presence of
a centralized admission system, allowing students to learn about their match-quality over
time and re-apply to the system. We use the estimated model to disentangle how much of
students’ switching behavior is due to initial mismatches and learning, and we analyze the
impact of changing the assignment mechanism and the re-application rules on the efficiency
of the system. Our counterfactual results show that policies that provide score bonuses that
elicit information on students’ cardinal preferences and leverage dynamic incentives can sig-
nificantly decrease switchings, dropouts, and increase students’ overall welfare.
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1 INTRODUCTION

Higher education is a scarce resource that exhibits high returns and plays a crucial role
in countries’ development.1 However, many higher education systems experience low
retention and on-time graduation rates. According to the OECD (2019), only 40% of
full-time bachelor students graduate by the theoretical duration of their programs, and
a significant fraction of students drop out without graduating. This low yield can be
particularly severe for developing countries. For instance, the on-time graduation rate
in Chile is 16%—the lowest among all countries in the OECD—, 30% of students switch
their programs, and close 30% drop out from the college system.

According to Kapor et al. (2020a), at least 46 countries around the world use a central-
ized system to organize their admissions to college, including Turkey, Taiwan, Tunisia,
Hungary, and Chile.2 Although extensive literature analyzes the pros and cons of differ-
ent mechanisms to perform the allocation, their effect on downstream outcomes that are
policy-relevant (beyond the initial assignment) is unclear. For instance, in school choice,
policymakers often care about achieving social mobility, meritocracy, and equal access
of opportunities (Tanaka et al., 2020). In higher-education, colleges primarily focus on
the academic progression (e.g., grades and retention) and the labor market outcomes of
their students. As these examples illustrate, there are important downstream outcomes
that should be taken into account when allocating these resources, and centralized as-
signment mechanisms may help to improve them.

To understand the effects of centralized mechanisms on outcomes, it is essential to ac-
count for some features that characterize real-life applications and that are mostly over-
looked in the literature. One such feature is that matching markets are typically dynamic.
For instance, in school choice, many systems—including that in NYC (Abdulkadiroğlu
et al., 2005a), and (Narita, 2018), Boston (Abdulkadiroğlu et al., 2005b) and Chile (Correa
et al., 2019)—have multiple rounds, and after each round, students/families can either
accept their assignment or reject it and re-apply to the system in the next one. In college
admissions, students can learn over time about their match-quality with programs, re-
apply to the system each year, switch from their initial assignment if they are assigned
to a more preferred program, and they can also drop out at any point in their college
progression.

Another feature is that, to decide the assignment, centralized systems typically use in-
formation about agents’ observable characteristics and their ordinal preferences. For in-
stance, in college admissions systems students are typically measured according to their
academic performance using their high-school GPA or exams’ scores. This information
is then used to sort students according to programs’ preferences and then students’ can
report their preferences by submitting rank order lists. However, students may have
private information about their preferences that could affect their future outcomes and

1Among countries in the OECD, a graduate with a bachelor’s degree earns 44% more than those with
an upper secondary education.

2Centralized assignment systems are widely used in other settings, including school choice, higher
education, labor markets, the allocation of organs from deceased donors, kidney exchange, among many
others.
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the higher education system’s efficiency. For instance, students’ intrinsic motivation or
vocation, which would be captured by their cardinal preferences,3 could affect their per-
sistence in their programs, impacting the overall college retention rates and the system’s
efficiency. Therefore, designing admission systems that consider the dynamic nature of
incentives and elicit information about students’ cardinal preferences can be critical to
improve students’ outcomes and the efficiency of the higher education system.

In this paper, we study how centralized assignment mechanisms can impact students’
welfare and downstream outcomes, including their college grades (achievement), on-
time graduation rates, and retention. We accomplish this by incorporating dynamic in-
centives and eliciting information about students’ cardinal preferences. To motivate the
relevance of these features, we start with a stylized model that illustrates how the most
common assignment mechanism, the Deferred Acceptance (DA) algorithm, can lead to
inefficiencies in a dynamic context. In particular, we show that if students can re-apply
and switch to more preferred programs, a system that elicits cardinal preferences—e.g.,
imposing limits on the length of applicants’ lists or penalizing re-applicants—can im-
prove colleges’ yield and students’ welfare. The intuition is that, by including these
strategic considerations (either through changes in the mechanism or in the re-application
rules), students face trade-offs that incentivize them to choose programs for which the
intensity of their preferences is higher. However, these policy changes may increase in-
efficiencies in the allocation if other reasons explain students’ switchings. For instance,
if switchings are due to students’ learning about their match-quality, it may be welfare-
enhancing to encourage exploration and reduce switching costs to avoid ex-post mis-
matches. Hence, it is essential to understand the main drivers of switchings and dropouts
to design a mechanism that can improve students’ welfare and outcomes.

We conjecture the existence of two behavioral channels that can explain students’ dy-
namic decisions. The first channel, called the learning channel, states that students may
receive new information during their college experience and learn about their match-
quality with programs. This new information could modify their consumption values
while in college and their labor market returns upon graduation, motivating them to
switch or drop out to avoid ex-post mismatches. The second channel, called the initial
mismatch channel, states that students who have dynamic considerations and face uncer-
tainty in their admissions may switch in the future if they were not initially assigned to
their most desired option, as they may try to improve their preference of assignment by
participating again in the assignment process. Notice that students can benefit from en-
rolling in less preferred programs, even if they are likely to switch in the future, because
they can improve their outside option. However, if the system is in excess demand and
colleges care about retaining their students, this behavior generates a congestion exter-
nality. As a result, it might be ex-ante inefficient to assign some students to less preferred
programs if they face low retention probabilities.4

Our empirical application uses data from the centralized admissions system in Chile,
which uses a variant of the Deferred Acceptance (DA) algorithm (Ríos et al., 2020) to

3The literature also refers to this as the intensity of students’ preferences. In the rest of the paper, we
use these interchangeably.

4A similar congestion externality can occur when students entail in repeated test-taking behavior (see
Krishna et al. (2018)).
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assign more than 250,000 students each year. This setting is suitable for our study for
multiple reasons. First, students directly apply to programs, which are combinations
of major/campus/institution, and they must re-apply to the centralized system if they
want to switch (transfers between programs are relatively rare). As a result, students who
switch tend to spend more years in college, lowering on-time graduation rates. Second,
many over-demanded programs exhibit low retention rates. As previously discussed,
due to congestion externalities, this is costly for other students who were displaced and
assigned to less preferred options. Moreover, these switches are costly for universities,
as they lose seats that cannot be re-allocated efficiently, resulting in forgone tuition. Fi-
nally, the Chilean context is exciting because these inefficiencies may also have fairness
and equity effects. There are significant differences in students’ switching and dropout
behavior depending on their socioeconomic background and other observable charac-
teristics,5 and these differences may exacerbate other prevalent inequities in the system.
For these reasons, it is essential to understand the determinants of students’ switching
and dropout behavior to account for them in the assignment process and address the
inefficiencies mentioned above.

Combining administrative data and two nationwide surveys that we designed and con-
ducted, we show that the two behavioral channels play a significant role in the Chilean
system. More specifically, by exploiting the discontinuities generated by admission cut-
offs, we show that there is a positive causal effect of being assigned to lower reported
preferences on the probabilities of re-applying to the centralized system and switching
majors/colleges, supporting the existence of the mismatch channel. As previously shown
in Larroucau and Ríos (2018), we confirm that students do not report their preferences
truthfully, and we also show that students’ top-true preferences for programs—elicited
through our surveys—change over time. Finally, we show that switching probabilities
are negatively correlated with students’ grades in college, which suggests that students
learn about their match-quality through their grades.

To account for these findings, we introduce a structural model that captures the appli-
cation behavior of students, as well as their decisions to enroll, re-take the admission
tests, re-apply, switch, and drop out, allowing students to learn about their unobserved
abilities—match-quality—during their academic progression. In particular, we assume
that students make their application and enrollment decisions considering both the value
of studying each program, the continuation value of re-taking the admission tests and re-
applying to the system, and their labor market prospects. As they progress in college,
students observe noisy signals of their unobserved ability from their grades, and they
use this information to update their continuation values for each program. Based on this,
students decide whether to continue in their current program, re-apply to the system,
or drop out and choose their outside option. Finally, students face exogenous probabili-
ties of graduating, enter the labor force, and receive pecuniary and non-pecuniary values
from the labor market.

The main challenge to estimate our model is to separately identify the learning and the
mismatch channels. To identify the learning channel parameters, we use the correlation

5Low-income students are less likely to switch due to credit constraints. However, they are significantly
more likely to drop out.
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between students’ college grades and their decisions and outcomes, including their re-
applications and changes in the composition of their preference lists, switchings, and
dropout decisions. On the other hand, to identify the mismatch channel, we combine two
sources of variation: (1) students’ beliefs on their current and future admission probabil-
ities and (2) the persistence of students’ preferences and the relation between students’
preference of assignment and their outcomes, which we obtain from our two nationwide
surveys and rich administrative data. Our results suggest that initial mismatches explain
close to a third of switching decisions, while learning about abilities explain the remain-
ing switches and part of the dropout decisions.6

After estimating the structural model, we assess whether changes in the assignment
process—either through changes in the re-application rules or changes in the assign-
ment mechanism—can affect students’ outcomes. Both approaches can elicit students’
cardinal preferences, as they introduce opportunity costs that students must take into ac-
count when making their applications. We find that giving a score bonus for all first-year
applicants—as it is the case in Finland—or allowing students to signal one of their pref-
erences to get a bonus in that specific program—in the spirit of the signaling mechanism
in the Economics job market—can significantly affect students’ outcomes, namely, reduce
switching and dropout rates, while at the same time increase students’ welfare. For in-
stance, the Finish policy increases colleges’ retention and students’ welfare by 6.2% and
9.2%, respectively.7 We also find that these effects are robust to changes in the fraction of
participants that behave strategically, as opposed to other approaches such as constrain-
ing the length of application lists. Moreover, we observe considerable heterogeneity in
how these policies affect students depending on their income level and gender, with low
income and male students benefiting the most. Our results show that these policies must
be carefully designed, as they have a non-linear effect on students’ outcomes depending
on the magnitude of the bonuses or penalties applied, and because they can target and
benefit different groups of students depending on how they are implemented. Our coun-
terfactual experiments stress the importance of correctly balancing the effects of the two
behavioral channels: allowing students to learn through experimentation and reducing
the congestion externality caused by initial mismatches. Overall, our results show that
incorporating dynamic incentives and eliciting students’ cardinal preferences through
changes in the re-applications rules and the assignment mechanisms can significantly
affect students’ outcomes and their overall welfare.

These insights can be informative to improve the design of many matching markets that
exhibit similar features. For instance, in organ transplant systems, one of the primary
goals is to maximize patient survival (Agarwal et al., 2019). Patients have private in-
formation regarding their health, face dynamic considerations such as when to accept
and reject an organ, and even learn about organs’ qualities over time (Zhang, 2010). In
entry-level labor markets, employers may care about turnover, agents may have private
information about their preferences, learn about their match-qualities through experi-
ence, and face dynamic considerations such as deciding when to enter the labor market,
exit, re-enter, and re-match with employers. Our key insight is that market designers
should correctly balance the gains from learning through experimentation and the con-

6The residual is explained by students’ learning through their random preference shocks.
7In Section 8 we explain in detail how to compute this measure of welfare.
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gestion externality produced by initial mismatches to improve the efficiency and equity
of these markets.

The paper is organized as follows. In Section 2, we discuss the most closely related liter-
ature. In Section 3, we provide a stylized-example that illustrates how eliciting cardinal
preferences can affect students’ outcomes. In Section 4, we describe the Chilean college
admissions system and provide empirical evidence for the aforementioned behavioral
channels. In Section 5, we present our model. In Section 6, we describe our identification
strategy. In Section 7, we describe the estimation approach and its results. In Section 8,
we report our counterfactual results. Finally, in Section 9 we conclude.

2 LITERATURE

Our paper brings together two strands of the literature: (i) the empirical analysis on cen-
tralized assignment mechanisms, and (ii) the empirical analysis of college/major choices
under uncertainty.

The first strand of the literature focuses on (1) understanding the incentives that cen-
tralized assignment mechanisms introduce, (2) how to use the data generated from these
mechanisms to identify and estimate students’ preferences/beliefs, and (3) measuring the
welfare effects of changing assignment mechanisms in different settings. Depending on
the available data and the incentives students face, researchers have developed various
methodologies to identify and estimate students’ beliefs and preferences.8 For instance,
Fack et al. (2019) and Abdulkadiroğlu et al. (2017) analyze the case when the mechanism
used is strategy-proof, while He (2012), Agarwal and Somaini (2018), Calsamiglia et al.
(2020), Kapor et al. (2020b), among others, analyze the opposite case (for instance, when
the mechanism used is IA instead of DA). Other studies analyze the case when the rules
of the system introduce strategic considerations, including Ajayi and Sidibe (2017), Arte-
mov et al. (2017), Fack et al. (2019), Luflade (2017)). Furthermore, some studies allow
students to play weakly-dominant strategies (see Fack et al. (2019), He (2012) and Lar-
roucau and Ríos (2018)), and make strategic mistakes in their applications (see Kapor
et al. (2020b) and Artemov et al. (2017)).

After estimating the primitives that govern students’ application behavior (students’
preferences and beliefs), researchers typically analyze the ex-ante welfare effects of chang-
ing the assignment mechanism (Agarwal and Somaini (2018), Calsamiglia et al. (2020),
He (2012), Hwang (2016), Kapor et al. (2020b), among others), the application rules (Ajayi
and Sidibe (2017), Luflade (2017), Hernández-Chanto (2017), Larroucau and Ríos (2018),
Carvalho et al. (2019), among others), or students’ priorities (Fack et al. (2019), Larrou-
cau and Ríos (2018), among others). The current evidence of the effects of changing the
assignment mechanism and application rules on students’ welfare has mixed results.
Researchers have found that mechanisms that elicit the intensity of students’ prefer-
ences can achieve higher ex-ante welfare (Agarwal and Somaini (2018), Calsamiglia et al.
(2020), He (2012), Hwang (2016), among others), but this heavily depends on the as-

8See Agarwal and Somaini (2019) for a recent and more exhaustive survey.
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sumptions on students’ sophistication (see Kapor et al. (2020b)), which suggests that the
appropriate mechanism depends on the specific setting.

Despite the progress on understanding the role of assignment mechanisms and their im-
pact on students’ welfare, the aforementioned studies consider static settings or assume
that preferences do not vary over time. Taking a dynamic approach to analyze centralized
assignment mechanisms can give new insights to the classical trade-off between strategy-
proof mechanisms (such as DA) and mechanisms that elicit the intensity on students’
preferences (such as IA). For instance, when students have repeated interactions with the
assignment mechanism (i.e., through re-applications), ignoring the system’s dynamics
can lead to biased estimates of the welfare effects of changing the assignment mecha-
nism. The reason is that, in static settings, researchers estimate the indirect utilities that
students receive for being—initially—assigned to schools/colleges as primitives to the
model. In this sense, the indirect utilities are invariant to policy changes, such as changes
in the assignment mechanism or application rules. However, in a dynamic setting where
students can re-apply to the centralized system over time, the indirect utilities of being—
initially—assigned can change in the counterfactual because the continuation values are
affected by the future interactions with the assignment mechanism. Moreover, static ap-
proaches do not allow researchers to evaluate alternative policies that could enhance
welfare, such as modifying re-application rules, as is the case in Finland and Turkey. Fi-
nally, it is crucial to understand the implications of changing assignment mechanisms
on students’ outcomes beyond their initial assignment, such as students’ achievement,
persistence, and their labor-market outcomes.

To our knowledge, the only exception to this is Narita (2018), who analyzes theoretically
and empirically the welfare performance of dynamic centralized school-choice mecha-
nisms when demand evolves over time. The author uses data from the NYC school-
choice system and shows that families’ choices change after their initial match. He then
develops an empirical model of evolving demand for schools under learning, allowing
for endowment effects in response to prior assignments, and switching costs. He uses
some particular features of the school choice setting to separately identify these compo-
nents, and he estimates that the initial match’s welfare performance is heavily affected by
demand-side frictions, primarily by switching costs. Finally, the author investigates im-
provements to NYC’s discretionary re-application process by using dynamic centralized
mechanisms.

Although the dynamics and learning processes are related, our paper is substantially dif-
ferent, as there are essential differences between school-choice and college admissions
systems that affect both the research questions and the identification strategies. In our
setting, “switching" costs naturally arise since students bear an opportunity cost when
they switch programs and delay their graduation. These switching costs are not present
in school-choice systems and produce a negative externality that affects the system’s ef-
ficiency. Given these differences, we focus on changing the (dynamic) centralized as-
signment mechanism by eliciting preference intensity and modifying re-application rules
on students’ welfare and their college outcomes such as achievement, persistence, and
the system’s efficiency. To the extent of our knowledge, none of the previous studies
have evaluated the welfare consequences of changing the assignment mechanism and
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re-application rules on students’ outcomes when students can re-apply to the centralized
system, and their preferences and admission probabilities can change over time.

The second strand of the literature studies individual education and occupation choices,
stressing the role of the human capital specificity, uncertainty about preferences and abil-
ities, and how students’ choices impact their educational outcomes and labor market
returns. We refer the reader to the comprehensive reviews by Altonji et al. (2012) and
Altonji et al. (2016). Almost all papers in this literature focus on decentralized college
markets or ignore any rationing mechanism that could play a role in college admissions
(an exception is Bordon and Fu (2015)). We use insights from the seminal work by Ar-
cidiacono (2005) and the recent work by Arcidiacono et al. (2016) to model students’
learning process and their labor-market outcomes, and augment their methodology by
micro-founding the college/major choice process in the presence of a centralized admis-
sion system, taking into account students’ strategic behavior.

Within this strand of the literature, the closest paper to ours is Bordon and Fu (2015). It
analyzes the effects of changing the Chilean university system from students choosing
college and major at the same time (J system) to choosing college first and then major
(S system). The authors model students’ enrollment and dropout decisions and consider
potential peer effects. They estimate students’ preferences and compare the J and S
systems. The authors find that match-quality and students’ welfare would increase under
the S system compared to the J one.9 Our paper’s main difference is that we model
the entire application and switching behavior of students and use the information in
their reported Ranked Ordered List (ROL) over time, their grade records, and survey
responses to separately identify the persistence on students’ preferences from learning.
These differences allow us to rely less on the model’s particular structure to identify the
model primitives. However, we do not consider peer effects in the analysis, and we do
not have access to a panel of students’ future wages. Our counterfactual experiments also
differ in nature. Instead of changing the university system’s structure and affecting the
learning channel, we focus on changes to the assignment mechanism and re-application
rules—affecting the mismatching channel—and we evaluate these changes on different
outcomes such as achievement, switchings, and on-time graduations.

Our work is complementary to these two strands of the literature, as we provide new in-
sights on the effects of centralized assignment mechanisms from a dynamic perspective.
To the extent of our knowledge, ours is the first paper that structurally measures the ef-
fects of centralized assignment mechanisms and re-application rules on students’ college
outcomes beyond their initial assignment, including achievement, college retention, and
on-time graduation rates. Finally, we also contribute to the literature by revisiting the
trade-off between eliciting intensity on students’ preferences and guaranteeing strategy-
proofness, but we do so in a dynamic context.

9Malamud (2011) also analyzes the trade-offs students face when they have to specialize early in their
college education. The author argues that if the rate of field switching in systems with an early specializa-
tion is high, this can be seen as evidence that education provides valuable information on match-quality
and that match-quality has a large impact on education returns.
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3 MOTIVATING EXAMPLE

We first analyze whether it is—theoretically—possible to increase aggregate students’
welfare and increase the system’s yield by changing the assignment mechanism and re-
application rules. Furthermore, we provide intuition on how switching behavior can be
affected by the assignment mechanism in a dynamic setting.

If students face uncertainty over their admission chances, either because of uncertainty
about admission cutoffs or their future application scores, switchings can endogenously
occur over time. As students do not know their ex-post choice sets, they could choose to
enroll in a program in the first year and switch in the following year to a more preferred
program if their choice set allows them to. Moreover, if students are uncertain about their
match-quality with programs, and after enrollment, they learn about their preferences/a-
bilities, they could choose to switch programs or drop out to avoid ex-post mismatches.
Regardless of which mechanism dominates, individual switchings and dropouts impose
an externality on universities and on other students. Given the sequential nature of col-
leges’ academic progression, when a student switches at the end of the academic year,
the resulting vacancy is lost for the next year, and, in the absence of a proper transfer
system that allows students to switch at different stages of their college progression, this
vacancy can not be reallocated to another student.

To illustrate how switches may arise endogenously, even in the absence of learning, con-
sider a centralized college admissions problem with re-applications and two periods. Let
S = {A,B} and C = {I, II} be the sets of students and colleges, respectively. We as-
sume that students are expected utility maximizers, i.e., they submit a preference list that
maximizes their expected utility conditional on their preferences and beliefs on admis-
sion probabilities. Let Rt

i be the preference list submitted by student i at time t. After
students submit their applications, colleges post their first-year vacancies. Let qtj be the
first-year vacancies posted by college j at time t. To add uncertainty on students’ admis-
sion chances, we assume that the number of vacancies is uncertain, unknown ex-ante by
students, and distributed according to

P(qtj = 1) = P(qtj = 0) =
1

2
, ∀t, j ∈ {I, II}.

Students’ preferences are given over their expected assignment. We assume that stu-
dents’ utilities for being assigned to each college are given by10:

A : uAI � uAII > 0, B : uBII � uBI > 0

Each student i ∈ S has an application score sji for every college j ∈ C, which determines
their position in colleges’ preference lists. In particular, we assume that

I : sBI > sAI , II : sAII > sBII .

10We assume that both students considerably prefer more their top preference than their second prefer-
ence.
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Finally, we assume that colleges care about students’ persistence and bear a cost τ per
student that does not remain enrolled. This cost captures the idea that colleges make
investments in their students and that the vacancy (and the corresponding future tuition
payments) is lost when students switch.

To illustrate the impact of the assignment mechanism used, we compare the outcomes
of two alternative mechanisms: (i) Deferred Acceptance (DA), where students can apply
to as many programs as they want; and (ii) Constrained Deferred Acceptance (CDA),
where students can apply to at most one college. If DA is the mechanism in use, both
students apply according to their true preferences. If there is only one seat in the system,
as illustrated in Figure 3.1 where q1

I = 1 and q1
II = 0, we observe that both students

compete for that seat, and the student with the highest score is assigned, while the other
student remains unassigned. Given the setup of this example, the student that is assigned
gets her second choice, and thus will have incentives to re-apply in the second period and
try to switch to her top preference.11

Figure 3.1: Dynamic inefficiencies under DA

I

II

I � II < ∅

A

B

t = 1

II � I < ∅

I

II

t = 2

B

B

DA

A

R
A

:
I �

II

RB
: I
I �

I

DA

R
B : II

R
A : I � II

1st year

1st year

A

1st year

1st year
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A < B � ∅ A < B � ∅

On the other hand, Figure 3.2 describes the students’ progression when CDA is in place
in the same case as Figure 3.1 (i.e., when q1

I = 1 and q1
II = 0). Since students can submit

at most one preference, student A applies to I and B applies to II . Hence, student A is
assigned to I , and B results unassigned. Since the former student is assigned to her top
choice—in the absence of learning—only the latter will re-apply in the second period,
and thus there are no switchings in the system. Thus, using CDA reduces the probability
of switchings, improving the efficiency and yield of the system.

11In Appendix A, we show that a significant fraction of students who are assigned close to the admission
cutoffs, do not rank those programs as their top preference, similar to the current example.

9



Figure 3.2: Reducing dynamic inefficiencies under CDA
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In Appendix A we show that the aggregate ex-ante welfare is given by

WCDA ≈
(
uAI + uBII

)
(8 + 12β)

16
>

(
uAI + uBII

)
(4 + 9β)

16
− 1

2
τ ≈ WDA.

Moreover, as the game is symmetric, CDA leads to a Pareto-improvement in ex-ante ex-
pected utility, and switching behavior is eliminated, lowering the costs for universities
compared to the outcome of DA. Interestingly, the same outcome obtained by CDA can
be achieved by changing re-application rules without changing the assignment mecha-
nism itself. For instance, if we penalize enough re-applications from initially assigned
students (Turkish mechanism), students would also only apply to their top preference in
every period. In summary, this example shows how mechanisms and re-application rules
that elicit intensity on students’ preferences can affect students’ applications, their assign-
ments, and their switching decisions, increasing colleges’ yield and the overall welfare of
students.

Discussion: The stylized model above does not allow students to learn about their match-
quality with colleges, and their preferences are fixed over time. How much of students’
switching behavior is due to initial mismatches versus learning about their match-quality
over time is an empirical question and our main identification challenge. Notice that
the consequences of both channels can be quite different. In the first case, if students’
preferences are persistent over time, it may be desirable to restrict re-applications and
force students to internalize the negative externality they impose on other students and
colleges. On the other hand, if most of the switches are due to students’ learning about
their match-quality, it may be welfare-improving to facilitate switching behavior to avoid
ex-post mismatches. Hence, the welfare implications are unclear.
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4 COLLEGE ADMISSIONS IN CHILE

Tertiary education in Chile is offered by 156 institutions that can be classified into four
types: (i) Universities (60), which have the exclusive right to award academic degrees—
Bachelor, Master, and Doctorate—and offer academic programs that require a previous
degree, such as Medicine and Law; (ii) Professional Institutes (IP) (43), which offer profes-
sional/technical programs that lead to a professional/technician qualification; (iii) Tech-
nical Schooling Centers (CFT) (46), which exclusively offer vocational programs leading
to a technician qualification; and military and police academies (FFAA) (7).

The admissions process to these institutions is semi-centralized, with the most selective
universities having a centralized system and the remaining institutions carrying their
admission processes independently. This paper’s empirical application focuses on the
centralized part of the system, known as Sistema Único de Admisión (SUA). This part of the
system is organized by the Consejo de Rectores de las Universidades Chilenas (CRUCH), and
its admission process is operated by the Departamento de Evaluación, Medición y Registro
Educacional (DEMRE).

4.1 CENTRALIZED SYSTEM

To apply to any of the close to 1,500 academic programs held by the 41 universities that
are part of the centralized system, students must undergo a series of standardized tests
(Prueba de Selección Universitaria or PSU). These tests include Math, Language, and a
choice between Science or History, providing a score for each of them. The performance
of students during high-school gives two additional scores, one obtained from the av-
erage grade during high-school (Notas de Enseñanza Media or NEM) and a second that
depends on the relative position of the student among his/her cohort (Ranking de Notas
or Rank). A distinctive feature of the system is that the admission to programs is solely
based on these admission factors.12

After scores are published, students can submit a list with no more than ten academic
programs, ranked in strict order of preference. We refer to these lists as Rank Order Lists
(ROLs). Notice that students directly apply to an academic program, i.e., they must list
pairs of university-major in their ROL. In the remainder of the paper, we refer to these
pairs simply as programs. Besides, it is important to highlight that there is no monetary
cost for submitting an application.

On the other side of the market, each program announces its vacancies, the weights on
each admission factor to compute application scores, and the set of additional require-
ments they will consider for applications to be valid. For instance, universities may re-
quire a minimum application score or a minimum score in some of the PSU tests, among
other requirements. Each program’s preference list is defined by first filtering all appli-
cants that do not meet the specific requirements. Students are then ordered based on their

12Some programs such as music, arts, and acting, may require additional aptitude tests.
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application scores, which are computed as the weighted sum of the applicants’ scores and
the weights pre-defined by each program.

Considering the vacancies and the preference lists of the applicants and programs, DEMRE
runs an assignment algorithm to match students to programs. The mechanism used is a
variant of the student-proposing Deferred Acceptance algorithm, where all tied students
for the last seat of a program must be admitted. A thorough description of the assign-
ment mechanism can be found in Ríos et al. (2020), and in Appendix B.1, we provide an
overview of it. As a result of the assignment process, each program is associated with
a cutoff such that all students whose weighted score is above it are granted admission,
whereas all students with scores below the cutoff are wait-listed and thus may have to
enroll in a lower-ranked preference. This property is known as the cutoff structure.

The enrollment process starts right after the assignment results are published. This pro-
cess considers two rounds. In the first round, only assigned students can enroll in their
preference of assignment, while in the second, programs with seats left after the first
stage can call students in their wait-lists and offer them the chance to enroll. Also, at any
point, applicants can apply and potentially enroll in a program outside the centralized
admission system, and they also have the chance to join the labor force directly. More-
over, students can participate in the admission process as many times as they want, and
they can use the scores obtained in the previous year as part of their application.13

4.2 DATA

We combine administrative data of the Chilean college admissions process with massive
records on students’ college grades for every student enrolled in a program in the cen-
tralized system and a unique data set obtained from surveys about students’ preferences
and beliefs on admission probabilities. Our dataset spans from 2012 to 2016 and includes
information provided by DEMRE, the Ministry of Education (MINEDUC), two surveys
designed and conducted in collaboration with CRUCH and DEMRE, and grade records
facilitated by CRUCH.

ADMISSION PROCESS. We have information on the admission processes from 2012 to
2016, including students’ scores, admission weights and requirements for each program,
and the final assignment. In addition, we have data on students’ socioeconomic char-
acteristics, including self-reported family income, parents’ education, the municipality
where the student lives, among others.

ENROLLMENT. MINEDUC provided data on students’ enrollment decisions for the en-
tire universe of programs in the university system. This information is matched to schol-

13To compute the application score, each program uses the weighted average score considering the pool
of scores of the current year and the pool of scores of the previous year (if any). Then, the maximum
between these two application scores is considered as part of the application.
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arship records and all the information on applications, scores, and socioeconomic charac-
teristics provided by DEMRE. We also have data from MIFUTURO, including programs’
and universities’ characteristics inside and outside the centralized system, such as their
tuition, duration, major, and the program’s location.

LABOR MARKET. SIES and MIFUTURO provide aggregate information about the la-
bor market prospects of each program. More specifically, we have estimates for average
wages at the program level, for the fourth year after graduation, and the overall em-
ployment probability one year after graduation. Moreover, MIFUTURO and SIES also
provide information collapsed at the major level, including average from the first to the
fifth year after graduation; five points in the distribution of average wages at the first year
and fifth year after graduation (percentiles 10th, 25th, 50th, 75th, and 90th), employment
probabilities at the first and second year after graduation; and the evolution of average
wages from the first to the tenth year after graduation.

GRADES. Since 2013, CRUCH has been gathering grades’ records for all students who
enroll in a program that is part of the centralized system. This information has been used
by CRUCH to test the predictive validity of the admission factors. To our knowledge,
this is the first structural project that uses this data.

SURVEYS - 2019 AND 2020. In 2019 and 2020, we designed and conducted, in collabo-
ration with CRUCH and DEMRE, surveys to gather information on students’ preferences
for programs, and their beliefs on admission probabilities.14 These surveys were sent to
all students that participated in the PSU tests (more than 150,000 each year), and it was
sent at the end of the application process.15 We ask students about their top-true pref-
erence, their beliefs on admission probabilities on each program in their ROL, and also
regarding their top-true preference (if not in ROL), the probability of enrolling, and the
probability of remaining enrolled, conditional on the preference of assignment, among
other questions. The structure of the survey is a repeated cross-section. However, as
many students re-apply to the centralized system after a year, we have information about
students’ preferences and their beliefs for a small panel of re-applicants in the survey. To
our knowledge, this is the first time that data on beliefs about admission probabilities
and college persistence is collected for a centralized college admissions system.

4.3 EMPIRICAL FACTS

The motivating example in Section 3 suggests that there are two possible behavioral
channels to explain switching behavior: (i) mismatching, whereby students assigned to
less preferred programs re-apply to improve their allocation; and (ii) learning, whereby

14See the Electronic Companion for details on the survey.
15Students can update and submit their application as many times as they want during the application

time window.
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students learn about their abilities and preferences over time and potentially decide to
move to other programs. In this section, we provide empirical evidence supporting the
existence of these two channels. More specifically, in Section 4.3.1 we show that stu-
dents assigned to lower reported preferences are less likely to enroll in their assigned
program, and they have a higher probability of switching and delaying their graduation
than students assigned in higher reported preferences. This fact suggests that students
assigned to less preferred programs—mismatched students—are less likely to continue
and graduate from their assigned program. On the other hand, in Section 4.3.2, we show
that students change their top-true preference over time and re-apply and enroll in pro-
grams that are either less preferred or even not present in their initial ROL, suggesting
that students’ preferences change over time. We conclude this section reporting evidence
that this learning process can be through the grades students obtain in the first year of
college.

One of the main challenges to disentangle these two behavioral channels is that we do not
have cardinal information regarding students’ preferences, as we only observe their char-
acteristics and their submitted ROLs. Moreover, students’ reports may not be truthful,
as some students tend to skip programs for which their admission chances are relatively
low (Larroucau and Ríos, 2018). Despite this, we claim that reported ROLs still shed
some light on the intensity of students’ preferences. For instance, we know that listing
a program in a higher position of the ROL implies a higher preference intensity than
programs listed in lower preferences (Haeringer and Klijn (2009)). Moreover, not listing
a program for which the probability of admission is high enough implies that the ROL
programs are preferred (see Larroucau and Ríos (2018) for a detailed discussion). Finally,
apart from the information that we can extract from students’ ROLs, adding dynamics
can help identify preferences’ intensity. For example, students who decide to re-apply
must have higher intensity in their preferences than students who remain in their pro-
gram (conditional on observable characteristics and in the absence of learning). Similar
information can be inferred from switchings and dropout decisions.

4.3.1 MISMATCHING

Enrollment. Figure 4.1 shows the fraction of students that enrolls within and outside
the centralized system by preference of assignment.16 We see a steep decreasing pattern,
as students assigned to lower reported preferences are less likely to enroll compared to
students assigned in higher reported preferences. For instance, close to 90% of students
assigned to their top reported preference enroll within the centralized system, whereas
close than 50% do so among those assigned to their tenth reported preference.

16In Figure B.4 in Appendix B.4 we report the distribution of preference of assignment. We observe that
more than 50% of students are assigned to their top reported preference, and this fraction is decreasing in
the preference. Also, Figure B.5 shows the distribution of the number of different majors and universities
included in each student’s ROL. We observe that there is heterogeneity in the ROLs, as an important frac-
tion of students includes two or more different majors and universities. See Larroucau and Ríos (2018) for
more details on the application process.
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Figure 4.1: Enrollment probability by preference of assignment
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Note: Percentage of enrolled students in the centralized and decentralized systems, by preference of as-
signment in the centralized system.

Switchings, Re-Applications, and Dropout. In Table 4.1, we report the average switching
and dropout rates separating by income level—high or low—and gender. First, com-
paring switching and dropout rates by gender (within an income level), we observe that
women are more persistent in their academic progression, as their switching and dropout
rates are lower than those for men. On the other hand, comparing these rates by income
level (within gender), we observe that low-income students are significantly less likely
to switch programs during their academic progression. However, we also observe that
low-income students are significantly more likely to drop out. One potential explanation
is that low-income students have less flexibility to switch programs and delay their grad-
uation due to budget constraints, and at the same time, face a more challenging time in
college due to their disadvantageous background, which increases their chances of drop-
ping out. These results suggest that there are significant differences in switching and
dropout rates by gender and income.

Table 4.1: Switchings and Dropout by Gender and Income

Switches

Income Program University Major Math type Dropout

Men Low 0.135 0.0656 0.0289 0.0582 0.102
High 0.180 0.0756 0.0381 0.0721 0.0513

Women Low 0.0915 0.0513 0.0316 0.0363 0.105
High 0.150 0.0737 0.0499 0.0532 0.0403

To assess whether the preference of assignment impacts student outcomes, Figure 4.2
shows switching and dropout rates conditional on students’ preference of assignment in
their first year. We observe that students assigned to lower reported preferences switch

15



majors17 and universities in higher proportions compared to students assigned to their
top reported preference. Indeed, among students assigned to their top reported prefer-
ence, close to 15% switch programs during the time-span of the sample, compared to
almost 25% who are assigned to their fourth choice. The evidence regarding dropouts
and stop-outs is less conclusive than switchings. These results suggest a strong corre-

Figure 4.2: Switchings and dropout

0

5

10

15

20

25

1 2 3 4 Below 4
Preference of assignment

P
er

ce
nt

ag
e

Switching category

Dropout

Stopout

Major switching

University switching

Program switching
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lation between the preference of assignment and the probability of switching majors or
universities during students’ college path. One potential explanation is that there are
observable differences between students assigned to lower and higher preferences. For
instance, students with low scores are systematically assigned to lower preferences, gen-
erating a positive correlation between assignment preference and switching rates. Simi-
larly, programs listed in lower preferences are more likely to be of lower quality, which
may incentivize students to try to switch18 To make a causal claim, we use a regression
discontinuity design that exploits the algorithm’s cutoff structure to perform the alloca-
tion.

Causal effects. If we assume that students around the cutoff are similar and only differ in
their right to enroll in a higher preference, we can estimate the causal effect of interest.19

In Figure 4.3, we display binned means of different outcomes as a function of the distance
between the cutoffs and the students’ scores considering the applications of students to
their most preferred listed program.20 Figure 4.3a shows that students right below the
cutoff are close to 11% more likely to re-apply in the following year, which corresponds

17We refer to majors as the fields of education provided by the International Standard Classification
of Education (ISCED) (UNESCO (2012)) which is adapted to Chile. The modified version of the ISCED
fields used in Chile classifies programs into Farming, Art and Architecture, Science, Social Sciences, Law,
Humanities, Education, Technology, Health, Management and Commerce.

18In Appendix B.2, we estimate logit models of the probability of switching majors, universities, or
dropping out from the university system, on the preference of assignment, controlling by a rich set of
observable characteristics. We find that the previous correlation patterns remain.

19A detailed discussion of this analysis and its potential selection issues are provided in Appendix B.3.
20In Appendix B.3.1 we report the results of a similar analysis considering students’ top true preferences.

The results are relatively the same.
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to a relative change of close to 100%.21 Figure 4.3b shows that students below the cutoff
are close to 3.96% more likely to switch programs within the centralized system, which
corresponds to a relative change of more than 22%.22 These results confirm our previous
findings, i.e., that students assigned in lower preferences are more likely to re-apply and
switch programs in the following year.

Figure 4.3: Effect of Cutoff Crossing
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Perceived persistence and preference of assignment. The previous empirical facts show a
causal effect of the preference of assignment on students’ persistence with respect to their
initial assignments. To show that this is partially explained by the mismatch channel, we
use the survey on students’ preferences and beliefs of 2020. We show that a significant
fraction of students know—before enrolling in their assigned programs—that they will be
less likely to remain enrolled in the same program if they are assigned to lower reported
preferences.23

Figure 4.4 shows the average “perceived" probability of remaining enrolled in the same
program after one year, by the preference of enrollment. We observe that there is a signif-
icantly lower “perceived" probability of enrollment for lower-ranked preferences. On av-
erage, students believe that there is an 85% probability of remaining in the same program
after a year for their first reported preference, whereas it is close to 65% for programs
ranked below the fourth choice. Figure 4.4 also provides evidence of forward-looking
behavior (similar to the data patterns observed for students’ switching probabilities),24

21On average, the fraction of students that re-apply is 15.52% and 30.38% for students above and below
the cutoff, respectively.

22On average, the probability of switching is 14.87% and 18.16% for students above and below the cutoff,
respectively.

23The survey of 2020 included the following question, tailored to elicit students’ beliefs about their
persistence probabilities, conditional on their preference of enrollment:

The objective of the next question is to know about your preferences and expectations. We remind you that this
question is completely hypothetical and will not affect your application or your chances of admission.
With respect to “program i", and in the case that you enroll in this program in the process of 2020, what is the
probability that you will enroll in the same program the next year (2021 process)? On a scale from 0 to 100, where
0 is “entirely sure that I will NOT enroll in the same program", and 100 is “entirely sure that I WILL enroll in the
same program".

24Notice that stop-out and dropout probabilities do not exhibit a positive correlation with the preference
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which suggests that–on the aggregate–students’ subjective beliefs are close to rational
expectations beliefs.

Figure 4.4: Average “perceived" probability of remaining enrolled in the same program,
by preference of enrollment
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The previous evidence does not guarantee that there are match-effects between students
and programs that are correlated with college persistence. For instance, a similar pattern
could be observed if all students agree on their preference rankings over programs, and
most of the correlation between reported preferences and college persistence was due to
programs’ characteristics. To rule this out and give evidence of match-effects, we exploit
the panel structure of students ROLs, as we observe the perceived persistence probability
for every program listed in the ROL. We consider the following specification:

Pij = αi + αj +Xijβ + βRRi(j) + εij, (4.1)

where Pij is the perceived persistence probability of student i in program j, αi is students
i’s fixed effect, αj is program j’s fixed effect, Xij are student-program characteristics,
that include a third-degree polynomial of the application score of student i in program
j, Ri(j) is the position of program j in ROL Ri, and εij is an i.i.d shock. Table 4.2 shows
the estimation results. The preference of enrollment has a significant and strong effect on
the perceived probability of persistence. We conclude that there are match-effects in the
setting, which exhibit a strong correlation with students’ college persistence.

The results reported so far show that (1) there is a clear effect of the preference of as-
signment on the switching behavior of students, that (2) a significant fraction of students
forecast this, and that (3) these results cannot be explained by students or programs’
characteristics solely.

of assignment. Thus, they can not drive most of the correlations shown in Figure 4.4.
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Table 4.2: Two-way Fixed Effects Regression Results

Dependent variable: Prob. of Persistence

Preference 2 −9.891∗∗∗

Preference 3 −16.844∗∗∗

Preference 4 −21.355∗∗∗

Preference 5 −24.831∗∗∗

Preference 6 −27.148∗∗∗

Preference 7 −29.164∗∗∗

Preference 8 −30.329∗∗∗

Preference 9 −31.995∗∗∗

Preference 10 −34.757∗∗∗

Constant 89.181∗∗∗

Observations 159,894
R2 0.095
Adjusted R2 0.095

Note: Significance reported: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

4.3.2 LEARNING

Re-Application and switchings. Students’ preferences may change during their first year
in college, which could affect their re-applications. We analyze students’ re-applications
and initial applications and classify switchings in three categories: (i) moving Up, (ii)
moving Down, and (iii) moving Out. A student moves Up (Down) if she switches in 2015
to a program listed above (below) her initial enrollment in 2014 with respect to her appli-
cation list of 2014. A student moves Out if she switches in 2015 to a program not listed
in her application list of 2014. We focus on students not assigned to their top choice. We
find that among students who switch in first year, 15.8% move Down, 21% move Up, and
63% move Out. Moreover, in Appendix B.9 we show that half of students who move Out
do so to more selective programs, i.e., programs with higher admission cutoffs compared
to their initial enrollment. These results suggest that both channels explain students’
switchings significantly. Students who move Down or Out to less selective programs are
likely to have changed their preferences (learning channel), while students’ who move
Up or Out to more selective programs may be trying to find a better match (mismatch
channel).

Changes in Top True Preference. To show that students’ top true preferences may also
change over time, we construct an index of preference variation over time using the two
surveys conducted in 2019 and 2020. Given that a significant fraction of students re-apply
to the centralized system immediately after their first year of college, we create a panel
with close to 2,600 students that participated in both surveys. Students were asked about
their top-true preferences in one of two ways:

(a) If the Admissions Process did not depend on your PSU score, nor your NEM scores, nor
your Ranking scores. What would have been your top program choice?
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(b) If the Admissions Process did not depend on your PSU score, nor your NEM scores, nor
your Ranking scores, nor the tuition or enrollment costs. What would have been your top
program choice?

Notice that in version (b), we ask students to report their top-true preference for pro-
grams, but hypothetically assuming that they do not have to pay for college. The two
versions were randomized at the student level in each survey. Given this randomization,
we end up with close to 1,300 students who replied to the same version of both surveys.
Figure 4.5 shows the percentage of re-applicants that change their top-true program or
the university of their top-true program between 2019 and 2020.

Figure 4.5: Percentage of re-applicants that change their top-true preference
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We observe that close to 65% of students who re-applied immediately after their first year
of enrollment reports a different top-true preference. Moreover, close to 77% of these
changes involve a change in the university of their top-true preference, which suggests
that the learning mechanism is also present, and it explains students’ re-application and
switching behavior.

Finally, to disentangle whether the correlation patterns between switching probabilities—
realized and forecasted by students—and the preference of assignment are not driven by
an increasing prevalence of learning in lower reported preferences compared to the top
preference, we compute the percentage of re-applicants that change their top-true prefer-
ence, by the preference of assignment. Figure 4.6 shows the percentage of re-applicants
who change their top-true program or the university of their top-true program between
2019 and 2020. We do not find evidence that lower preferences of assignment are cor-
related with a higher incidence of learning. Indeed, when looking at students assigned
to their top-reported preferences in 2019 and that re-applied in 2020, we observe that
a higher share report having changed their top-true preference in the survey compared
to students assigned to a lower reported preference. This result is consistent with our
claim that the mismatch and the learning channels affect students’ college persistence, as
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students initially assigned to their top-reported preferences have a lower probability of
being mismatched, and thus their re-application suggests that they learned about their
preferences during their first year in college.

Figure 4.6: Percentage of re-applicants that change their top-true preference, by prefer-
ence of assignment in 2019
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Learning through Achievement. In Table 4.3 we report the results of logit regressions aim-
ing to measure the effect of grades on different outcomes, including the decision to re-
take the PSU tests, re-apply in the centralized system, and switch to a different program
(either within or outside the centralized system). In all these models, we control for de-
mographics (gender, income, school type), scores (NEM and average between Language
and Math), university and major fixed effects, and the preference of assignment in the
initial year. Columns (1), (3), and (5) include the entire sample, while columns (2), (4),
and (6) focus on students with a GPA greater than or equal to 4.0. Since 4.0 is the pass/-
fail threshold (the scale is from 1.0 to 7.0), by focusing on students with GPA above 4.0
we rule out the explanation that all students who switch were forced to leave their initial
programs.

We observe the coefficient of GPA is negative and significant for all specifications, mean-
ing that a higher GPA reduces the probability of re-taking the PSU tests, re-applying, and
finally changing programs. Besides, we observe that, even after controlling for grades,
the preference of assignment has a significant effect on these outcomes, and these results
are consistent with those described above.

The last column (7) in Table 4.3 reports the results of regressing the average GPA in the
first year of college on the same variables used for the logit models. We observe that all
coefficients are negative and most of them are significant, implying that being assigned
to a lower preference is slightly correlated with a lower average GPA.
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Table 4.3: Effect of Grades on Outcomes

Re-Take PSU Re-Apply SUA Change Program GPA

(1) (2) (3) (4) (5) (6) (7)

GPA −0.904∗∗∗ −0.437∗∗∗ −0.903∗∗∗ −0.437∗∗∗ −1.221∗∗∗ −0.357∗∗∗ -
(0.018) (0.042) (0.018) (0.042) (0.019) (0.039) -

Preference 2 0.653∗∗∗ 0.870∗∗∗ 0.651∗∗∗ 0.868∗∗∗ 0.163∗∗∗ 0.275∗∗∗ −0.057∗∗∗

(0.040) (0.048) (0.040) (0.048) (0.038) (0.046) (0.011)
Preference 3 0.922∗∗∗ 1.141∗∗∗ 0.923∗∗∗ 1.142∗∗∗ 0.352∗∗∗ 0.437∗∗∗ −0.061∗∗∗

(0.050) (0.060) (0.050) (0.060) (0.050) (0.060) (0.015)
Preference 4 1.201∗∗∗ 1.387∗∗∗ 1.202∗∗∗ 1.388∗∗∗ 0.562∗∗∗ 0.630∗∗∗ −0.070∗∗∗

(0.070) (0.083) (0.070) (0.083) (0.071) (0.083) (0.022)
Preference 5 1.116∗∗∗ 1.366∗∗∗ 1.116∗∗∗ 1.366∗∗∗ 0.523∗∗∗ 0.621∗∗∗ −0.013

(0.103) (0.117) (0.103) (0.117) (0.102) (0.117) (0.032)
Preference Below 5 1.098∗∗∗ 1.334∗∗∗ 1.099∗∗∗ 1.334∗∗∗ 0.454∗∗∗ 0.633∗∗∗ −0.113∗∗∗

(0.112) (0.132) (0.112) (0.132) (0.115) (0.134) (0.035)

GPA ≥ 4.0 No Yes No Yes No Yes No

Observations 39,275 31,976 39,275 31,976 39,275 31,976 39,275
Note: We use data on grades from the cohort that graduated from high-school in 2014 and enrolled in 2015
the program they were assigned in the centralized system. GPA is measured on a scale of 1 to 7, and failing
grades are below 4.0. Significance reported: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5 MODEL

This section describes our model of students’ applications, enrollment, and dropout de-
cisions, including learning about their match-quality with programs over time. The goal
is to have a model that encompasses the empirical evidence described in the previous
sections, allowing us to measure how much of students’ switching behavior is explained
by learning over time vs. initial mismatches, and assess whether students’ outcomes can
be affected by changing the mechanism and re-application rules.

Throughout the model, we assume that abilities are multidimensional and partially known
by students. In particular, students receive signals of their unknown abilities through
their college GPA and—based on this information—they update their beliefs. Given their
updated beliefs, students choose to (i) continue in their enrolled programs, (ii) re-apply
to the centralized system expecting to switch programs, or (iii) dropout from the central-
ized system. Finally, we model labor market returns as a function of the major, students’
abilities and observable characteristics, and their path through college.

5.1 MODEL OVERVIEW

For estimation purposes, we consider a three-period model. Periods 1 and 2 correspond
to the first and second years of college after graduating from high-school. Period 3 starts
at the beginning of the third year of college and collapses the later years until graduation,
with the discounted payoffs received in the labor market. Every period has several stages
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that we explain in detail below.

Period 1. In period 1, students who have just graduated from high-school make their
application decisions, receive their enrollment, choose to whether re-take the PSU again
or not, obtain their college grades at the end of the first year, and update their beliefs
about their unknown ability.

(i) Applications: given students’ preferences, beliefs over their admission and enroll-
ment probabilities, prior beliefs about their unknown abilities, and the labor market
return of studying each option, students make application decisions to the central-
ized system. After knowing their preference shocks’ realizations, students choose a
ROL that maximizes their expected utility.

(ii) Assignment: once applications are made, a matching algorithm computes students’
assignment to each program. In particular, this process is approximated by draw-
ing a set of admission cutoffs from the joint distribution of cutoffs and assigning
students according to the matching algorithm’s cutoff structure.

(iii) Enrollment: once the assignment is realized, students face exogenous probabilities
of enrollment in their assigned program or choosing the outside option.

(iv) PSU preparation: at the beginning of students’ first year of college, or in the outside
option, students choose whether to prepare and re-take the PSU tests. This decision
affects their flow utility while in college and can improve the set of potential pro-
grams they can enroll in the second period if they choose to re-apply to the system.

(v) Grades: at the end of the year, students receive their college grades—which are noisy
signals of their unknown abilities—and update their beliefs.

Period 2. In period 2, students decide whether to re-apply to the centralized system,
and depending on their assignment and enrollment status, choose between remaining in
their current enrollment, switching to their new assigned program, or dropping out from
college.

(i) Re-applications: at the beginning of period 2, students observe the realization of
new preference shocks and PSU scores and, given their updated beliefs on their
unknown abilities, decide whether to re-apply25 to the centralized system.

(ii) Assignment: once applications are made, a matching algorithm computes students’
assignment to each program. In particular, this process is approximated by draw-
ing a set of admission cutoffs from the joint distribution of cutoffs and assigning
students according to the matching algorithm’s cutoff structure.

25Students can also apply for the first time in period 2.
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(iii) Enrollment: once the assignment is realized, students face exogenous probabilities
of enrollment in their assigned program. If students do not enroll in their assigned
program, they can choose between staying in their current enrollment or dropping
out of college.

(v) Grades: at the end of the year, students receive their college grades and update their
beliefs regarding their unkonwn abilities.

Period 3. Students face exogenous graduation probabilities and enter the labor market.

(i) Expected graduation: students face an exogenous graduation probability for every
year they are enrolled after completed the formal duration of their programs.

(ii) Labor market: students who graduate receive the lifetime earnings and non-pecuniary
payoffs given their college decisions. Students who do not graduate receive the
value function of students who dropped out.

5.2 LABOR MARKET

For the labor market stage of the model we follow Arcidiacono (2004) and Arcidiacono
(2005). The labor market is an absorbing state, and utility while in the workforce is given
by the present value of lifetime earnings and non-pecuniary utility. We further assume
that utility is separable over time. In particular, we assume the following specification

V w
ijt = αw1 αimj

+ αw2 Aij + αw3 Ākj + αw4 A
u
ij︸ ︷︷ ︸

non-pecuniary

+αw5 log

(
Ew

[
T−t∑
τ=0

βτPw
mjτ

wijτ

])
︸ ︷︷ ︸

pecuniary

, (5.1)

where the first four terms capture the non-pecuniary payoff that individuals perceive
from working in a job associated with program j. We allow these payoffs to vary with
the student’s observed ability in program j, Aij , the average observed ability of students
in college kj , Ākj , and the student’s unknown ability Auij . We also include student i’s
random coefficient for major mj , αimj

.26 By incorporating random coefficients we intro-
duce persistence over time on students’ unobserved preferences, which can affect both
their flow utility and their utility in the work force.27 The fifth term captures the pecu-
niary payoff that students receive in the work force, with wijτ representing the earnings
for student i with tenure τ , graduating from program j. In addtion, T is the retirement

26We refer to majors as the fields of education provided by the International Standard Classification
of Education (ISCED) (UNESCO (2012)) that is adapted to Chile. The modified version of the ISCED
fields used in Chile classifies programs into: Farming, Art and Architecture, Science, Social Sciences, Law,
Humanities, Education, Technology, Health, and Management and Commerce. We further group these
categories into four broad majors: Science (Science, Farming, and Technology), Social Sciences (Social
Sciences, Art and Architecture, and Law), Education and Humanities (Education and Humanities), and
Health (Health).

27In Section 5.3.1 we describe how we model the random coefficients.
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date (which varies by gender), t corresponds to the year—period—in which the student
graduates from college and enters the work force, β is a common discount factor, and
Pw
mjτ

is the employment probability in major mj for an individual with tenure τ . Notice
that student i receives this continuation value only if she graduates from her program. If,
instead, student i drops out in period t, we assume that she receives a continuation value
given by Vi0t that depends only on her observable characteristics Xi.28 This is formalized
in Assumption 1.

Assumption 1. If student i graduates from program j in period t, she obtains a continu-
ation value equal to V w

ijt. In contrast, student i receives a continuation value equal to Vi0t
if she drops out from her program in period t.

We specify the wage that students receive conditional on graduation as a function of their
tenure, their major mj , their observable characteristics Zw

i , their average grades in college
Ḡij , and the average ability of their classmates Ākj .

29 More specifically, we assume that
the log earnings for student i with tenure τ , graduating from program j in period t, can
be written as

log(wijτ ) = λ1mj
+ λ2Ākj + λ3Ḡij + λ4Z

w
i + Λmjτ + εijτ , (5.2)

where Λmjτ is a function that specifies how wages in major mj depend on tenure τ . In
particular we consider a parsimonious specification:

Λmjτ = λ5mj
τ + λ6mj

τ 2. (5.3)

5.3 ACADEMIC PROGRESSION

During their academic progression, students receive their flow utility from attending col-
lege and observe their grades, which provide them a signal of their unknown abilities. As
we discussed in the previous section, students take into account their ability when com-
puting their labor market returns, and thus the information obtained from their grades
is highly valuable. Students may use this information to decide whether to re-apply in
the next period, continue enrolled in the same program, or drop out of college. In this
section, we model the flow utility obtained in each period in college, the learning process,
and the graduation process. We defer the model of re-applications to Section 5.4.

28In Section 5.3.3 we describe the dropout and graduation process. In addition, we estimate Vi0t as

Vi0t = V0 (Xi0, t) ,

where Xi0 is a vector of observable characteristics of student i at the beginning of the horizon. The vector
Xi0 includes student’s gender.

29More details about the ability are reported in Section 5.3.2.
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5.3.1 FLOW UTILITY

Let uijt be the flow utility that student i receives for attending program j at time t,30

uijt = αimj
+ αikj + Zu

ijα− Cijt + εijt, (5.4)

where αimj
and αikj are student i’s random coefficients for major and university type, re-

spectively;31 Zu
ijα captures the effect of student and program characteristics that are time

invariant,

Zu
ijα = α1Aij + α2Āj + α3Dij + α4

(Aij − Āj)
σ̄j

(5.5)

where Dij is the distance between student i’s and program j’s municipalities; Aij is stu-
dent i’s observed ability in program j, Āj is the average observed ability for students
assigned in program j in the previous calendar year (program’s selectivity), and σ̄j is its
standard deviation.32 Finally, Cijt captures the monetary cost for student i to enroll in
program j at time t and it is given by

Cijt = αc0cjt + αc1cjt1(low income) + αc2cjt1(s̄i≥500), (5.6)

where cjt is program j’s yearly tuition. We allow for different price sensitivities depend-
ing on the level of income and students’ scores. In this way, we capture potential credit
constraints that may affect low-income families, as well as potential scholarships or fi-
nancial aids that high-achieving students may have access to and that are not included
in the data.

We follow Larroucau and Ríos (2018) and model the random coefficients as a multivariate
regression on a set of students’ observable characteristics. In particular,

αim = ∆mZm
i + χmi , αik = ∆kZk

i + χki , (5.7)

where ∆m and ∆k are matrices of coefficients to be estimated, χmi ∼ N(0, V m
α ) and χmi ∼

N(0, V m
α ) are vectors of idiosyncratic shocks with mean zero and variance-covariance ma-

trices V m
α = σ2m

α I and V k
α = σ2k

α I, respectively; and Zm
i and Zk

i are matrices of observable
characteristics, where the former includes a constant and students’ gender, while the lat-
ter includes a constant and students’ family-income type.33 Finally, εijt is an idiosyncratic
preference shock that is distributed i.i.d type I extreme value with a scale parameter of
one. We specify a location normalization, and we set the systematic value of the outside
option (not enrolling in a program within the centralized system) to be ūi0t = 0.

30See Larroucau and Ríos (2018) for a similar specification.
31We classify universities in three categories: CRUCH-Public, CRUCH-Private and Non-CRUCH.
32The coefficient α1 captures the possibility that students with high scores (observed abilities) could

perceive a higher flow utility of enrolling in the centralized system in particular programs, compared to
students with low scores (observed abilities). The coefficient α2 captures how much students care about
the level of selectivity of their enrolled program (which can be seen as a proxy for programs’ qualities). The
coefficient α4 captures how much students like a program depending on their ability relative to students
assigned in the previous year.

33We classify students’ as low-income if their self-reported family income is below the median of the
family income distribution, and as high-income otherwise.
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5.3.2 LEARNING

As described in Equation 5.2, students’ (pecuniary) labor market returns depend on their
grades, which in turn depend on their abilities. We assume that these abilities have two
components, one that is directly observable and known by students (and the econometri-
cian), and another that is unknown and learned from the grades obtained during college.
More specifically, we assume that students have beliefs on their abilities, and they update
them as they observe their grades according to Bayes rule. To formalize these ideas, we
start modeling students’ abilities. Then, we model the grade equation, and we finish this
section by modeling beliefs and the updating process.

Ability. Each student i has an observed subject-specific ability vector Ai = (Aism , Aisv);
an unobserved (to the student and to the econometrician) subject-specific ability vector
Aui = (Auism , A

u
isv); and a major-specific ability Auimj

for each major mj . Each component
of these ability vectors captures the student’s known and unknown abilities in math and
verbal, indexed by sm and sv, respectively. We assume that student i’s (un)observed
ability in program j is given by the weighted sum of her (un)observed abilities, i.e.,

Aij =
∑

k∈{sm,sv}

ωjkAik, and Auij = Auimj
+

∑
k∈{sm,sv}

ωjkA
u
ik, (5.8)

where ωjk is the admission weight of factor k in program j. Even though the subject-
specific components do not vary across programs, there is still variation on students
weighted abilities—even within a specific major—due to the heterogeneity on programs’
specific weights, ω.

Grades. As described above, we assume that students observe their grades at the end
of each of the first two periods and, based on these signals, they update their beliefs on
their unknown abilities.

We assume that grades depend on the major (mj) of the program where the student is
enrolled, on the known (Aij) and unknown abilities (Auij), and on a set of observable
characteristics (Zg

i ).34 Also, to capture that students’ initial preferences may affect their
performance, we include student i’s random coefficients for major, αimj

, and university
type, αikj .

Following Arcidiacono (2004), we assume that the grade equation for the first period is
given by

Gij1 = γ1mj
+ γ2Aij + γ3Z

g
i + γ4αimj

+ γ5αikj + Auij + εgij1, (5.9)

where εgij1 is a white noise distributed N(0, σ2
g). In addition, for the second-year grade

equation we allow a different intercept and slope for those students who are in their
second academic year,35 but the relative importance of each component remains the same,

34The estimation results described in Section 7 only include gender.
35Students who either switch programs after first year, or who enrolled for the first time in the second

year, are in their first academic year in the second period.
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that is,

Gij2 = (1 + Y2γ6) γ1mj
+ (1 + Y2γ7)

(
γ2Aij + γ3Z

g
i + γ4αimj

+ γ5αikj + Auij
)

+ εgij2, (5.10)

where Y2 indicates whether the student is in her second academic year in program j, and
εgij2 is a white noise normally distributed with mean zero and variance σ2

g .

Beliefs and Updating. We assume that students are rational and update their beliefs using
the signals about their unknown abilities that come with their grades according to Bayes
rule. In particular, we assume that students’ initial prior about their unobserved major-
specific ability is normally distributed with mean zero and variance σ2

m for all students
and majors. Similarly, we assume that students’ prior about their unobserved subject-
specific abilities is also normally distributed with mean zero and variance σ2

s for all stu-
dents and subjects. We formalize this in Assumption 2.

Assumption 2. Students initial priors on their unobserved major and subject-specific
abilities are normally distributed with means zero and variances σ2

m and σ2
s , respectively.

These priors are common to all students.

A direct consequence of this assumption is that the posterior distribution of the overall
unknown ability in Equation 5.8 will also follow a normal distribution. Let µt(Auij) and
σt(A

u
ij) be the prior mean and standard deviation of Auij at the beginning of period t.

When clear from the context, we will remove the argument and simply write them as µijt
and σijt, respectively. Hence, Assumption 2 implies that

µij1 = 0, and σ2
ij1 = σ2

m +
∑

k∈{sm,sv}

ω2
jkσ

2
s .

In Proposition 1, we show how to compute the posterior mean and variance of the overall
unobserved ability after observing a signal aijt. We defer the proof to Appendix C.1.

Proposition 1. Suppose that student i is enrolled in program j in period t, and that she
observes a signal aijt. Then, she will update her mean unobserved ability in each program
j′ according to:

µij′t+1 = Et
(
Auij′
∣∣aijt) =


(
σ2
ijt + σ2

g

)−1 ·
[∑

l∈{sm,sv} ωj′lωjlσ
2
saijt

]
if mj′ 6= mj(

σ2
ijt + σ2

g

)−1 ·
[∑

l∈{sm,sv} ωj′lωjlσ
2
saijt + σ2

maijt

]
if mj′ = mj

σ2
ij′t+1 = Vt

[
Auij | aijt

]
=
(
(σ2

ijt)
−1 + (σ2

g)
−1
)−1

(5.11)

Intuitively, students will learn more about similar programs to the ones they are currently
enrolled in, especially for programs that belong to the same major and that place similar
weights in the admissions’ scores. It is crucial to notice that, according to our model, only
those students who are enrolled in a program observe a signal of their abilities. Hence,
we assume that students who are not enrolled do not update their prior.36

36We make this assumption because we do not have data on students’ grades outside the centralized
system.
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5.3.3 DROPOUT AND GRADUATION

We assume that the academic progression concludes with students either (i) graduat-
ing from their program (after period 2) or (ii) dropping out. We assume that these out-
comes are exogenously given so that the probabilities of graduating and dropping out
depend only on the students’ observable characteristics and on their first and second-
year choices. This is formalized in Assumption 3.

Assumption 3. Students have rational expectations over their graduation and dropout
probabilities. Moreover, we assume that this decision follows a multinomial logit model,
i.e.,

P g
ijτ =

exp (Xijτψ
g)

1 +
∑

a∈{g,d} exp (Xijτψa)
, and P d

ijτ =
exp

(
Xijτψ

d
)

1 +
∑

a∈{g,d} exp (Xijτψa)
(5.12)

where P g
ijτ and P d

ijτ represent the probabilities that student i decides to graduate and
dropout from program j after τ periods enrolled in the program, respectively; Xijτ is a
vector of observable characteristics,37 and ψg, ψd are vectors of parameters that need to
be estimated.

5.4 ADMISSION PROCESS

Every time a student decides to (re-)apply, we assume that they go through the following
steps: (i) PSU tests, (ii) application, and (iii) enrollment.

5.4.1 PSU TESTS

As described in Section 4.1, the assignment is based on a series of admission factors,
which include the PSU tests and two additional scores related to the students’ perfor-
mance during high-school. Let L = {1, . . . , L} the set of admission factors, and let
~sit = {sitl}l∈L be the vector of scores of student i in period t. In addition, let ωjtl be
the weight that program j assigns to factor l ∈ L in period t. Then, the application score
of student i in program j and period t is given by

sijt =
∑
l∈L

ωjtl · sitl.

Since students can re-take the PSU tests and re-apply, we need to model (i) the evolution
of their scores and (ii) the evolution of their beliefs on the admission weights that pro-
grams will use in the future. To model the former, we assume that the scores of student
i in period t + 1, ~sit+1, are exogenously given conditional on the scores of the student in

37The vector includes a constant, student’s gender, a dummy variable that identifies if the student’s
family income is below the median of the income distribution, and student’s High-school GPA.
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period t, ~sit, and the observable characteristics, Xi. To address the latter, we assume that
students correctly forecast future weights. This assumption is likely to hold in practice as
admission weights are relatively stable over time. These considerations are formalized in
Assumption 4.

Assumption 4. Conditional of re-taking the exam, the scores of student i in period t + 1
are exogenously given and distributed according to

~sit+1 ∼ F~sit,Xi
(s), ∀i (5.13)

where F~sit,Xi
(s) is the distribution of scores conditional on the initial vector of scores ~sit

and the observable characteristics Xi. In addition, we assume that students correctly
forecast the admission weights {ωjtl}l∈L used by each program j in each period t.

As a simplifying assumption, we further assume that the evolution of scores in each
admission factor is proportional to the student’s current scores, as described in Assump-
tion 5.38

Assumption 5. The scores of student i evolve according to the following process:

~sit+1|~sit, Xi ∼ max{sit, s̃it+1} (5.14)

with

s̃ilt+1 =

{
αl(1 + νit+1)silt if silt > 0

α0l(1 + νit+1)s̄it if silt = 0
and νit+1 ∼ N(0, σpsu),

where sitl is the score of student i in exam l in period t, s̄it is the average Math-Verbal
score of student i in period t, and {αl, α0l}l∈L, and σpsu are parameters to be estimated.

Finally, we assume that students must pay a cost for re-taking the PSU tests. This cost
accounts for the direct cost of taking the exam and the time spent to prepare for it. Since
we do not have information regarding preparation time, we assume that this cost is a
constant Cpsu.

5.4.2 APPLICATION

Once students get their scores—either the first time they take the exams or after re-taking
them—they must decide which programs to include in their ROL. We assume that stu-
dents’ application behavior can be classified as one of two types: (i) weak truth-tellers,
and (ii) strategic.39 These types are exogenously given, with students being weak-truth-
tellers with probability ρ and strategic with probability 1 − ρ. We assume that weak

38This specification captures the fact that students use the maximum application score from both pools
of test scores, for each program they apply to.

39Figures B.6 and B.7 in Appendix B.4 show evidence that this mixture provides a good approximation
of the observed behavior of students. More specifically, Figure B.6 shows that the cutoff of students’ top
true preference is in most of the cases higher than that of the top reported preference, which suggests that
students take into account their admission chances when deciding where to apply. On the other hand,
Figure B.7 shows that a large fraction of students do not report their true preferences, even when the
constraint on the length of the ROL is not binding.
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truth-tellers report their true preferences as long as they exceed the outside option, while
strategic students submit a ROL that maximizes their expected value. Following Chade
and Smith (2006), we assume that this process can be modeled as an optimal portfolio
problem. Each student i that applies in period t considers a vector of indirect utilities
{vijt}j∈M and a vector of beliefs on admission probabilities {pijt}j∈M , and the submitted
ROL Rit satisfies

Rit ∈ argmax
R′∈R,|R′|≤K

U(R′)− c(R′). (5.15)

where

U(R) = zR(1) + (1− pR(1)) · zR(2) + . . .+
k−1∏
l=1

(1− pR(l)) · zR(K), (5.16)

zR(k) = pR(k) · vR(k)t represents the expected utility (over the assignment) obtained from
the k-th preference in the ROL, and c(R) is the cost of submitting the ROL R.40

This model relies on the assumption that students perceive their admission chances as
independent across programs. Also, to simplify the analysis, we further assume that
students do not include programs in their ROL unless it is strictly profitable. This as-
sumption implies that strategic students will not add programs for which their admission
probability is zero. Finally, we assume that students have rational expectations regarding
their admission probabilities.41 These assumptions are formalized in Assumption 6.

Assumption 6. Students take the distributions over cutoffs to be independent across pro-
grams. In addition, students have rational expectations regarding their admission prob-
abilities, and they include programs in their portfolio only if it is strictly profitable to do
so.42

Discussion: we include the mixture of application behavior because it better fits the ap-
plication patterns in the data. However, the parameter ρ should not be interpreted as
a primitive of the model, as we expect to vary with the counterfactuals. The reason is
that, in the baseline, it could be payoff equivalent to report a ROL as a weak truth-teller
or strategically. However, if we change the assignment mechanism or the re-application
rules, acting as a weak truth-teller may lead to a payoff relevant strategic mistake. As we
do not model the latter, in our counterfactual analysis we consider two scenarios: (i) all
students behave strategically,43 and (ii) a fraction (1− ρ) behaves strategically.

5.4.3 ASSIGNMENT AND ENROLLMENT

Once students submit their optimal ROLs, they observe a draw from the joint distribution
of cutoffs. Let ~̄s t =

{
s̄tj
}
j∈M the vector of realized cutoffs in period t. Based on the

40In our setting students face no monetary costs for submitting a ROL, thus, we assume that c (·) = 0.
41This is a common assumption in the literature (Agarwal and Somaini, 2018; Larroucau and Ríos, 2018).

Moreover, as Figure B.8 in Appendix B.4 shows, students tend to forecast the cutoff of the current year
correctly.

42We discuss the implications of Assumption 6 and how to solve the optimal portfolio problem in Ap-
pendix C.3.

43This would hold if information policies that give precise information about admission probabilities to
students were implemented.
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mechanism’s cutoff structure, the allocation can be easily obtained by assigning each
student to the highest preference for which their application score is greater than or equal
to the realized cutoff.

After the assignment results are released, students decide whether to enroll in their as-
signed preference, remain enrolled in their current program if they are re-applying, or
take the outside option. For simplicity, we do not model this decision and simply assume
that students enroll in their preference of assignment with some exogenous probability
P e
it that depends on their observable characteristics.44 This is formalized in Assumption 7.

Assumption 7. Student i enrolls in her assigned program in period t with probability P e
it,

which is given by

P e
it =

exp (Xe
i ψ

e)

1 + exp (Xe
i ψ

e)
, (5.17)

where Xe
i is a vector of observable characteristics.45

If students do not enroll in their new assignment, we allow them to choose the best alter-
native between remaining in their current program for one more period or choosing the
outside option. In Appendix C.2 we show that the solution to the student’s problem can
be obtained via Backward Induction.

6 IDENTIFICATION

In this section we describe our identification strategy and how we use the data described
in Section 4.2 to this end.

Labor Market. As discussed in Section 4.2, we only have information about wages ag-
gregated at the program and major levels. We identify the wage equation parameters
(λ) by exploiting variation across programs on students’ average wages and their corre-
lation with students’ and programs’ characteristics.46 The non-pecuniary labor market
parameters (αw) are identified by the correlation between student observable character-
istics and graduation probabilities. To identify the effect of students’ random coefficient
on the non-pecuniary labor market utility (αw1 ), we use the correlation between students’
reported preferences and graduation probabilities.47

As we do not have information on wages for students who dropped out of college, we
model the value functions of dropping out as a function of students’ observable charac-

44Students pay an enrollment cost Ce for the first time they enroll in a program, which captures both
administrative and potentially psychological costs of first-time enrollment process.

45The vector includes a constant, student’s gender, a dummy variable that identifies if the student’s
family income is below the median of the income distribution, and student’s High-school GPA.

46In Appendix D.1, we provide an example of how we can identify these parameters using aggregate
data.

47In Section E.1 we show how we use this correlation in estimation.
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teristics. Intuitively, these value functions’ parameters are identified by the share of stu-
dents who dropped out conditional on their observable characteristics, including gender,
income level, among others.

Flow utility. The identification challenge of separately identifying the parameters that
govern the unobserved preferences’ from those related to the learning process is that
both channels affect students’ choices over time and are unobserved by the econome-
trician. However, due to the rational expectations assumption and the assumption on
common prior beliefs about students’ unknown abilities, students’ initial application de-
cisions are informative of students’ unobserved preferences because students have not
received any signal about their unknown abilities when they submit their initial applica-
tions. Hence, we can identify the flow utility parameters using students’ initial choices
and the correlation between students’ characteristics and the characteristics of the pro-
grams they list and enroll. In particular, to identify the major and university-type specific
parameters (αimj

, αikj in 5.4), we leverage the heterogeneity in terms of major and college
types within students’ ROLs.48 Then, we use these values as moments to be matched in
the estimation procedure. On the other hand, to identify the parameters in Equation 5.5,
we use the variation on students’ observed ability (to identify α1), the variation on the
level of selectivity (as a proxy for programs’ quality to identify α2), and the variation on
students’ observed ability compositions across programs—particularly variation in the
standard deviation of students’ observed ability across programs— (to identify α4). The
variation on the distance between students and programs identifies the coefficient α3,
and the variation on programs’ tuition levels and students’ socioeconomic characteristics
identifies the coefficients of the cost function C. Finally, as standard practice, we normal-
ize the logit shocks’ scale to one, the mean utility of the outside option to zero, and we
further consider a discount factor β equal to 0.9.

Grades and Learning. According to Equations 5.9 and 5.10, grades are functions of ob-
served characteristics, students’ unobserved preferences for majors/colleges, students’
unknown abilities, and the signal’s noise. To identify the effect of unobserved prefer-
ences for majors/colleges, we use the correlation between grades and students’ prefer-
ences and their assignment, and we also use the correlation between students’ applica-
tion composition—share of different majors and share of different college types—and
grades. Intuitively, if students’ unobserved preferences for majors positively affect their
college grades, there should be a positive correlation between students’ reported prefer-
ences and their first-year college grades. Similarly, we expect that students whose ROLs
imply a high preference for a particular major—i.e., having a high share of programs that
belong to the same major—should also have higher first-year grades than other students.
As students’ reports always preserve their indirect utilities’ relative order, we expect a
higher preference intensity on students’ assigned to top reported preferences compared
to students assigned to lower reported preferences. On the other hand, to separate the

48For each student, we compute the fraction of preferences belonging to each major and university type,
and then we compute the average across students for each major and college type. For example, if a given
student applies to Medicine in PUC, Medicine in UCH, and Engineering in UCH, then the share of Health
in the student’s ROL is 2/3, the share of Technology is 1/3, and the share is 0 for all the other majors.

33



impact of students’ learning about their unknown abilities from the grade noise, we com-
pare the law of motion between students’ first-year grades and second-year grades for
switchers and non-switchers (Arcidiacono et al. (2016)), and the correlation between stu-
dents’ first-year grades and the change in students’ ROL composition for majors and
college-types. To get the intuition of our identification argument, consider the following
equation that defines student i’s posterior unknown ability for program j:

µij′t+1 =

(
ωsj′ωsj + (1− ωsj′ )(1− ωsj)

)
σ2
saijt + 1{mj′=mj}σ

2
maijt

σ2
g + σ2

m +
(
ω2
sj

+ (1− ωsj)2
)
σ2
s

(6.1)

where ωsj and ωsj′ are the weights that programs j and j′ use for math, aijt is the signal
that student i receives from her grades in program j at time t, and σ2

m, σ2
s , and σ2

g are the
variances of the major-unknown ability, subject unknown ability, and the grade noise,
which are the parameters of interest that we want to identify. At the left hand side of
the equation, µij′t+1 is the unknown ability of student i in program j′ at time t + 1. The
posterior unknown ability affects students’ switching and dropout decisions and their
re-applications. Intuitively, if students’ grades have a very low correlation with their
switching, dropout, or reapplication choices, the signal is not very informative about
the students’ unknown abilities, and most of the signal is noise (high σ2

g). On the other
hand, if there is a high (negative) correlation between students’ first-year grades (signals)
and their switching and reapplication choices, particularly changing majors or math-
types, that tells us that the signal is highly informative about the unknown abilities for
major (high σ2

m) and subjects (high σ2
s ) respectively49 Using these insights, we include as

moments the correlation between students’ first-year grades and their switching choices,
and the change in the composition of their re-applications with respect to their initial
applications, in terms of majors and math-types50.

Application. Two key components affect students’ application behavior: students’ indi-
rect utilities over the expected assignment, and students’ beliefs on admission probabili-
ties. Using a large-market assumption and assuming rational expectations, beliefs on ad-
mission probabilities can be estimated from the data. Given beliefs, indirect utilities can
be non-parametrically identified by using the variation on admission probabilities over
time or by incorporating a special regressor in the flow utility function (Agarwal and
Somaini, 2018). Since the cutoff distributions do not vary much for the years considered
in our sample, we assume that distance from students’ home municipality to programs’
municipalities is exogenous, giving us exogenous variation that shifts the distribution of
indirect utilities. To estimate the probability that students are either truth-tellers or strate-
gic (see Section 5.4.2), we use the results of the survey on students’ true preferences and
the ROLs submitted to construct moments that allow us to identify this parameter. In
particular, we use the share of students’ applications for which their top-reported choice

49The value of the signal is also affected by the effect of grades on wages (λ3) and by the effect of the
unknown ability on the non-pecuniary work utility (αw

4 ). These parameters directly affect switching and
dropout probabilities but do not affect the signal’s scale in the grade equation of the first period.

50The underlying identification assumption is that students’ past signals (which are a function of their
grades) are a sufficient statistic about how their unknown abilities affect their choices.
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has zero admission probability. Finally, we add additional identifying information from
students that re-apply to college.51 We use the panel of repeated respondents in the 2019
and 2020 surveys and compute the share of re-applicants that report a different top-true
preference for programs, majors, and college-types. As we have direct information on
top-true preferences, the variation in students’ responses gives us an additional informa-
tion source that helps us identify students’ learning.52

7 ESTIMATION

In this section we describe our estimation strategy. We start in Section 7.1 describing the
sample considered and how we aggregate the data to reduce the computational complex-
ity of performing the estimation. Then, we describe in Section7.2 our main estimation
procedure.

7.1 SAMPLE SELECTION AND AGGREGATION

To perform the estimation, we focus on students living in the Metropolitan region and
restrict attention to programs located in the same region. This sample restriction reduces
the number of programs to less than half (471) while keeping the richness of students’
choice-sets53. We draw a random sample of 5,000 students who graduated in the year
2013 and have valid scores in the admission process of 2014.

BROAD MAJORS AND COLLEGE TYPES. As discussed in Section 5.2, we group majors
in four broad majors—Science (Science, Farming, and Technology), Social Sciences (Social
Sciences, Art and Architecture, and Law), Education and Humanities (Education and
Humanities), and Health (Health)—to reduce the number of parameters to be estimated.
In addition, we consider three types of college: CRUCH-Public, CRUCH-Private and
Non-CRUCH.

SUBJECTS. To further facilitate the estimation, we classify programs in two types de-
pending on their admission weights {ωjsm , ωjsv}: (i) math intensive, which includes pro-
grams for which the weight on math is higher than that on verbal, ωjsm > ωjsv ; and
(ii) verbal intensive in the converse case. In a slight abuse of notation, we denote by sj
the type of program j, and we say that sj = sm(sv) if program j is math (verbal) in-
tensive. Then, instead of considering the weights of each program, we use the average

51In Appendix D.2 we formalize these ideas and present a proposition that provides testable implica-
tions to measure the extent of preference variation that can be inferred from re-applications.

52We do not have grade information for these cohorts. Thus we can not construct correlations between
students’ true preferences for programs and their college grades.

53Close to 80% of applications from students living in the Metropolitan region, include only programs
located in the Metropolitan region.
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math weight among all programs that belong to the same type. As a result, the unknown
ability of student i in program j becomes:

Auij = Auimj
+ ω̄sjA

u
ism + (1− ω̄sj)Auisv (7.1)

where ω̄sj is the average weight on math for programs of type sj ∈ {sm, sv}.

7.2 ESTIMATION PROCEDURE

We estimate the model parameters, θ, via Indirect Inference (II). The idea behind II is
to choose a statistical model that gives a rich description of the data patterns (Bruins
et al. (2018)), allowing us to identify the model parameters. This statistical model—also
known as auxiliary model—is estimated both on the data and on simulated data from
the structural model. The II estimator minimizes an objective function that compares the
distance between the estimated data parameters and the parameters estimated from the
simulated data.54 In this sense, the Simulated Method of Moments is a particular case of
II, where the auxiliary model is just a vector of moments.

We choose to follow this estimation strategy for the following reasons:

(i) We only have remote access to the data on students’ grades, and CRUCH only al-
lowed us to obtain regression results and summary statistics at the aggregate level,
making it difficult to estimate a likelihood-based estimator. However, II allows us
to estimate a rich statistical representation of the data on students’ grades and use
the estimated parameters to construct moment conditions to estimate the model’s
structural parameters.

(ii) The parameters involving the grade equation and wage equation have a clear reduced-
form representation in the data.

(iii) Estimating students’ preferences in a portfolio setting is computationally challeng-
ing for likelihood-based estimation methods (see Larroucau and Ríos (2018)). How-
ever, given a model parameters’ guess, simulating data from our structural model
is relatively fast because under Assumption 6, we can simulate strategic ROLs effi-
ciently using the Marginal Improvement Algorithm (Chade and Smith (2006)).

We now introduce the estimator, following closely Bruins et al. (2018). Let yi := (yit, ..., yiQ),
be a collection of Q outcomes for student i’, and let y := {yi}Ni=1 to denote the aggregate
outcomes of all students i ∈ {1, ..., N}. Similarly, let xi and x be the individual and
aggregate students’ and programs’ characteristics, and ηi and η be the individual and
aggregate random shocks. Let β̂n be the vector of parameter estimates of the auxiliary
model, that is,

β̂ := argmax
β
L(y,x; β) = argmax

β

1

N

N∑
i=1

l(yi, xi; β), (7.2)

54This is known as the Wald approach to indirect inference. Other criterion functions can also be used
for estimation.
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where l(·; β) is the log-likelihood function given the vector β. Let ηb := {ηbi}Ni=1 denote
a set of simulated draws for the random shocks of the structural model for simulations
s = 1, ..., S, where each set of draws is simulated independently from each other. Let
θ ∈ Θ be a vector of parameters from the structural model, with dθ ≤ dβ . Given the
observable characteristics x and a parameter vector θ ∈ Θ, we can use the structural
model to simulate data yb(θ) := {ybi (θ)}Ni=1, and estimate the auxiliary model on each
simulated sample:

β̂b := argmax
β
L(yb(θ),x; β). (7.3)

Let β̄(θ) be the average of these estimates, i.e., β̄(θ) := 1
B

∑S
s=1 β̂

b(θ). Then, the II estimator
minimizes the following function:

Q (θ) :=
(
β̄(θ)− β̂

)T
W
(
β̄(θ)− β̂

)
(7.4)

where W is a positive-definite weighting matrix.

For a given value of the parameters θ, and given the first stage estimates—i.e., students’
beliefs and enrollment, dropout, graduation, and employment probabilities—, comput-
ing the objective function Q(θ) involves solving the model via backward-induction and
then forward-simulating outcomes.55 Solving the model is computationally expensive,
especially computing the continuation value terms, as they depend on the realization of
the random coefficients {αi}Ni=1 (which are known to the students), which restricts the
number of draws of the random coefficients we can use to evaluate the objective func-
tion. To reduce the noise due to a small number of draws, we consider a larger number
of draws for those shocks that do not affect the backward-induction. In Algorithm 1,
Appendix E, we describe in detail how we perform the estimation, and we discuss some
related technical considerations.

AUXILIARY MODEL. We use as an auxiliary model a combination of regression models—
including data analogs of the grade equations, wage equations, linear probabilities mod-
els of graduation, and linear probability models of switching and dropout—and a vector
of moment conditions. The parameters of the model are identified jointly by the moment
conditions generated with the auxiliary model. However, some sets of parameters are
directly linked to particular moment conditions. We describe this auxiliary model and
the matrix of weights in detail in Appendix E.1.

7.3 RESULTS

Table E.2 shows the estimated parameters. We observe that the estimated share of stu-
dents who apply strategically is 0.89. Thus, a significant fraction of students behaves
as weak-truth-tellers. We also observe that the correlation and persistence of students’
preferences by major are relatively high (σ2m

α = 14.70), considering that the variance of

55Where we have suppressed the dependency on the first-stage estimators for readability.
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Figure 7.1: Summary Statistics by Preference of Assignment
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Notes: All switching statistics are regarding first year students, and are computed conditional on
enrolling in the centralized system in 2014.

students’ idiosyncratic preference shocks is normalized to π2/6. Additionally, we observe
that the prior variance for the subject-specific abilities (σ2

s ) is bigger than the prior vari-
ance for the major-specific ability (σ2

m), which implies that students’ signals are more in-
formative about their subject specific-abilities than their major-specific ability. However,
the magnitudes of the prior variances should not be interpreted in isolation because the
signal’s value is affected by the importance of the unknown ability in the non-pecuniary
work utility plus the effect of students’ grades on their future wages. Thus, we analyze
the importance of students’ learning regarding their effects on outcomes in the counter-
factual experiments.

In Tables E.4 and E.5 (see Appendix E) we compute the moments and coefficients pre-
dicted from our model with their data counterparts. We observe that, in most of the cases,
the fit found in the model matches closely the values observed in the data, suggesting that
our model captures the richness of the data relatively well. The main discrepancies be-
tween the values predicted by the model and the data are related to re-applications—our
model over-estimates their incidence—and to reported true preferences—our model un-
derestimates the fraction of students that include their top-true preference in their ROLs.

To highlight some of the most relevant outcomes, in Figure 7.1, we plot some relevant
statistics by the preference of assignment. The bars represent values predicted by the
model, while the dots represent the data’s corresponding values. We observe that the
model predictions regarding university switchings and math type switchings are very
close to the data’s values. Moreover, we capture the increasing pattern of switching prob-
abilities by the preference of assignment (for the top four preferences). However, we also
observe that major switching rates are over-estimated.
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8 COUNTERFACTUALS

We now present our counterfactual analysis. As discussed in Section 1, our counterfac-
tuals aim to serve two purposes:

1. Assess to which extent students’ switching and dropout decisions are explained
by the behavioral channels previously described, namely, initial mismatches and
learning.

2. To evaluate if different policies oriented to elicit cardinal preferences may help to
improve students’ outcomes and the system’s efficiency.

As discussed in Section 5.4.2, we first evaluate each counterfactual assuming that stu-
dents behave strategically. This assumption is reasonable if precise information about
admission probabilities is provided to students, highlighting the trade-offs involved in
choosing a ROL. The main challenge to perform this analysis is that these interventions
can modify the aggregate distributions of cutoffs, affecting students’ beliefs over their
admission probabilities. To take this into account, we need to solve for the equilibrium
distribution of cutoffs, but this is not straightforward because there may be multiple equi-
libria due to students’ strategic behavior. To address this, we select an equilibrium fol-
lowing a similar approach than Kapor et al. (2020b). However, our case differs from
theirs in that (i) we have to solve for a stationary distribution in the dynamic application
problem, creating a mixture of applicants and re-applicants that participate in the same
admission process (whereas their setting does not consider re-applications), and that (ii)
students need to form believes over a large set of cutoff distributions. To reduce the nu-
merical complexity of solving for the equilibrium in this large-scale problem, we include
the following assumption.

Assumption 8. For each counterfactual, and for each program j ∈M , let πj be the distri-
bution of cutoffs, and let πBj be the distribution of cutoffs for the baseline model. Then,

πj = ξ · πBj (8.1)

pointwise, where ξ is a constant to be determine that is counterfactual specific.

Under Assumption 8, students believe that all expected cutoffs change in the same di-
rection and–proportional–magnitude relative to the baseline. Algorithms 2 and 3 in Ap-
pendix F describe the algorithms to estimate students’ equilibrium beliefs over the cutoff
distributions, with and without imposing Assumption 8, respectively.

8.1 UNDERSTANDING BEHAVIORAL CHANNELS

To accomplish the first goal, we consider three different counterfactuals:
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1. No Systematic Learning: sets the value of the standard deviation of each unknown
ability to zero. Hence, there are no unknown abilities.

2. No Mismatch: assigns each student to their top preference, independent of pro-
grams’ capacities. As a result, programs’ capacities may be exceeded. This counter-
factual eliminates completely initial mismatches, allowing us to isolate the learning
channel.

3. No Mismatch nor Systematic Learning: combines the two previous counterfactu-
als, allowing us to isolate the learning channel from the effects of the idiosyncratic
shocks (random learning).

The first column in Table 8.1 reports the results of the baseline model, which includes the
two main behavioral channels. The next three columns match the three counterfactuals
mentioned above. We group the first two columns as With Mismatches and the last two
columns as No Mismatches to highlight that in the latter, the mismatch channel is not
present. Notice that in the case with no mismatches the number of seats offered by each
program may be exceeded. Finally, each row represents an outcome of interest, including
statistics regarding re-applications, switchings, dropout, enrollment, on-time graduation,
among others.

Table 8.1: Results Counterfactuals - Behavioral Channels

With Mismatches No Mismatches

Baseline No Systematic
Learning Baseline No Systematic

Learning

Re-applicants [%] 20.78 16.19 17.19 12.80
Program switchings [%] 4.13 1.21 2.70 0.01
Major switchings [%] 3.68 0.74 2.65 0.00
Math-type switchings [%] 2.20 0.40 1.69 0.00
Dropouts [%] 9.09 3.31 11.98 3.41
Dropouts - first year [%] 5.77 0.01 8.48 0.04
First enrollment in second period [%] 9.35 11.24 8.40 8.55
First year in second period [%] 13.53 12.48 11.12 8.59
Second year in second period [%] 25.12 26.39 37.20 41.20
Applicants in first period [%] 52.88 41.90 69.35 58.49
Applicants in second period [%] 22.12 21.01 17.19 13.36
Enroll in same program [%] 25.16 26.42 37.22 41.23
Graduate - first enrollment [%] 19.89 21.18 28.91 31.99
Program switchings or Dropouts [%] 13.23 4.52 14.67 3.42
Unassigned in first period [%] 51.44 62.34 30.65 41.51
Graduate on-time [%] 4.87 5.67 6.45 6.82
Notes: switching and dropout rates are computed with respect to the total sample of participants.

WITH MISMATCHES. We start focusing on the first two columns. First, we observe
that having no learning decreases the number of re-applications, program switches, and
dropout rates but increases the number of unassigned students in the first period. By
shutting down the learning process, we increase the persistence of students’ preferences
over time, which translates into higher college retention rates. Additionally, without the
gains from learning, the value from enrolling in the centralized system drops. Therefore,
a higher fraction of students choose the outside option. Finally, we observe that the sys-
tematic learning channel explains close to two-thirds of students’ switching and dropout
behavior.
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NO MISMATCHES. We now focus on the case with no mismatches. Recall that, in this
counterfactual, all students are assigned to their most desired preference, possibly ex-
ceeding the vacancies of programs. For this reason, the fraction of students that are unas-
signed decreases considerably, and thus these results are not directly comparable to those
previously described. However, comparing the two columns labeled as “Baseline” pro-
vides an idea of the benefits of not having initial mismatches. In particular, we observe
that the fraction of students that re-applies is considerably smaller (78% of the baseline),
and so are the switching rates (close to 65% of the baseline). The reason is that this coun-
terfactual assigns students to their most desired program, eliminating initial mismatches
and thus reducing the incentives for students to re-apply or switch. On the other hand,
we observe an increase in the dropout rates at the end of the first year and within the first
two years. However, notice that this rate is computed relative to the entire population,
so, naturally, this increases as more students are assigned under this counterfactual.56

We also observe that eliminating mismatches improves on-time graduation rates, which
is mainly affected by the reduction in switching rates. These results suggest that eliminat-
ing initial mismatches is a sensitive approach to reduce switchings and increase on-time
graduation rates, improving the system’s yield.

Finally, comparing the third and fourth columns—i.e., within the group of No Mismatches—
we find that eliminating the systematic learning decreases dropouts to close to 28% of the
baseline without mismatches, and virtually eliminates switchings. This result suggests
that preference shocks explain a significant fraction of dropout decisions but do not ex-
plain switchings without the presence of systematic learning.

8.2 ASSIGNMENT MECHANISMS AND RE-APPLICATIONS RULES

To assess if changes in the mechanism and re-application rules can affect students’ out-
comes and their welfare, we implement two families of counterfactuals: (i) modify-
ing the assignment mechanism, and (ii) modifying re-application rules. As before, we
evaluate these policies considering different measures of switchings, dropout rates, re-
applications, on-time graduation, among others. Moreover, for these counterfactuals, we
add a measure of students’ welfare, given by the relative change in future wages that
would be necessary to achieve the same level of average ex-post utility in the baseline
scenario.57

8.2.1 ASSIGNMENT MECHANISMS.

We evaluate the effects of eliciting intensity on students’ preferences by changing the
assignment mechanism. In particular, we evaluate two mechanisms:

56Indeed, if we compute the dropout rate among those students who are assigned, we observe that the
rates are relatively similar for both columns labeled as Baseline (11.98/(100− 30.65) = 17% vs. 9.09/(100−
51.44) = 18.7%, respectively).

57Ex-post utilities are computed at the end of period two, adding the discounted value function of
period three, i.e., after students have made all their choices in the model.
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1. Constrained Deferred Acceptance (CDA): change the constraint in the length of the
ROLs, K. We evaluate K ∈ {1, 2, 3}, since most students submit a ROL with length
less than or equal to 3.

2. Choice-Augmented Deferred Acceptance with score bonus (CADA): students can
signal one program in their submitted ROLs, receiving a bonus ϕ in their applica-
tion score for that specific program. We implement this mechanism only for first
period applicants, and therefore students who apply in the second period do not
receive the bonus.58

Both mechanisms elicit the intensity of students’ preferences as they introduce opportu-
nity costs that students must take into account when submitting their applications. In
the case of CDA, constraining the length of applicants list limits students from including
other programs in their ROLs, and thus they must account for the opportunity cost of
including each program. In the case of CADA, students can signal only one program,
and thus they must carefully decide which program to target to get the bonus. However,
notice that eliciting the intensity of students’ preferences may not necessarily lead to an
overall reduction of switchings and dropouts. On the one hand, if eliciting this infor-
mation decreases initial mismatches, we would expect to reduce inefficient switchings.
On the other hand, if the assignment mechanism also elicits the intensity of preferences
among students who re-apply to the system and these preferences change considerably
due to learning, we would see an increase in efficient switchings due to an increase in
the value of re-applications. In this sense, we expect that in the case of CADA— which
provides a score bonus only in the first period—switchings would decrease more than in
the case where the score bonus is applied in both periods.

In Table 8.2 we report the results of these counterfactuals. As in the previous section, the
first column includes the results of the baseline model. The next three columns report the
results of constrained DA considering values K ∈ {1, 2, 3} in decreasing order, while the
last three columns report the results of CADA with score bonus ϕ ∈ {10%, 20%, 30%}.

First, we observe that CDA increases the fraction of re-applicants if K is sufficiently low.
This result is relatively intuitive, as reducing the maximum size of the ROLs increases
the risk of being unassigned, increasing the incentives to re-apply in the next year. On
the other hand, we observe that limiting the size of the ROLs is not very effective at
decreasing the overall number of switches and dropouts. Finally, we observe that the
effect on welfare is non-monotonic, as it is higher with K = 3 while it is smaller with
K = 1 relative to the baseline.

On the other hand, we observe that CADA effectively decreases students’ switchings
and dropouts. Also, we observe that CADA increases the fraction of students who ap-
ply in the first period and can increase the fraction of students remaining in their pro-
grams. As a result, this mechanism leads to higher persistence in programs and slightly

58See Abdulkadiroğlu et al. (2015) for details. We choose to implement CADA only in the first period to
avoid solving for the continuation values under this mechanism, which would add a high computational
burden to the model. To implement this mechanism, we need to specify how to find the optimal ROL
for each student, given their preferences and beliefs. Algorithm 4 in Appendix F describes a procedure to
accomplish this.
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Table 8.2: Results Counterfactuals -Mechanisms

Constrained DA CADA

Baseline K = 3 K = 2 K = 1 ϕ = 10% ϕ = 20% ϕ = 30%

Re-applicants [%] 19.65 19.56 19.94 21.71 19.59 19.99 20.66
Program switchings [%] 4.87 4.88 4.92 4.53 4.45 4.12 3.92
Major switchings [%] 4.13 4.15 4.16 3.80 3.84 3.66 3.50
Math-type switchings [%] 2.47 2.49 2.51 2.27 2.32 2.17 2.03
Dropouts [%] 9.53 9.44 9.57 9.14 9.71 9.56 9.44
Dropouts - first year [%] 6.11 6.04 6.05 5.59 6.28 6.13 5.92
First enrollment in second period [%] 9.55 9.55 9.62 10.87 9.69 10.17 10.93
First year in second period [%] 14.50 14.52 14.64 15.47 14.23 14.38 14.93
Second year in second period [%] 24.13 24.15 23.97 22.34 24.67 24.56 24.05
Applicants in first period [%] 49.90 49.87 49.88 49.94 51.32 52.46 53.31
Applicants in second period [%] 21.44 21.35 21.72 23.43 20.84 20.97 21.54
Enroll in same program [%] 24.21 24.24 24.08 22.41 24.76 24.65 24.14
Graduate - first enrollment [%] 19.20 19.25 19.15 17.94 19.50 19.45 18.99
Program switchings or Dropouts [%] 14.39 14.32 14.49 13.67 14.17 13.68 13.36
Unassigned in first period [%] 51.39 51.39 51.64 55.40 50.72 51.45 52.63
Graduate on-time [%] 4.50 4.60 4.58 4.38 4.97 4.70 4.96

Difference in Ex-Post Welfare Relative to Baseline

Overall - 2.70 -1.40 -33.50 7.70 1.90 -8.60
Women - 1.00 -3.80 -35.00 2.60 -1.90 -10.80
Men - 4.90 2.40 -31.40 16.10 7.80 -2.50
Low-income - 6.20 2.60 -29.90 14.90 16.90 10.80
High-income - 0.00 -5.10 -35.50 2.00 -11.40 -21.70
Notes: switching and dropout rates are computed with respect to the total sample of participants.

lower shares of delayed graduation. Furthermore, we observe that CADA considerably
increases students’ welfare compared to both the baseline and constrained DA. In partic-
ular, we observe that the group of students that benefit the most from CADA are male
students and students from low-income families. One possible reason for the former
is that the bonus is applied to the scores related to the high-school grades, which are
on average lower for men.59 On the other hand, one possible reason for the higher ef-
fect on low-income students is that high-income students are almost twice as likely to
switch programs than low-income students. Thus, eliciting intensity increases the proba-
bility of admission among low-income students relatively more than among high-income
students. Finally, we observe that the overall impact of the bonus is non-monotonic, in-
creasing welfare compared to the baseline in the case where ϕ = 10% and ϕ = 20%, but
decreasing welfare compared to the baseline when ϕ = 30%. These results suggest that
CADA with an appropriate score bonus could be a sensible policy to reduce switches and
increase students’ welfare.

8.2.2 REAPPLICATION RULES.

Another policy to reduce the incentives to switch is to provide bonuses to students apply-
ing for the first time to the system, or to penalize students who re-apply and try to switch
programs. These policies have been implemented in Finland and Turkey, respectively.
To our knowledge, none of these policies has been analyzed in terms of their impact on
students’ outcomes. To analyze this, we consider the following two families of policies:

59We conjecture that, if instead of applying the bonus to the scores related to high-school grades we
apply it to PSU scores, the benefit for women would be higher than for men. We are planning to add these
results to future versions of the paper.
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(i) Turkish re-application rule: applicants receive a penalty ψ in the scores related to
their high-school GPA (thus, affecting the application score of their re-applications)
if they are currently enrolled in the centralized system when they submit their
ROLs.

(ii) Finnish re-application rule: students receive a bonus ϕ in the scores related to their
high-school GPA (thus, affecting the application score of their re-applications) the
first time they submit a ROL to the centralized system.

Even though both policies aim to reduce the incentives for switching, they affect students’
applications and re-applications in different ways. On the one hand, the Finnish policy
directly reduces the incentives to re-apply to the system, regardless of the programs that
students include in their ROLs. As a result, the Finnish policy increases the continu-
ation value of choosing the outside option, and thus increases the fraction of students
that wait an extra year to submit their first application. On the other hand, the Turkish
policy reduces the incentives to re-apply if students previously enrolled in a program in
the system, i.e., it reduces the incentives to apply to programs if they are very likely to
switch from them in the future (e.g., programs for which students have low preference
intensity). Hence, the Turkish policy may decrease the fraction of students enrolling in
the first period in less preferred programs. Despite these differences, we expect that both
policies would decrease the frequency of re-applications and switches. In contrast, the
welfare effects of these policies is unclear. Students may benefit from these policies as
both the penalty and the bonus help to address the negative externality that switchers
generate in the system. However, since under these policies students face more barriers
for switching, the benefits of learning become lower, and thus, students’ welfare may
decrease.

In Table 8.3 we report the results of these counterfactuals. As expected, we observe that
the Turkish policy reduces the re-application and switching rates, and the magnitude
of the effect is increasing in the magnitude of the penalty. Moreover, we observe that
dropout rates for the first year slightly increase as we increase the penalty. A potential
explanation for this is that the Turkish policy increases switching costs. Thus, students
who receive low signals about their match-qualities with their enrolled programs face
lower probabilities for switching than the baseline, increasing their incentives to drop out
instead. Finally, we observe that the ex-post welfare decreases compared to the baseline
as we increase the penalty value. These results suggest that the gains from learning and
having the option of switching can exceed the negative externality imposed by students
switching and displacing other students who may have stronger preferences for those
programs. Moreover, these findings confirm that largely reducing switchings can also be
inefficient for the system.

On the other hand, we observe that the Finnish policy has a similar effect on students’
outcomes, but the magnitude of the effect varies relative to the Turkish policy. For
instance, we observe that the latter is better at reducing re-applications and students’
switches but increases dropouts slightly, while the former is better at improving on-time
graduation and increasing students’ welfare. Additionally, the Finnish policy increases
the fraction of students unassigned in the first period and the fraction of students who
decide to delay their tertiary education entry. An explanation for this is that students
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Table 8.3: Results Counterfactuals - Re-Application Rules

Turkish Rules Finnish Rules

Baseline ψ = 10% ψ = 20% ψ = 30% ϕ = 10% ϕ = 20% ϕ = 30%

Re-applicants [%] 19.65 18.14 17.10 16.55 18.71 19.22 19.50
Program switchings [%] 4.87 4.04 3.46 3.10 4.32 3.99 3.70
Major switchings [%] 4.13 3.62 3.25 2.93 3.78 3.53 3.32
Math-type switchings [%] 2.47 2.09 1.87 1.67 2.25 2.14 2.01
Dropouts [%] 9.53 9.58 9.63 9.59 9.56 9.42 9.23
Dropouts - first year [%] 6.11 6.23 6.31 6.38 5.98 5.79 5.38
First enrollment in second period [%] 9.55 9.62 9.65 9.73 10.42 11.57 12.70
First year in second period [%] 14.50 13.74 13.17 12.88 14.84 15.65 16.47
Second year in second period [%] 24.13 24.82 25.43 25.65 24.29 23.50 22.98
Applicants in first period [%] 49.90 49.59 49.56 49.47 49.61 49.94 49.98
Applicants in second period [%] 21.44 20.21 19.22 18.76 21.67 22.68 23.71
Enroll in same program [%] 24.21 24.90 25.49 25.70 24.40 23.59 23.05
Graduate - first enrollment [%] 19.20 19.73 20.18 20.42 19.19 18.67 18.12
Program switchings or Dropouts [%] 14.39 13.62 13.09 12.69 13.88 13.41 12.93
Unassigned in first period [%] 51.39 51.35 51.25 51.39 51.99 53.77 55.83
Graduate on-time [%] 4.50 4.71 4.74 4.80 4.67 4.94 4.84

Difference in Ex-Post Welfare Relative to Baseline

Overall - -1.40 -1.40 -4.10 9.20 -6.80 -13.20
Women - -6.30 -3.80 -6.70 5.50 -13.00 -21.30
Men - 7.30 2.40 1.50 15.10 5.40 7.30
Low-income - 2.10 1.50 2.10 9.20 -1.30 4.60
High-income - -4.10 -4.10 -8.90 9.60 -10.80 -22.60
Notes: switching and dropout rates are computed with respect to the total sample of participants.

that know their preferences but do not have good enough scores in the first period are
better off waiting a year to retake the exams and improve their application score instead
of enrolling in the first year and try to switch later. These results suggest that the most
desired policy depends on the objective to be addressed. If the goal is to decrease switch-
ings and improve the systems’ yield, then the Turkish policy seems to be the best option.
In contrast, if the goal is to increase students’ welfare, then the Finnish policy leads to
better outcomes.

Figure 8.1 shows a summary of the counterfactual results.60 Overall, the results of our
counterfactual analyses show that some changes in the mechanism—e.g., Choice-Augmented
DA or the Finnish re-application rule—can be effective at improving college retention
rates while at the same time increasing the welfare of students. However, these policies
must be carefully designed, as these can also negatively affect students’ welfare if their
underlying parameters are not correctly set.

60For Figures 8.1 and 8.2 we compute retention considering switchings and first-year dropouts.
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Figure 8.1: Summary of Counterfactuals: Strategic Behavior
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SENSITIVITY TO NON-STRATEGIC STUDENTS. It is important to highlight that all the
aforementioned counterfactual analyses were conducted assuming that all students are
strategic. However, many students in practice are not strategic, i.e., they report their true
preferences. As a robustness check, we conducted the same analysis assuming that 10%
of students are non-strategic—similar to the estimation results in the baseline model—
and we find that the results are directionally the same. However, the magnitude of the
effects changes significantly. Figure 8.2 shows a summary of the results. In particular, we
observe that the overall welfare under CDA decreases as we make the constraint on the
length of ROLs more binding. On the other hand, we observe that ex-post welfare also
increases for the Finnish re-application rule and CADA relative to the baseline, although
the magnitude of the improvement is smaller than when all students are strategic. These
results suggest that the latter two policies—Finnish re-application rule and CADA—are
more robust to deal with students that may not report their preferences strategically.

Figure 8.2: Summary of Counterfactuals: Mixture of Strategic and Truth-Telling Behavior
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9 CONCLUSIONS

In this paper, we analyze the effects of centralized assignment mechanisms on down-
stream outcomes such as students’ decisions to switch or dropout from college. To ac-
complish this, we study the relevance of eliciting information on participants’ cardinal
preferences and incorporating their dynamic incentives in the design of the assignment
process, features that have been mostly overlooked by the literature.

Using data from the Chilean college admissions system and two nationwide surveys that
we designed and conducted, we provide empirical evidence suggesting that two central
behavioral channels explain students’ dynamic decisions. The first channel, called the
initial mismatch channel, predicts that students may have incentives to switch programs
if they were initially assigned to less desired preferences. The second channel, called
the learning channel, suggests that students may learn about their match-qualities during
their college progression, and thus may decide to switch to programs where their match-
qualities—and their expected outcomes in the labor market—are higher. Moreover, we
find significant differences in switch and dropout decisions depending on gender, income
level, and preference of assignments.

Considering these findings, we introduce a structural model that captures students’ de-
cisions during their academic progression, allowing them to learn about their match-
quality from their grades. We use the estimated structural model in two ways. First, we
use it to disentangle the extent to which each of the two behavioral channels explains
students’ switching and dropout decisions. We find that both initial mismatches and
learning play a significant role, with the former explaining close to a third of students’
switchings. Second, we use the model to analyze the effect of a set of counterfactual poli-
cies aiming to elicit the intensity of students’ preferences and account for their dynamic
incentives. We evaluate changes in the re-applications rules—implementing those used
in Turkey and Finland—and the assignment mechanism—adding further constraints on
the length of lists and adding the option for students to signal one of the programs in
their preferences to obtain a score bonus. Our results show that these policies are effec-
tive to increase college retention rates while at the same time increasing students’ welfare,
particularly for low-income students. Moreover, these effects are robust to changes in the
fraction of participants that behave strategically, as opposed to other approaches such as
constraining the length of the lists. However, lack of sophistication in students’ ranking
strategies undermines the effectiveness of these policies, which stress the importance of
giving students correct information about their admission probabilities and helping them
in choosing optimal application lists.

Overall, our results show that incorporating dynamic incentives and eliciting informa-
tion on participants’ cardinal preferences can significantly increase students’ welfare and
downstream outcomes. These insights can be informative to improve the design of many
matching markets that exhibit similar features. For instance, in entry-level labor mar-
kets employers care about turnover, agents may have private information about their
preferences, learn about their match-qualities through experience, and face dynamic con-
siderations, such as deciding when to enter the market (apply), re-enter (re-apply), exit
(dropout), and re-match (switch). Our key insight is that market designers should cor-

47



rectly balance the gains from learning through experimentation and the congestion ex-
ternality produced by initial mismatches to improve the efficiency of these markets.
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Appendix

A APPENDIX FOR SECTION 3

We first analyze whether it is–theoretically possible–to increase aggregate students’ wel-
fare and reduce inefficiencies in the system by changing the assignment mechanism. Fur-
thermore, we provide some intuition on how switching behavior can be affected by the
assignment mechanism in place in a dynamic setting.

Consider a college admissions problem where students can reapply once a year. If stu-
dents face uncertainty over their admission chances, either because of uncertainty on
cutoffs’ realizations or uncertainty over their future application scores, switchings can
endogenously occur over time. As students do not know whether their choice sets could
change or not in the following years, they could choose to enroll in a program in the
first year and switch in the following year to a more preferred program if their choice
sets change. Moreover, if students are uncertain about their match-quality with pro-
grams, and after enrollment, they learn and update their majors’ or universities’ prefer-
ences, allowing for switchings could reduce mismatch problems. Notice that, regardless
of which mechanism dominates, individual switchings and dropouts impose an exter-
nality on universities and students. Given the sequential nature of colleges’ academic
progression, when a student switches at the end of the academic year, the vacancy she
was using is lost for the next year, and, in the absence of a proper transfer system that
allows students to switch at different stages of their college progression, this vacancy can
not be reassigned to other students.

The following example shows how students’ switching behavior can emerge in a dy-
namic matching setting, even in the absence of learning about their match-quality with
their enrolled programs. Furthermore, the example shows how matching mechanisms–
that elicit intensity on students’ preferences–can affect students’ applications, their as-
signments, and their following switching decisions, increasing overall welfare and re-
ducing inefficiencies in the centralized system.

Example 1 (Constrained DA vs Unconstrained DA).

Consider a centralized college admissions problem with re-applications and two periods.
Let the set of students S = {A,B}, and the set of colleges C = {I, II}. Students are
expected utility maximizers. Given their preferences and beliefs about their admission
chances, students make their application decisions. Let Rt

i be the ROL submitted by
student i at time t. After students submit their applications, colleges post their first-year
vacancies. Let qtj be the first-year vacancies posted by college j at time t. In order to
incorporate uncertainty on students’ admission chances, we model colleges’ vacancies
decisions as following a random process, with

P(qtj = 1) = P(qtj = 0) =
1

2
, ∀t, j ∈ {I, II}.
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Notice that, in this example, there are four equally-likely states of the world in every
period regarding vacacies posted.

Students’ preferences are given over their expected assignments. Assume students’ pref-
erences are given by

A : uAI � uAII > 0, B : uBII � uBI > 0

Notice that we have assumed that student A prefers to be assigned to college I consider-
ably more than what she prefers to be assigned to college II , and the opposite is true for
student B. Moreover, to simplify computations, we assume that each student’s payoff
from being assigned to their second preference is strictly positive but close to zero. Each
student i ∈ S has an application score sji for every college j ∈ C. Colleges’ preferences are
defined over the application scores of students assigned to them. Assume that colleges’
preferences are given by

I : sBI > sAI , II : sAII > sBII

We further assume that colleges care about students’ persistence and perceive a cost of τ
per student who drops out. This cost captures the idea that colleges make investments in
their students and that when they switch after the first period, that vacancy is lost due to
the sequential nature of college progression.

After students make their application decisions and colleges post their vacancies, a clear-
inghouse runs a matching algorithm. We analyze students’ college outcomes induced by
two different mechanisms: (i) unconstrained student-proposing DA, and (ii) constrained
student-proposing DA. In both cases, we allow students to apply and switch colleges in
every period at no cost.

Unconstrained student-proposing DA

When the assignment mechanism is unconstrained student-proposing DA, it is a weakly-
dominant strategy for students to report their true preferences, regardless of the uncer-
tainty they face about their current or future admission chances. In every period t, stu-
dents can apply and, if they do so, submit

Rt=1
A : I � II Rt=2

A : I � II

Rt=1
B : II � I Rt=2

B : II � I

Notice, though, that given the payoffs we have assumed for students’ preferences, stu-
dents will only re-apply in the second period if they were unassigned in the first period
or assigned to their second preference in the first period. Let µt (A,B) be the expected
assignment in period t for students A and B. Given students’ applications, college pref-
erences, uncertainty on admission chances, and the assignment mechanism, the expected
assignment at period t = 1 is given by

µt=1 (A,B) =
1

4
◦ (∅, ∅) +

1

4
◦ (I, II) +

1

4
◦ (II, ∅) +

1

4
◦ (∅, I)
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Given their first period assignment, students receive their payoffs and make re-application
decisions. Let µt=2 (A,B|µt=1 (A,B)) be the second period expected assignment, condi-
tional on the realized first period assignment. The second period conditional expected
assignment is then given by

µt=2 (A,B|(∅, ∅)) =
1

4
◦ (∅, ∅) +

1

4
◦ (I, II) +

1

4
◦ (II, ∅) +

1

4
◦ (∅, I)

µt=2 (A,B|(I, II)) =1 ◦ (I, II)

µt=2 (A,B|(II, ∅)) =
1

4
◦ (I, II) +

1

4
◦ (II, ∅) +

1

4
◦ (II, II) +

1

4
◦ (II, I)

µt=2 (A,B|(∅, I)) =
1

4
◦ (I, II) +

1

4
◦ (∅, I) +

1

4
◦ (I, I) +

1

4
◦ (II, I)

Notice that when students were assigned in the first period to their first preference or
when both were unassigned, there are no switchings in the second period. However,
when there was only one vacancy in one of the colleges, both students compete for that
spot in the first period, and the student with the highest application score is assigned.
We have chosen scores and preferences such that when these states of the world realize,
the assigned student is assigned to her second preference. This creates incentives for that
student to re-apply in the second period and try to switch to her first preference. Figure
3.1 depicts this scenario, and its implications to students college persistence and welfare.

LetWDA be the aggregate expected welfare for unconstrained student-proposing DA. We
then get that

WDA ≈
(
uAI + uBII

)
(4 + 9β)

16
− 1

2
τ (A.1)

Were the term 1
2
τ comes from the expected cost that colleges face when students switch.

Constrained student-proposing DA (K=1)

Suppose now that students face a constraint in the length of their reported lists. Under
this mechanism, students can include only one program in their ROLs, so they need to
take into account their admission probabilities. Their optimal ROL includes the college
that gives them the highest expected payoff. Given the payoffs we have specified, the
optimal ROLs are given by:

Rt=1
A : I Rt=2

A : I

Rt=1
B : II Rt=2

B : II

As each student values their first preference significantly more than their second prefer-
ence, they choose to include in their ROLs only their first preference, even though their
admission is uncertain. Under this mechanism, the first period expected assignment is
given by

µt=1 (A,B) =
1

4
◦ (∅, ∅) +

1

4
◦ (I, II) +

1

4
◦ (I, ∅) +

1

4
◦ (∅, II)

Notice that in this case, no student is assigned to their second preference, therefore, no
student wants to switch in the second period. The conditional second period expected
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assignment is then given by

µt=2 (A,B|(∅, ∅)) =
1

4
◦ (∅, ∅) +

1

4
◦ (I, II) +

1

4
◦ (I, ∅) +

1

4
◦ (∅, II)

µt=2 (A,B|(I, II)) =1 ◦ (I, II)

µt=2 (A,B|(∅, II)) =
1

4
◦ (I, II) +

1

4
◦ (I, II) +

1

4
◦ (∅, II) +

1

4
◦ (∅, II)

Figure 3.2 shows how Constrained DA or restricting switchings can reduce the external-
ity aforementioned, improving college persistence and aggregate welfare.

Let WCDA be the aggregate expected welfare for constrained student-proposing DA. We
then get that

WCDA ≈
(
uAI + uBII

)
(8 + 12β)

16
> WDA (A.2)

In the previous example, the expected welfare achieved under constrained DA is higher
than the expected welfare achieved under unconstrained DA. Moreover, as the game is
symmetric, constrained DA gives a pareto-improvement in ex-ante expected utility. Fi-
nally, switching behavior is eliminated, lowering the costs for universities compared to
the outcome of student-proposing DA.

This theoretical example assumes that we can find students like A and B in the data, that
is, students with similar application scores but different assignment preferences. Figure
A.1 shows the distribution of preference of assignment around admission cutoffs. We
observe that a significant fraction of students assigned just above admission cutoffs do
not rank those programs as their top choices.

Figure A.1: Distribution of preference of assignment around admission cutoffs
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B APPENDIX TO SECTION 4

B.1 THE CHILEAN MECHANISM

The Chilean mechanism is a variant of the student-proposing deferred acceptance algo-
rithm61 in which tied students in the last seat of a program are not rejected if vacancies
are exceeded. More formally, the allocation rule can be described as follows:

Step 1. Each student proposes to his first choice according to their submitted ROL. Each
program rejects any unacceptable student, and if the number of proposals exceeds
its vacancies (q), rejects all students whose scores are strictly less than the q-th most
preferred student.

Step k ≥ 2. Any student rejected in step k − 1 proposes to the next program in their
submitted ROL. Each program rejects any unacceptable student, and if the number
of proposals exceeds its vacancies (q), rejects all students whose score is strictly less
than the q-th most preferred student.

The algorithm terminates either when there are no new proposals or when all rejected
students have exhausted their preference lists. The final allocation is obtained by assign-
ing each student to the most preferred program in his ROL that did not reject him. As
a side outcome of this, the algorithm generates a set of cutoffs {s̄j}j∈M , where s̄j is the
minimum application score among students matched to program j ∈ M . Hence, for any
student i with ROL Ri and set of scores {sij}j∈M , the allocation rule can be described as

i is assigned to j ⇔ j ∈ Ri, sij ≥ s̄j and sij′ < s̄j′ ∀j′ ∈ Ri st. j
′ �Ri

j,

where �Ri
is a total order induced by Ri over the set {j : j ∈ Ri} , such that j′ �Ri

j if
and only if program j′ is ranked above program j in Ri.

B.2 ODDS RATIOS

We estimate logit models of the probability of switching majors, universities, or drop-
ping out from the university system, on the preference of assignment. We control for a
comprehensive set of students’ characteristics, including application scores, family back-
ground, gender, access to scholarships, relative position in the program, distance from
student’s municipality to program’s municipality, number of different majors, and num-
ber of different universities listed in the ROL, among others; and programs’ fixed effects.

In Figure B.1, we show the odds ratios for the probability of switching majors and uni-
versities, conditional on the preference of assignment (relative to the top reported pref-
erence). We observe that being assigned to a lower preference significantly increases

61Before 2014; the algorithm used was the university-proposing version. The assignment differences
between both implementations of the algorithm are negligible Ríos et al. (2020).
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students’ probability of switching majors and universities. This finding suggests that,
conditional on observable characteristics, initial preferences play a significant role in stu-
dents’ switching choices.

Figure B.1: Odds of major and university switching
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(b) Universities
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Note: Odds ratios of the probability of switching majors (left) and universities (right) by the preference of
assignment for the 2012 cohort. The reference category is being enrolled in their first reported preference.

B.3 REGRESSION DISCONTINUITIES

This section provides causal evidence that the preference of assignment affects different
outcomes of interest. We use a regression discontinuity design that exploits the algo-
rithm’s cutoff structure to perform the allocation. As a result of the assignment process,
each program gets a cutoff such that all students whose weighted score is above it are
granted admission, whereas all students with scores below the cutoff are wait-listed and
thus may have to enroll in a lower-ranked preference. Hence, if we assume that students
around the cutoff are similar and only differ in their right to enroll in a higher preference,
we can estimate the causal effect of interest.

Formally, we estimate the effect of being assigned in a higher preference using the fol-
lowing specification:

ybp = fp(dbp) + δp · Zbp + εbp, (B.1)

where ybp is the average outcome of interest for students in bin of distance b applying to
preference p, fp is a smooth function of the distance dbp between the bin’s score and the
cutoff of their preference p, Zbp is an indicator function equal to 1 if bin b’s score is greater
than or equal to the cutoff of their p-th preference, and 0 otherwise; and εbp is an error
term.62

62Similar results are obtained running these models at the student-preference level. We report the results
at the bin-preference level to match the plots included.
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Notice that many of the outcomes we consider—e.g., switches, dropouts, stopouts, among
others—rely on students enrolling in the centralized system. If there are significant dif-
ferences in the enrollment rates among students right above and below the cutoff, then
the two samples would not be directly comparable. In that case, there would be a se-
lection problem, and thus we would not be able to—point—estimate the causal effect of
the preference of assignment on the outcomes of interest (Dong, 2017). To show that this
is not the case, in Figure B.2b we show the binned means of the probability of enrolling
in the centralized system as a function of the distance to the cutoff. In addition, the line
represents the predicted values obtained from estimating the regression discontinuity
model described in (B.1) considering as dependent variable the probability of enrolling
in the centralized system. As Figure B.2b and column (1) in Table B.1 show, there are no
significant differences in the enrollment probabilities among students above and below
the cutoff, so we conclude that the potential selection problem is not a concern in our
case.

To assess the causal effect of the preference of assignment on other outcomes, we focus
on students that applied to at least two programs in the centralized system, and we re-
strict the analysis to the top preference of each student for simplicity.63 In Figure 4.3 we
display binned means of different outcomes as a function of the distance between the
cutoffs in their top preference and the students’ scores, while in Table B.1 we report the
corresponding estimation results.

Figure B.2b shows the probability of enrolling in the top preference. As reported in col-
umn (2) in Table B.1, exceeding the cutoff increases the probability of enrollment in the
top preference by 51.3%. Notice that this is not 100% for two reasons: (i) students whose
score exceeds the cutoff may decide not to enroll, and (ii) students whose score was be-
low the cutoff may end-up enrolling after being pulled from the wait-list. Figures B.2c
and B.2d are discussed in Section 4.3, and show that being above the cutoff significantly
reduces the probability of re-applying and switching programs within the system. These
results are confirmed in columns (3) and (4) in Table B.1. Figure B.2e and column (5)
in Table B.1 show a similar pattern, as it shows that the probability of major switching
also decreases among students above the cutoff. In contrast, we observe no significant
difference in university switchings. Finally, in Figure B.2g, we show that there is no ef-
fect of exceeding the cutoff on dropout rates. In contrast, we observe that students that
exceed the cutoff are 2.2% more likely to stop out compared to students below the cutoff,
as shown in Figure B.2h and column (7) in Table B.1. One potential reason for this effect
is that, if students agree in their preferences for programs, there will be a discontinuous
effect in the composition of peers of students above and below the cutoff. For instance, if
a student gets admitted just above the cutoff, she will be at the bottom of the application
scores’ distribution within her assigned program. However, if she falls below the cutoff
of her first preference, she could be at the top of her assigned program’s distribution of
application scores (second preference). If the student’s relative position matters for her
academic achievement, students who are just above the cutoffs could be more likely to

63Notice that we could perform the RD analysis for every cutoff, i.e., we could compute for every pro-
gram the causal effect of being assigned to that program when it is listed as a top reported preference. In
this sense, the causal effect that we estimate under the current specification is the average of causal effects
across all programs that are listed as a top preference.
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receive lower grades and be expelled from their programs, which could be observed in
the data as a stop out.

Table B.1: Effect of Crossing Cutoff

Enroll
Enroll

Top Pref.
Re-App Switch

Switch
Major

Switch
University

Dropout Stopout

(1) (2) (3) (4) (5) (6) (7) (8)

Zip 0.031 0.522∗∗∗ −0.111∗∗∗ −0.040∗∗∗ −0.032∗∗ 0.001 −0.006 0.023∗∗∗

(0.040) (0.035) (0.013) (0.009) (0.010) (0.009) (0.005) (0.006)

Observations 60 60 60 60 60 60 60 60
R2 0.070 0.968 0.907 0.500 0.389 0.181 0.352 0.246
Adjusted R2 0.065 0.966 0.902 0.472 0.356 0.138 0.317 0.206
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

B.3.1 REGRESSION DISCONTINUITIES WITH TRUE PREFERENCES.

Our previous analysis focuses on the effect of being above or below the cutoff of the top
reported preferences on different outcomes. Using the cohort of 2019 and our nationwide
survey, we can perform a similar analysis to estimate the causal effect of being above or
below the cutoff of students’ top-true preferences on their outcomes. In Figures B.3a
and B.3b being above the cutoff significantly reduces the probability of re-applying to
the system and being assigned to a different program in the next year. These results
are consistent with those reported in Figure B.2, with the effect on re-applications being
slightly smaller and that in switching being somewhat larger in magnitude compared to
the analysis above.

Figure B.3: Effect of Cutoff Crossing for Top True Preference
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Figure B.2: Effect of Cutoff Crossing

(a) Enrollment
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(b) Enrollment Top Pref.
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h=0.05,\tn bins=60(c) Re-Application
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(d) Switching
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(e) Switching - Major
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(f) Switching - University
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(g) Dropout
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(h) Stopout
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B.4 ADDITIONAL EVIDENCE

Figure B.4: Distribution Preference of Assignment
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Figure B.5: Distribution of the number of different majors and universities in a ROL
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(b) Universities
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Figure B.6: Difference between expected cutoff for first true preference and expected
cutoff for first listed preference
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Figure B.7: Share of Truth-Tellers among Constrained vs. Short-List Students
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Figure B.8: Distribution of Optimism

Figure B.9: Differences in cutoffs between switched and initial program by switching
category
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C APPENDIX FOR SECTION 5

C.1 LEARNING

Proposition 1 allows us to obtain the posterior mean and variance for student i’s un-
known ability in any program j′. We show how the student’s statistical problem can be
re-written to make inference about each component in Auij .
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To make inference about Auimj
we can write

Auijt = Auij + εgijt

⇔ Auijt = Auimj
+
∑
k

ωjkA
u
ik + εgijt

⇔ Auijt = Et−1

[∑
k

ωjkA
u
ik

]
+ νgti

⇔ Auijt − Et−1

[∑
k

ωjkA
u
ik

]
= νgti

where

νgti ∼ N

(
Auimj

, σ2
g +

∑
k

ω2
jkσ

2
s

)
(C.1)

where now we treat Auijt − Et−1 [
∑

k ωjkA
u
ik] as the new signal, and we make inference

about Auimj
. This statistical problem now fits into DeGroot (2005)’s framework. We can

similarly make inference about each Auil as follows

Auijt = Auij + εgijt

⇔ Auijt = Auimj
+
∑
k

ωjkA
u
ik + εgijt

⇔ Auijt = Et−1

[
Auimj

]
+ Et−1

[∑
k 6=l

ωjkA
u
ik

]
+ ξgtil

⇔ Auijt −

(
Et−1

[
Auimj

]
+ Et−1

[∑
k 6=l

ωjkA
u
ik

])
= ξgtil

⇔
Auijt −

(
Et−1

[
Auimj

]
+ Et−1

[∑
k 6=l ωjkA

u
ik

])
ωjl

=
ξgtil
ωjl

where
ξgtil
ωjl
∼ N

(
Auil,

σ2
g + σ2

m +
∑

k 6=l ω
2
jkσ

2
s

ω2
jl

)
(C.2)

We can now write the posterior mean unknown ability if the student i enrolls in program
j′ in the second period, after receiving the first period signal aij1 in program j:

E1

(
Auij′
∣∣aij1) = E1

(
Auimj′

+
∑
k

ωj′kA
u
ik

∣∣aij1)
= E1

(
Auimj′

∣∣aij1)+
∑
k

ωj′kE1

(
Auik
∣∣aij1) .
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Notice that if the student switches majors, i.e mj′ 6= mj , she learns nothing about her
major-specific unknown ability in her new program. This implies that the posterior mean
equals the prior, that is,

E1

(
Auimj′

∣∣aij1) = 0.

So the posterior mean is given by

E1

(
Auimj′

∣∣aij1) =

{
0 if mj′ 6= mj

σ2
maij1

σ2
g+
∑

k ω
2
jkσ

2
s+σ2

m
o.w

(C.3)

We now turn to compute the posterior mean for the subject-specific unknown ability, i.e,
E1

(
Auik
∣∣aij1) ∀k. Although the student’s subject-specific unknown ability does not vary

across programs, given that grades depend on the average ability, and average ability
varies depending on the program-specific admission weights ωj , the amount of subject-
specific unknown ability learned by the student will be program-specific.

The subject-specific posterior unknown ability is given by

E1

(
Auil
∣∣aij1) =

ωjlσ
2
saij1

σ2
g + σ2

m +
∑

k ω
2
jkσ

2
s

(C.4)

Finally, we can write the posterior mean for the unknown ability in any program j′ by

E1

(
Auij′
∣∣aij1) =


∑

l ωj′lωjlσ
2
saij1

σ2
g+σ2

m+
∑

k ω
2
jkσ

2
s

if mj′ 6= mj

σ2
maij1

σ2
g+
∑

k ω
2
jkσ

2
s+σ2

m
+

∑
l ωj′lωjlσ

2
saij1

σ2
g+σ2

m+
∑

k ω
2
jkσ

2
s

o.w
(C.5)

Intuitively, the posterior mean places more weight on the signal for the subjects with a
higher admission weight in ωj . In this sense, student i learns more about her math ability
if she enrolls in Engineering, which has a high admission weight on math.

C.2 MODEL SOLUTION

In this subsection, we describe the solution of the model via Backward Induction.

In period three, the terminal value function is given by

Vijt(µij2, τijt) = Et

 Tf∑
t′=τijt+1

P gijt′

Eε

t′−(τijt+1)∑
t′′=0

βt
′′
uij(t+t′′)

+ βt
′−τijt V w

ij(t+t′−τijt)(µij2)︸ ︷︷ ︸
Value fcn Labor market




+ Et

 Tf∑
t′=τijt+1

P dijt′

Eε

t′−(τijt+1)∑
t′′=0

βt
′′
uij(t+t′′)

+ βt
′−τijt Vi0(t+t′−τijt)︸ ︷︷ ︸

Value fcn Dropout


 ,
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where µij2 is the posterior unknown ability of student i in program j after observing the
period one signal, and τijt is the number of academic years the student has completed
in program j, at the beginning of period three. In period three, there are no decisions to
be made, and the value functions can be collapsed to the period two value functions of
enrolling in program j in the following way:

Vijt(µij2, τijt) = uijt − 1{(j 6=0)∩(τijt=0)}C
e + βEε [Vijt+1(µij2, τijt+1)]

where Ce is a first-time enrollment cost.

The value function in period one is then given by

Vijt(µij1, τijt, ~sit) = max
dsit

E0

[
uijt − dsitCpsu − 1{j 6=0}C

e+

β

∫
aij1

∫
~sit+1

EmaxROL(τijt + 1, ~sit+1, µi2(aij1))︸ ︷︷ ︸
continuation value of reapplications

dπ(aij1)︸ ︷︷ ︸
signal

dF (~sit+1|~sit, dsit)︸ ︷︷ ︸
future scores

]
.

Notice that in period one, the value function of enrolling in program j considers that
the student will update her beliefs about her unknown abilities for every program (µi2),
that in the next period, her scores could change if she retakes the PSU (dsit = 1), and
that she will have the option of submitting an optimal application in the second period
(EmaxROL (·)). In Appendix C.4 we derive analytical expressions for the continuation
value of re-applications.

Actions. In periods one and two, students can choose to submit an application list. The
indirect utility over assignment for student i to program k in period t, given her current
enrollment in program j, vikt|j, can be written as:

vikt|j = P e
it · Vikt + (1− P e

it) ·max{Vi0t, Vijt}

Given students’ indirect utilities over the assignment and their beliefs about admission
probabilities, students choose an application list—depending on their application type—
as detailed in Section 5.4.2.

C.3 MIA

Chade and Smith (2006) shows that the optimal portfolio problem is NP-Hard. However,
when admission probabilities are independent64 and the cost of applying to a subset of

64Notice that in our case we have assumed in Assumption 6 independence of beliefs on admission
probabilities.
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programs S only depends on its cardinality, i.e., ci(S) = c(|S|) for some function c, the
unconstrained problem is Downward Recursive, and the optimal solution is given by a
greedy algorithm called Marginal Improvement Algorithm (MIA).

MIA: Marginal Improvement Algorithm (Chade and Smith (2006))

• Initialize S0 = ∅

• Select jn = arg maxj∈M\Sn−1{U(Sn−1 ∪ j)}

• If U(Sn−1 ∪ jn)− U(Sn−1) < c (Sn−1 ∪ jn)− c (Sn−1), then STOP.

• Set Sn = Sn−1 ∪ jn

MIA recursively adds programs that give the highest marginal improvement to the port-
folio, as long as they exceed the marginal cost of adding them. Olszewski and Vohra
(2016) show that MIA also returns the optimal ROL when the number of applications is
constrained and when c(S) is supermodular. If Assumption 6 does not hold, the strict
inequality in MIA’s stopping criteria becomes a weak inequality. In this case, if students
face degenerate admission probabilities, there could be multiplicity of best response (He
(2012)). We discuss this potential identification threat in Larroucau and Ríos (2018). As-
sumption 6 is a sufficient condition to rule out the multiplicity of best response.

C.4 EMAXROL

In this subsection, we analyze the problem of computing the expected value of report-
ing an optimal ROL in the centralized system, where the expectation is taken over next
period preference shocks. Formally, let the utility of being assigned to program j by
uj = ūj + εj , then define the EmaxROL by

EmaxROL := Eε
[
U(Rmax) := max

R′∈R,|R′|≤K
U(R′)− c(R′)

]
(C.6)

where, given Assumption 6 and a ROL R = {r1, . . . , rk},

U(R) = zr1 + (1− pr1) · zr2 + . . .+
k−1∏
l=1

(1− prl) · zrk , (C.7)

where zj = pj · uj = pj · (ūj + εj) for each j ∈M .

Finding a—potentially—closed-form solution to this problem is relevant because it al-
lows us to characterize the continuation value in any dynamic model where students can
make application decisions over time. However, to the extent of our knowledge, this
problem has not been analyzed in the literature yet. The following example shows why
this problem is different from computing the continuation value in a dynamic discrete
choice model, usually referred to as Emax operator, or inclusive value.
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Example 2 (EmaxROL).

Consider a portfolio problem where students can submit ROLs of length K = 1 and
there is no cost of application, i.e, c(R) = 0, ∀R ∈ R. In this case, the EmaxROL problem
simplifies to the expectation—over the preference shocks—of choosing the program that
gives the highest expected utility over assignment, that is

EmaxROL := Eε
[
U(Rmax) := max

R′∈R,|R′|≤K
U(R′)− c(R′)

]
= Eε

[
max
j′∈J

pj(ūj + εj)

]
= Eε

[
max
j′∈J

pjūj + pjεj

]
Event though in this case the EmaxROL reduces to the expectation of choosing the best
alternative in a discrete choice problem, now the preference shocks are weighted by—
potentially different—admission probabilities {pj}. This key difference—compared to
a traditional discrete choice problem—makes that, even if we assume that preference
shocks are distributed i.i.d type-I extreme value, the resulting random shocks, pjεj , won’t
have equal variance. This implies that the inclusive value formulas derived in Rust (1987)
do not hold.

The previous example shows that, in general, the EmaxROL will not have a closed-form
solution, even when preference shocks are distributed i.i.d type-I extreme value. We
show now sufficient conditions under which the EmaxROL can be efficiently approxi-
mated.

C.4.1 PAIRWISE-STABILITY

Under mild assumptions, Fack et al. (2019) shows that the allocation outcome from con-
strained DA satisfies pair-wise stability with respect to students’ true preferences. We
can exploit this fact for efficiently computing the EmaxROL.

When the allocation satisfies pair-wise stability, the problem of the student reduces to
choosing the most preferred program among the programs for which she is ex-post ad-
missible. That is, given a realization of programs’ cutoffs, {Pj}J , student i’s allocation ,
µ(i|{Pj}j∈J ), satisfies pair-wise stability if and only if

µ(i|εi, {Pj}j∈J ) = argmax
j∈Ji({Pj}j∈J )

ūij + εij (C.8)

where
Ji({Pj}j∈J ) := {j ∈ J : sij ≥ Pj}

⋃
{j = 0} (C.9)
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This implies that we can write the EmaxROL as follows

EmaxROL := Eε
[
U(Rmax) := max

R′∈R,|R′|≤K
U(R′)− c(R′)

]
= E{Pj}j∈J

[
Eεi
[

max
j∈Ji({Pj}j∈J )

ūij + εij
∣∣{Pj}j∈J ]]

and when εij are distributed i.i.d type-I extreme value, the previous expression reduces
to

EmaxROL = E{Pj}j∈J

[
Eεi
[

max
j∈Ji({Pj}j∈J )

ūij + εij
∣∣{Pj}j∈J ]]

= E{Pj}j∈J

log

 ∑
j∈Ji({Pj}j∈J )

exp (ūij)

+ γ

 ,
where γ is the Euler’s constant.

If we take the distribution of cutoffs to be invariant to students’ individual reports, fol-
lowing a similar argument than Agarwal and Somaini (2018); we can estimate in a first
stage the distribution of cutoffs {P̂j}j∈J and then estimate the structural parameters of
the model. This implies that we can compute the frequency of the random sets by us-
ing the bootstrap realizations of the cutoffs Ji({P b̃

j }j∈J ) just once, where b̃ = 1, ..., B̃ is a
random sample of the bootstrap realizations of the cutoffs. We can then approximate the
EmaxROL by doing

EmaxROL = E{Pj}j∈J

log

 ∑
j∈Ji({Pj}j∈J )

exp (ūij)

+ γ


≈

∑
b̃∈B̃ log

(∑
j∈Ji({P b̃

j }j∈J )
exp (ūij)

)
+ γ

B̃

Pairwise stability in the dynamic problem. We can a follow similar calculations than before
and give an expression for the expected value of reporting a ROL in our dynamic set-
ting. The expected value over assignment to program k, given that student i is currently
enrolled in program j, is given by

vikt = P e
itVikt + (1− P e

it) max{Vi0t, Vijt}
= P e

it

(
V̄ikt + εikt

)
+ (1− P e

it) max{V̄i0t + εi0t, V̄ijt + εijt}

then we can write

Eε
[
max
k
vikt

]
= Eε

[
max
k
P e
it

(
V̄ikt + εikt

)
+ (1− P e

it) max{V̄i0t + εi0t, V̄ijt + εijt}
]

= P e
itEε

[
max
k

(
V̄ikt + εikt

)]
+ (1− P e

it)Eε
[
max{V̄i0t + εi0t, V̄ijt + εijt}

]
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and we get that

EmaxROL(τijt, ~sit, aij1) ≈∑
b̃∈B̃ P

e
i log

(∑
k∈Ji({P b̃

k}k∈J ,~sit)
exp

(
V̄ikt
))

B̃
+ (1− P e

i ) log
(
exp

(
V̄ijt
)

+ exp
(
V̄i0t
))

+ γ

Finally, when students re-take the PSU in the first period, dsit−1 = 1, we also need to
integrate over students’ future scores. Under Assumption 5 and using Gauss-Hermite
polynomials, we can approximate the integral with stochastic scores over EmaxROL by∫
~sit

EmaxROL(τijt, ~sit, aij1) dF (~sit|~sit−1, d
s
it−1)︸ ︷︷ ︸

future scores

≈

1√
π

nw∑
k=1

wk


∑

b̃∈B̃ P
e
i log

(∑
l∈Ji

(
{P b̃

l }l∈J ,
~skit

) exp
(
V̄til
))

B̃

+ (1− P e
i ) log

(
exp

(
V̄ijt
)

+ exp
(
V̄i0t
))

+ γ

where
~skit = max{~skit−1, s̃kit} (C.10)

with

s̃kilt =

{
αl(1 +

√
2σpsuxk)silt if silt > 0

α0l(1 +
√

2σpsuxk)s̄it if silt = 0

where nw is the number of nodes at which we evaluate the integrand and wk is the k-th
integration weight for the k-th integration node xk, given by the Gauss-Hermite formula.
The accuracy of the previous approximation will depend on the number of nodes used
to approximate the integral, nw, and the number of joint draws of the cutoff scores, B̃.

D APPENDIX FOR SECTION 6

D.1 IDENTIFICATION OF WAGE PARAMETERS WITH AGGREGATE DATA

The following example gives intuition in how the wage equation’s parameters can be
identified with aggregate-level data.

Example 3 (Identification with aggregate labor market information).

Consider the following simpler log-wage equation:

log(wijτ ) = λ1mj
+ λkj2 + λ4mj

Ḡij + εijτ (D.1)
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We can compute the average log-wage for each program j as

log(wijτ ) = λ1mj
+ λkj2 + λ4mj

Ḡij + εijτ∑Nj

i=1 log(wijτ )

Nj

= λ1mj
+ λkj2 + λ4mj

Ḡj +

∑Nj

i=1 εijτ
Nj

¯log(wjτ ) = λ1mj
+ λkj2 + λ4mj

Ḡj + ε̄wjτ

Variation in the average of log wages across programs, identifies the parameters. In par-
ticular, the terms λ1mj

and λkj2 capture the mean wage for programs within a broad major
and within a university type. Variation on programs’ average grades Ḡj identifies the
coefficient λ4mj

Ḡj .

D.2 IDENTIFICATION FROM RE-APPLICATIONS

This subsection shows that we can use students’ reapplications and a revealed prefer-
ences approach to obtain information about how much students’ preferences change over
time.

Analyzing ROLs when students are not truth-tellers is challenging because ROLs are the
product of both beliefs on admission chances and preferences over programs. Observing
two different ROLs in two periods does not immediately imply that students’ prefer-
ences are changing because their beliefs on admission probabilities could also be chang-
ing. Moreover, if there is degeneracy on students’ admission probabilities, there could be
multiplicity of best response, which further complicates the analysis. Fortunately, Agar-
wal and Somaini (2018) show how we can identify the set of students’ indirect utilities
that are rationalized by a given ROL R if we can estimate beliefs in a first stage, and
Larroucau and Ríos (2018) extend their methodology to construct this set in large scale
portfolio problems like the Chilean College Admissions problem. We use their insights
to construct a learning measure from observed reapplications, which does not involve
parametric assumptions on the learning process nor the utility function. However, it
does rely on estimating beliefs on admission probabilities in the first stage and assuming
that students maximize their expected utility over the assignment given their subjective
beliefs and preferences.

Let vt be a vector of indirect utilities over programs at time t such that vt = {v1t, ..., vJt},
v0t ≡ 0 to be the value of being unassigned to the centralized system at time t, {pt} to
be the set of admission probabilities at time t, and Rt, to be a ROL submitted at time t.
Larroucau and Ríos (2018) show that, under Assumption 6, the set of indirect utilities
that rationalizeRt to be an optimal ROL, Cv(Rt) , is given by the solution to the following
system of linear inequalities:

Cv(Rt) ≡ {vt : ΓRt (vt − v0t) ≥ 0} (D.2)

where ΓRt is a matrix that encodes, by row, the implied admission probabilities of re-
porting Rt minus the implied admission probabilities of reporting a ROL R̃t that could
dominate Rt in expected utility terms.
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We can construct the corresponding set of indirect utilities that is implied by a reappli-
cation Rt+1, when the outside option is given by v0t+1 ≡ max{0, vkt+1}, where vkt+1 is the
indirect utility of being enrolled in program k at time t+ 1:

Cv(Rt+1) ≡ {vt+1 : ΓRt+1 (vt+1 − v0t+1) ≥ 0} (D.3)

We now give a sufficient condition to test for the variation of students’ preferences over
time:

Proposition 2 (Identification from reapplications).
Let Cv(Rt)|v0t, {pt}, and Cv(Rt+1)|v0t+1, {pt+1} be defined by Equations D.2 and D.3 respec-
tively, then,

Cv(Rt) ∩ Cv(Rt+1) = ∅ ⇒ P (vt 6= vt+1) = 1 (D.4)

Proposition 2 has testable implications: we can construct a metric for measuring the
change of preferences’ over time, that is implied by students’ reapplications, by char-
acterizing the set Cv(Rt) ∩Cv(Rt+1). The set Cv(Rt) ∩Cv(Rt+1) is given by the solution to
the following system of linear equations:(

ΓRt

ΓRt+1

)(
v

v −max{0, vk}

)
≥ 0 (D.5)

thus, Cv(Rt) ∩ Cv(Rt+1) is empty if, and only if, the previous system of linear equations
has no solution.

E APPENDIX FOR SECTION 7

E.1 AUXILIARY MODEL AND WEIGHTING MATRIX

We describe below the regressions and moment conditions we use in the estimation and
the sets of parameters that explain most of each moment’s variation.

GRADE EQUATIONS. The auxiliary model that targets the grade equations’ structural
parameters (γ) are given by the regression analogs of Equations 5.9 and 5.10:

Gij1 = βγ1mj
+ βγ2Aij + βγ3Z

g
i + βγ41{j = R1i(1)}+ βγ5 s1imj

+ βγ6 s1ikj + εgij1, (E.1)

and
Gij2 = (βγ7 + βγ8S)Gij1 + βγ9 + γ10S + εgij2. (E.2)

where s1imj
and s1ikj are the shares of major mj and college-type kj in the ROL of student

i in period 1 respectively, 1{j = R1i(1)} is an indicator function that equals to 1 if the
student is assigned to her top-reported preference in period 1, and S = 1 if the student is
in her second academic year, and S = 0 otherwise.
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WAGE EQUATION. The auxiliary models that target the parameters in the wage equa-
tion (λ) are given by:

log(w̄j(τ=4)) = βλ1mj
+ βλ2 Ākj + βλ3 Ḡj + βλ4 Z̄

w + εj(τ=4),

and
log(w̄mjτ ) = βλ5mj

+ βλ6mj
τ + βλ7mj

τ 2 + εmjτ ,

where τ is tenure after graduating65.

NON-PECUNIARY LABOR MARKET PARAMETERS. The auxiliary model that targets the
parameters that specify the non-pecuniary payoffs in the work force (αw) is given by the
following linear probability model:

yij = βw1 s1imj
+ βw2 1{j = R1i(1)}+ βw3 Aij + βw4 Ākj + βw5 Z

g
i + εwij (E.3)

where

LEARNING PARAMETERS. The auxiliary models that target the parameters associated
with students’ learning process (σ2

s , σ2
m, σ2

g , and αw4 ) are given by the following linear
probability models of switchings and dropout:

For each outcomeO ∈ {switching major, switching math-type, switching program,dropping out}

Oij = βo1mj
+ βo2Aij + βo3Z

g
i + βo41{j = R1i(1)}+ βo5s1imj

+ βo6s1ikj + βo7Gij1 + εoij, (E.4)

where Oij equals one if student i enrolled in program j, switches major, switches math-
type, switches program, or drops out respectively, and zero otherwise.

MOMENT CONDITIONS. We incorporate additional moment conditions to compute the
objective function, capturing the identifying variations detailed in Section 6. Table E.1
summarizes the moment conditions and the targeted parameters:

WEIGHTING MATRIX AND STANDARD ERRORS. We use as a weighting matrix a diago-
nal matrix. Each element in the diagonal is the inverse of each data moment’s variance,
which we obtain via a bootstrap procedure. We weight up three moments in the weight-
ing matrix that are key to identify the parameters involved in the learning process: the
correlation between students’ first-year college grades and the norm of the difference be-
tween the vectors of majors and broad-majors shares for students who reapply, and the
norm of the difference between the vectors of ω shares for students who reapply. We do
not use the optimal weighting matrix because of the numerical complexities involved in
computing the derivatives of the objective functionQ(θ). Therefore, our estimator will be
unbiased but not efficient. Due to the first-stage estimation of students’ beliefs, we need
to estimate standard errors following a bootstrap procedure.

65See Section 4.2 for a description of the aggregate data on wages.
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Table E.1: Estimation moments

Moment description Targeted parameters

Share of students who retake the PSU Cpsu

Share of students who dropout by gender and income level {αd}d, αw, Ce

Grade auxiliary model 1 coefficients γ, σ2
g

Grade auxiliary model 2 coefficients γ, , σ2
g

Wage auxiliary model coefficients λ
Switchings and dropout auxiliary model coefficients σ2

g , σ2
m, σ2

s , αw4
Share of students who reapply
Share of students who switch programs σ2

m, σ2
s , Vαm , Vαk , Ce

Share of students who switch majors σ2
m, Vαm

Share of students who switch college-types Vαk

Share of students who dropout at the end of the first year of college αw

Share of students who choose the outside option every year αw

Share of students who start college in the second year
Share of students who remain in the same program after two years
Share of top-true preferences by program,
grouped by students’ scores and income groups α1, α2

Share of students whose top-reported preference is their top-true preference in R1 ρ
Share of students whose top-reported preference is their top-true preference in R2 ρ
Share of students whose top-reported preference has zero admission probability ρ
Share of ROLs R1 with length 10 ρ
Share of ROLs R2 with length 10 ρ
Share of students who apply in the first year
Share of students who apply in the second year
Share of reapplications that change in their top-true preference σ2

m, σ2
s , Vαm , Vαk

Shares of majors within R1 Vαm

Shares of college-types within R1 Vαk

Shares of majors within R2 Vαm

Shares of college-types within R2 Vαk

1 Norm of the difference between the vectors of college-type
shares for students who reapply Vαk

Norm of the difference between the vectors
of major shares for students who reapply σ2

m, Vαm

1 Norm of the difference between the vectors of ω shares for students who reapply σ2
s , Vαm , Vαk

Correlation between first-year grades and the norm of the difference between the vectors
of major shares for students who reapply σ2

m, σ2
g

1 Correlation between first-year grades and the norm of
the difference between the vectors of ω shares for students who reapply σ2

s , σ2
g

Share of applications by major and college-type, grouped by gender in R1 ∆m, ∆k

Share of applications by major and college-type, grouped by gender in R2 ∆m, ∆k

Share reapplications from top-reported preferences
Share reapplications from top-true preferences
Mean and variance of tuition for top-reported preferences, grouped by students’ scores and income groups {αc}c
Mean and variance of tuition for top-true preferences, grouped by students’ scores and income groups {αc}c
Mean and variance of distance for top-reported preferences α3

Mean and variance of distance for top-true preferences α3

Mean and variance of relative observed ability position for topreported preferences α4

Mean and variance of relative observed ability position for toptrue preferences α4

Mean and variance of log
(
slt+1

slt

)
for positive PSU scores {αl}l, σpsu

Mean and variance of log
(
slt+1

s̄t

)
for PSU scores wit zero value in the first year {α0l}l ,σpsu

Note: 1 These statistics are computed conditional on the major/college-type of initial assignment.
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E.2 TECHNICAL CONSIDERATIONS

The structural model has a mixture of continuous and discrete outcomes. This feature
complicates the estimation procedure for a simulation-based method like II, because the
objective function, Q (θ), becomes a multidimensional step function which inherits the
discontinuities produced in the simulated data66. Bruins et al. (2018) propose a solu-
tion to overcome these computational difficulties by introducing noise and smoothing
to the objective function. They refer to this estimation procedure as “Generalized In-
direct Inference" (GII). With the smoothed objective function, the researcher can use a
gradient-based optimization method to minimize the objective function, which tends to
be faster than gradient-free optimization routines. We choose to avoid this smoothing
procedure, and we estimate the objective function and find the global optimum using
MIDACO solverSchlueter et al. (2013)67. We choose to do this because the model has
close to 80 parameters to be estimated, and the gradient must be computed through nu-
merical simulation. Thus, the evaluation of the gradient would take several minutes.
The computational time of this approach could be significantly reduced by paralleliz-
ing the numerical approximation of the gradient. However, we have chosen to paral-
lelize the objective function’s computation instead and increase the number of draws in
the forward-simulation stage to smooth the objective function. As solving the model
and forward-simulating outcomes are completely independent across students, we par-
allelize the algorithm’s outer loop to evaluate Q (θ).68

Algorithm 1 Computing Q (θ)

Input. Value of the structural parameters θ, and first-stage estimates p̂, P̂ e, P̂ d, P̂ g, and
P̂w.
Output. Value of the objective function Q (θ).
Step 1. For each student i, program j, and simulation b

Step 1.a. Draw a vector of random coefficients αmrc
i ,

Step 1.b. Solve the model by backward-induction,
Step 1.c. For each simulation in Ns and for each date, Draw a vector of preference

shocks εms,mrc

i , enrollment shocks εe,ms,mrc

i , wage shocks εms,mrc

i , vector of random cutoff
scores Pms,mrc from the empirical distribution of cutoffs, vector of PSU score shocks
νms,mrc

i , vector of unknown abilities Au,ms,mrc

i , and grade shocks εg,ms,mrc

i

Step 1.d. Forward-simulate the model and obtain a set of outcomes yms,mrc

i ,
Step 2. For each simulation, estimate the auxiliary model parameters, β̂ms,mrc (θ), on
the simulated sample
Step 3. Compute β̄ (θ) = 1

Nrc×Ns

∑
mrc

∑
ms
β̂ms,mrc (θ)

Step 4. Return Q (θ) :=
(
β̄(θ)− β̂

)T
W
(
β̄(θ)− β̂

)

66For a given realization of the random shocks, measures constructed from discrete outcomes of the
model, change discontinuously when we change the value of the structural parameters.

67MIDACO uses an evolutionary hybrid algorithm based on the Ant Colony Optimization (ACO) meta-
heuristic (Schlueter et al. (2009))

68The model is coded in RcppArmadillo and parallelized with OpenMP.
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E.3 RESULTS

F APPENDIX FOR SECTION 8

Index each counterfactual experiment and the baseline model by τ , then the Rational
Expectations equilibrium cutoff distributions, p̂ (τ), can be computed with the following
algorithm:

Algorithm 2 Computing p̂ (τ)

Input. Structural parameter estimates θ̂, first-stage estimates p̂, P̂ e, P̂ d, P̂ g, and P̂w, and
tolerance level εtol.
Output. Rational Expectations equilibrium cutoff distributions p̂ (τ)
Step 1. For each program j

Step 1.a. Solve the model and simulate outcomes given the rules implied by coun-
terfactual τ and the estimated objects

(
θ̂, p̂, P̂ e, P̂ d, P̂ g, P̂w

)
Step 1.b. Obtain a set of simulated ROLs and scores (R0

1, R
0
2, s

0
1, s

0
2)

Step 1.c. For each program j, estimate the mean and standard deviation of the
cutoff distributions δ̂0

j ≡
(
µ̂0
j , σ̂

0
j

)
Step 2. δdiff = 2εtol, k = 1, ρ = 0.9
Step 3. While δdiff > εtol

Step 3.a. For each student i, solve the model via Backward Induction given τ , the
estimated parameters

(
θ̂, P̂ e, P̂ d, P̂ g, P̂w

)
, and cutoff distributions p̂k−1, and obtain the

continuation values for each student and state
Step 3.b. Forward simulate first period ROLRk

i1 given τ , the estimated parameters(
θ̂, P̂ e, P̂ d, P̂ g, P̂w

)
, cutoff distributions p̂k−1, and continuation values

Step 3.c. For each program j, estimate the mean and standard deviation of the
cutoff distributions δ̂0

j ≡
(
µ̂0
j , σ̂

0
j

)
Step 3.d. Given initial first period applications Rk

1 , second period applications
Rk−1

2 , and students’ scores sk1, and sk−1
2 , run the Chilean matching mechanism and ob-

tain an allocation µk
(
Rk

1 , R
k−1
2 , sk1, s

k−1
2

)
Step 3.e. Given µk

(
Rk

1 , R
k−1
2 , sk1, s

k−1
2

)
, τ , the estimated parameters(

θ̂, P̂ e, P̂ d, P̂ g, P̂w
)

, cutoff distributions p̂k−1, and continuation values, forward

simulate second period ROLs Rk
i2

Step 3.f. Given
(
Rk

1 , R
k−1
2 , sk1, s

k−1
2

)
, run the boostrap procedure and estimate the

Rational Expectations cutoffs distributions p̃k Take a convex combination of the real-
ized cutoffs p̃k and p̂k−1 (point wise), i.e, p̂k = ρkp̂k−1 +

(
1− ρk

)
p̃k

Step 3.g. Estimate the mean and standard deviation of the cutoff distributions
δ̂kj ≡

(
µ̂kj , σ̂

k
j

)
Step 3.h. Compute δdiff = ||δ̂k − δ̂k−1|| p̂ (τ) = p̂k−1 k + +

Under Assumption 8 the previous algorithm can be reduced to:
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Table E.2: Estimation Results - Parameters

Parameters Values

Application behavior and Dropout
Share of strategic ROLs (1− ρ) 0.89
Cost of retaking PSU (Cpsu) 0.05
Dropout flow-utility for females (αdropoutfemale ) 6.06
Dropout flow-utility for males (αdropoutmale ) 7.83
Dropout flow-utility for low-income (αdropoutlow−income) 1.65
First-time enrollment cost (Ce) 10.0

Flow-utility and Priors
Tuition Common term (αc0) -0.29
Tuition Low-income (αc1) -1.59
Tuition Above-median score (αc2) -0.92
Relative position (α4) 0.354081
Distance (α3) -1.37695
Student observed ability (α1) 3.37879
Program observed ability (α2) 4.77871
Constant by major (∆m) (3.58, 2.63, -0.24, 2.92)
Gender effect by major (∆m) (0.37, -1.46, 2.96, 2.39)
Variance major random coefficient (σ2m

α ) 14.70
Constant by college (∆k) (-2.91, -0.65, 0.21)
Income effect by college (∆k) (-2.72 4.39, 2.75)
Variance college random coefficient (σ2k

α ) 13.17
Major prior variance (σ2

m) 0.95
Subject prior variance (σ2

s ) 1.61

Grade equations
Constant by major (γ1mj

) (3.74, 3.07, 4.77, 3.05)
Student observed ability (γ2) 0.27
Gender effect (γ3) 1.39
Random coefficient effect on grades (major) (γ4) 0.11
Random coefficient effect on grades (colleges) (γ5) 0.03
Grade shock variance (σ2

g) 0.62
Second year intercept (γ6) 0.0
Second year slope (γ7) 2.16

Evolution of scores
Variance of ν (σ2

psu) 0.02
Mean proportional change (Verbal, Math, History, Science) ({αl}l) (1.07, 1.04, 1.06, 1.06)
Mean proportional change from zero score (History, Science) ({α0l}l) (1.04, 1.02)

Non-pecuniary work utility
Major random coefficient (αw1 ) 31.13
Student observed ability (αw2 ) 7.32
College observed ability (αw3 ) 3.98
Non-pecuniary work value of unknown ability (αw4 ) 170.17
Pecuniary work utility parameter (αw5 ) 21.11

Wage parameters
Constant by major (λ1mj

) (-0.49, -0.24, -0.46, -0.35)
College observed ability (λ2) 0.35
Grades (λ3) 0.10
Gender effects by major (λ4) -0.27
Wage shock variance (σ2

w) 0.80

Wage growth
Linear term by major (λ5mj

) (0.00, 0.15, 0.30, 0.32)
Quadratic term by major (λ6mj

) (-0.06, -0.01, -0.06, -0.24)
Notes: the order of majors is Social Sciences, Science, Education and Humanities, and Health.
Notes: the order of colleges is CRUCH-Public, CRUCH-Private, and Non-CRUCH.
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Table E.3: Estimation Results - Goodness of Fit (I)

Targets Model Data

Share retakers 0.273326 0.228102
Share dropouts 0.0811526 0.0497383
Share dropouts females 0.0797434 0.0427122
Share dropouts low-income 0.0724375 0.0474016
Share reapplicants 0.226216 0.116105
Share program switching 0.0568454 0.0554627
Share broad major switching 0.0137196 0.0161918
Share major switching 0.0478247 0.028331
Share university switching 0.0298804 0.0254052
Share college type switching 0.0146598 0.0139202
Share dropout end of first period 0.0563505 0.0233881
Share enrolls first in second period 0.0879897 0.359744
Share first year in second period 0.145701 0.150578
Share second year in second period 0.212934 0.26899
Share true pref. is top reported in ROL 1 0.419464 0.420469
Share true pref. is top reported in ROL 2 0.538836 0.47449
Share of ROLs of length 10 (first year) 0.118162 0.0632714
Share of ROLs of length 10 (second year) 0.113908 0.0652281
Share of students that apply (first year) 0.493095 0.513829
Share of students that apply (second year) 0.242447 0.184433
Share of students that change top true pref. 0.383797 0.653061
Share re-apps from top-reported prefs 0.600709 0.250274
Share re-apps from top-true prefs 0.22289 0.0668449
Mean tuition of top-reported prefs 3.60992 3.98598
Mean tuition of top-true prefs 3.73253 4.08897
Var tuition of top-reported prefs 0.803022 0.939992
Var tuition of top-true prefs 0.826379 1.00018
Mean distance of top-reported prefs 6.07096 13.206
Mean distance of top-true prefs 5.67945 12.4723
Var distance of top-reported prefs 26.6432 122.853
Var distance of top-true prefs 25.0246 136.235
Mean relative position of top-reported prefs -0.541089 0.0308099
Mean relative position of top-true prefs -2.45742 -1.6442e-18
Var relative position of top-reported prefs 6.86152 0.912193
Var relative position of top-true prefs 12.6331 0.934617
Mean average share math types ROL (year 1) 0.3612 0.6388 0.3935 0.6065
Mean average share math types ROL (year 2) 0.4091 0.5909 0.4667 0.5333
Mean norm diff broad major shares from outside option 0.0830831 0.336654
Mean norm diff broad major shares from outside option 0.180933 0.416953
Mean norm diff math types shares 0.348243 0.288687
Mean norm diff math types shares from outside option 0.161596 0.268223
Mean average dummy math types (year 1) 0.5040 0.7733 0.1982 0.8018
Mean average dummy math types (year 2) 0.5473 0.7155 0.2481 0.7519
Mean average dummy math types (year 1, females) 0.5655 0.7342 0.2411 0.7589
Notes: the order of majors is Social Sciences, Science, Education and Humanities, and Health.
Notes: the order of colleges is CRUCH-Public, CRUCH-Private, and Non-CRUCH.
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Table E.4: Estimation Results - Goodness of Fit (II)

Targets Model Data

Mean corr norm broad majors grades (year 1) -0.119489 -0.129867
Mean corr norm majors grades (year 1) -0.216001 -0.161541
Mean corr norm math types grades (year 1) -0.0888692 -0.0474172
Mean share top true broad majors changed 0.0555747 0.183673
Mean share top true majors changed 0.23003 0.265306
Mean share top true math types changed 0.14677 0.290816
Mean share top true prefs changed from outside option 0.0791454 0.301887
Mean share top true broad majors changed from outside option 0.0220033 0.188679
Mean share top true majors changed from outside option 0.0928286 0.226415
Mean share top true math types changed from outside option 0.0791454 0.301887
Mean share Math-type switchings [%] 0.0288454 0.0199898

Mean coeffs dropout 1 -0.1055 0.0166 -0.0304 0.8819 0.7950
1.0101 0.8303 0.0129 0.0125 -0.1228

-0.0337 0.0045 -0.0144 0.2980 0.3073
0.3136 0.2936 -0.0430 0.0107 0.0045

Mean coeffs switch program 1 0.0649 -0.0582 -0.0020 1.0564 0.9232
1.2043 0.8885 -0.1537 -0.0358 0.0189

0.0176 -0.0591 0.0101 0.6642 0.6696
0.6742 0.6821 -0.1098 -0.0810 0.0741

Mean coeffs switch broad major 1 0.0277 -0.0089 0.0162 0.4648 0.4421
0.5176 0.4515 -0.0420 -0.2870 0.0516

0.0089 -0.0120 0.0125 0.3792 0.4018
0.4028 0.3993 -0.0529 -0.1439 0.0237

Mean coeffs switch major 1 0.0654 -0.0327 0.0115 1.0131 0.8750
1.1491 0.7592 -0.1478 -0.0757 0.0321

0.0146 -0.0176 0.0127 0.4953 0.4933
0.5002 0.4875 -0.0739 -0.1331 0.0295

Mean coeffs switch math type 1 0.0362 -0.0144 0.0156 0.6614 0.4650
0.6956 0.5149 -0.0899 -0.0544 0.0064

-2.1948e-03 -5.0483e-05 5.5030e-03 2.2753e-01 2.1598e-01
2.1793e-01 2.5755e-01 -3.2688e-02 -4.2368e-02 -3.9812e-03

Mean tuition of top reported pref low income (year 1) 3.3024 3.68845
Mean tuition of top true pref low income (year 1) 3.45603 3.85171
Mean tuition of top reported pref above median (year 1) 3.67755 4.0299
Mean tuition of top true pref above median (year 1) 3.79301 4.14843
Mean observed ability scores of top reported pref (year 1) 0.978433 1.03799
Mean observed ability scores of top true pref (year 1) 0.975708 1.19079
Var. observed ability scores of top reported pref (year 1) 0.472234 0.554518
Var. observed ability scores of top true pref (year 1) 0.480734 0.785768
Mean observed ability scores program of top reported pref (year 1) 1.17649 1.02176
Mean observed ability scores program of top true pref (year 1) 1.63038 1.19079
Var. observed ability scores program of top reported pref (year 1) 0.315409 0.360733
Var. observed ability scores program of top true pref (year 1) 0.251461 0.262369
Mean share apply top reported with prob zero 0.103322 0.460174
Notes: the order of majors is Social Sciences, Science, Education and Humanities, and Health.
Notes: the order of colleges is CRUCH-Public, CRUCH-Private, and Non-CRUCH.
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Table E.5: Estimation Results - Goodness of Fit (III)

Moments: Evolution of Scores

Targets Model Data
Mean scores evolution lang 0.039146 0.0406234
Mean scores evolution math 0.0244741 0.0409032
vars scores evolution lang 0.000396494 0.0107354
vars scores evolution math 0.0004052 0.0104524
Mean scores evolution hist nozero 0.0642348 0.0477539
vars scores evolution hist nozero 0.000378637 0.0104401
Mean scores evolution cien nozero 0.0629765 0.0658743
vars scores evolution cien nozero 0.000376386 0.0144259
Mean scores evolution hist zero 0.0728078 0.0863868
vars scores evolution hist zero 0.000371135 0.0159172
Mean scores evolution cien zero 0.0481128 0.0302498
vars scores evolution cien zero 0.000389301 0.017558

Moments: Market Shares and Shares Within ROL

Shares broad majors within ROL (year 1) 0.6730 0.1264 0.0713 0.0547 0.0746 0.6448 0.1364 0.1322 0.0311 0.0556
Shares broad majors within ROL (year 2) 0.2383 0.2991 0.0545 0.4082 0.3510 0.2545 0.1207 0.2671
Norm difference on broad major shares 0.16993 0.385261
Dummies broad majors within ROL (year 1) 0.4195 0.2448 0.1932 0.2779 0.4967 0.4430 0.1752 0.2784
Dummies broad majors within ROL (year 2) 0.3975 0.2183 0.1795 0.3028 0.4718 0.3798 0.2051 0.3361
Dummies broad majors within ROL (year 1, women) 0.4018 0.1517 0.2580 0.3157 0.5017 0.3094 0.2165 0.3795

Market shares by major (year 1) 0.6730 0.0678 0.0018 0.0236 0.0269
0.0320 0.0029 0.0335 0.0212 0.0746 0.0425

0.6406 0.0496 0.0105 0.0266 0.0245
0.0385 0.0217 0.0228 0.0083 0.0556 0.0972

Market shares by major (year 2) 0.6414 0.0644 0.0025 0.0252 0.0309
0.0411 0.0058 0.0303 0.0280 0.0891 0.0413

0.5807 0.0618 0.0121 0.0299 0.0230
0.0488 0.0243 0.0346 0.0089 0.0716 0.1013

Market shares by major (year 1, women) 0.6525 0.0745 0.0003 0.0188 0.0130
0.0347 0.0030 0.0476 0.0330 0.0913 0.0315

0.6574 0.0425 0.0111 0.0322 0.0226
0.0451 0.0208 0.0298 0.0102 0.0770 0.0470

Market shares by major (year 2, women) 0.6002 0.0720 0.0011 0.0224 0.0178
0.0436 0.0058 0.0456 0.0425 0.1178 0.0312

0.5814 0.0539 0.0133 0.0367 0.0218
0.0581 0.0233 0.0461 0.0106 0.1007 0.0509

Auxiliary Model: Grade Equation 1

Observed ability 0.187119 0.399753
Top-reported preference 0.0216734 0.0566592
Female 0.261718 0.180387
Broad Majors 4.2946 3.5410 5.1743 3.6789 4.0334 3.7081 4.2512 4.1799
Broad major share 0.421916 0.153988
College share 0.0191326 0.0717304
σ̂2
g1 2.60998 0.656285

Auxiliary Model: Grade Equation 2

Observed ability 0.118934 0.347962
Top-reported preference -0.0321065 0.0520348
Female 0.236729 0.203915
Broad Majors 4.3463 2.9953 5.8516 3.1641 2.2540 1.8514 2.4193 2.4782
Second year student 4.74925 2.46812
Broad major share 0.500815 -0.293413
College share 0.0906893 -0.347303
σ̂2
g2 6.46581 1.4013

Auxiliary Model: Time Series for Grades

No switchers - constant -0.337025 1.44215
No switchers - slope 1.73014 0.68989
Switchers - constant 2.80692 0.594362
Switchers - slope 0.479655 0.87654

Auxiliary Model: Wage Equation

Majors -0.4977 0.5248
0.4445 -1.0565

0.0425 0.1793
-0.3449 0.2991

Grades 0.0430009 0.0141564
Observed ability college 0.0649156 0.0404434
Women 0.365717 0.149161
Standard error 0.203282 0.0594395

Auxiliary Model: Wage Growth Equation

Wage growth broad major dummies 0.9075 0.9261
0.8489 0.3161

-0.4839 -0.4124
-0.7613 -0.6654

Wage growth broad major-specific linear 0.1469 0.2276
0.4147 0.8361

0.0730 0.1543
0.1034 0.1269

Wage growth broad major-specific quadratic -0.0624 -0.0227
-0.0613 -0.2478

0.0004 -0.0072
-0.0063 -0.0080

Wage growth standard error 0.000466272 0.109634

Auxiliary Model: Non-Pecuniary Utility Equation

Top-reported preference 0.0226872 0.0430703
Observed ability 0.0544531 0.164618
Observed ability college -0.0753146 -0.0149746

Major dummies 0.6216 0.6419
0.6145 0.6597

0.4006 0.2304
0.3188 0.5111

Major-specific - women 0.0585 0.0331
0.0795 0.0422

0.0306 0.0395
0.1325 -0.0324

Broad major share -0.0306212 0.0234728
Standard error 0.19072 0.220015
Notes: the order of majors is Social Sciences, Science, Education and Humanities, and Health.
Notes: the order of colleges is CRUCH-Public, CRUCH-Private, and Non-CRUCH.
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Algorithm 3 Computing p̂ (τ)

Input. Structural parameter estimates θ̂, first-stage estimates p̂, P̂ e, P̂ d, P̂ g, and P̂w, and
tolerance level εtol.
Output. Rational Expectations equilibrium cutoff distributions p̂ (τ)
Step 1. For each program j

Step 1.a. Solve the model and simulate outcomes given the rules implied by coun-
terfactual τ and the estimated objects

(
θ̂, p̂, P̂ e, P̂ d, P̂ g, P̂w

)
Step 1.b. Obtain a set of simulated ROLs and scores (R0

1, R
0
2, s

0
1, s

0
2)

Step 1.c. For each program j, estimate the mean of its cutoff distribution and

compute the average over programs, δ̂0 ≡
∑

j∈M
µ̂0j
M

Step 2. δdiff = 2εtol, k = 1, ρ = 0.9
Step 3. While δdiff > εtol

Step 3.a. For each student i, solve the model via Backward Induction given τ , the
estimated parameters

(
θ̂, P̂ e, P̂ d, P̂ g, P̂w

)
, and cutoff distributions p̂k−1, and obtain the

continuation values for each student and state
Step 3.b. Forward simulate first period ROLRk

i1 given τ , the estimated parameters(
θ̂, P̂ e, P̂ d, P̂ g, P̂w

)
, cutoff distributions p̂k−1, and continuation values

Step 3.c. For each program j, estimate the mean of its cutoff distribution and

compute the average over programs, δ̂0 ≡
∑

j∈M
µ̂0j
M

Step 3.d. Given initial first period applications Rk
1 , second period applications

Rk−1
2 , and students’ scores sk1, and sk−1

2 , run the Chilean matching mechanism and ob-
tain an allocation µk

(
Rk

1 , R
k−1
2 , sk1, s

k−1
2

)
Step 3.e. Given µk

(
Rk

1 , R
k−1
2 , sk1, s

k−1
2

)
, τ , the estimated parameters(

θ̂, P̂ e, P̂ d, P̂ g, P̂w
)

, cutoff distributions p̂k−1, and continuation values, forward

simulate second period ROLs Rk
i2

Step 3.f. Given
(
Rk

1 , R
k−1
2 , sk1, s

k−1
2

)
, run the boostrap procedure and estimate the

Rational Expectations cutoffs distributions p̃k Take a convex combination of the real-
ized cutoffs p̃k and p̂k−1 (point wise), i.e, p̂k = ρkp̂k−1 +

(
1− ρk

)
p̃k

Step 3.g. For each program j, estimate the mean of its cutoff distribution and

compute the average over programs, δ̂k ≡
∑

j∈M
µ̂kj
M

Step 3.h. Update cutoff distributions with proportional updating, i.e, p̂k = δ̂k

δ̂0
p̂0

Step 3.i. Compute δdiff = ||δ̂k − δ̂k−1|| p̂ (τ) = p̂k−1 k + +
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Algorithm 4 Constrained Deferred Acceptance with signal and bonus ψ

Input. Indirect utilities v, application scores s, cutoff distributions P , and application
score bonus ψ
Output. Optimal ROL R (v, s, P, ψτ )
Step 1. For each program j

Step 1.a. Compute admission probabilities given cutoff distributions P and appli-
cation scores s̃(j) = {s1, ...sj−1, ψτsj, sj+1, ...sJ}

Step 1.b. Compute and store optimal ROL R (v, p̃(j)) using MIA
Step 2. Compute optimal signal

s∗j = argmax
j
{R(v, p̃j)}

Step 3. Compute optimal ROL R(v, p̃j)
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