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Overview of Revisions: 
 

We thank the reviewers for their insightful comments with respect to our work. We would 

like to bring to the attention of the program committee the following major changes we’ve 

made in response to reviews: 

 

• A thorough description of the VIRUS program in Section 2.1, including their core 

mission, resources, key tools and intended impact.  

• An in-depth description of the informational resources provided by the CDS for 

participants. This has been added to Section 2.3.2 

• A new Section (3.3) dedicated entirely to policy implications (past, present and 

future) of the CDS work. This includes ways in which the CDS directly affected 

policy taken by the SSSLP as well as future collaborations. 

• Our discussion Section (4) has been split into 3 components. The first is dedicated 

to core results, with new material focusing on sampling bias. The second 

subsection (4.2) is dedicated entirely to our reflections on our experience with the 

research-to-practice pipeline in the Mexican context, and the final subsection 

contains material on future work and applications of the CDS technology and 

framework.  

  



Health Sentinel: a mobile crowdsourcing platform for self-

reported surveys provides early detection of COVID-19 clusters in 

San Luis Potosí, Mexico      

 

Abstract 

 

Background. The Health Sentinel (Centinela de la Salud, CDS), a mobile crowdsourcing 

platform that includes the CDS app, was deployed to assess its utility as a tool for COVID-

19 surveillance in San Luis Potosí (SLP), Mexico. 

 

Methods. The CDS app allowed anonymized individual surveys of demographic features 

and COVID-19 risk of transmission and exacerbation factors from users of the San Luis 

Potosí Metropolitan Area (SLPMA). The platform’s data processing pipeline computed and 

geolocalized the risk index of each user, and enabled the analysis of the variables and 

their association. Point process analysis identified geographic clustering patterns of users 

at risk and compared these with patterns of COVID-19 cases confirmed by the State 

Health Services. 

Results. A total of 1,554 COVID-19 surveys were administered through the CDS app. 

Among the respondents, 50.4% were men and 49.6% women, with an overall average age 

of 33.5 years. Overall risk index frequencies were, in descending order: no-risk 77.8%, low 

risk 10.6%, respiratory symptoms 6.7%, medium risk 1.4%, high risk 2.0%, very high risk 

1.5%. Comorbidity was the most frequent vulnerability category (32.4%), followed by the 

inability to keep home lockdown (19.2%). Statistically significant risk clusters identified at a 

spatial scale between 5 and 730 meters coincided with those in neighborhoods containing 

substantial numbers of confirmed COVID-19 cases. 

 

Conclusions. The CDS platform enables the analysis of the sociodemographic features 

and spatial distribution of individual risk indexes of COVID-19 transmission and 

exacerbation. It is a useful epidemiological surveillance and prediction tool because it 

detects statistically significant and consistent risk clusters in neighborhoods with a 

substantial number of confirmed COVID-19 cases. This tool was a key data point in 

decision making of public health for SLP during the initial stages of the pandemic. Through 

ongoing partnerships between our academics and policy makers at all levels, we hope that 

future iterations of the tool will continue to inform public health policy. Finally, we reflect 

upon our experience collaborating with public health officials in the Mexican context and 

share some observations and learning points for the future. 
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1. Introduction 



 

The coronavirus disease 2019 (COVID-19) epidemic in Mexico (pop. 135 million) is part of 

the ongoing pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 

Virus 2, SARS-CoV-2 [1]. Mexican health authorities confirmed the first COVID-19 case in 

Mexico City on February 27, 2020 [2], and declared a health emergency on April 9, 2020, 

with interventions to avoid healthcare saturation and promote home lockdown to prevent 

viral spreading [3]. At the time of writing there have been over 642,860 confirmed COVID-

19 cases, 451,159 recovered patients, 68,484 deaths, a recovery ratio of 70.2%, and a 

case fatality ratio (CFR) of 10.7% in Mexico, the country with the second-highest CFR in 

the world [4], that denote the pandemic’s impact on the country. The disease quickly 

spread across Mexican cities, and on March 13, health authorities confirmed the first case 

in the San Luis Potosí Metropolitan Area (SLPMA, pop. 1.2 million). At the time of writing, 

the state of San Luis Potosí had 19,888 confirmed cases, 1,319 deaths, and 15,831 

recovered patients. 

 

Coronavirus infection spreads in clusters [5], as individuals pass the virus to many 

neighbors, resulting in geographically localized infections at the level of a city or a county 

[6–8]. Mapping was useful in China, Taiwan, Korea, and Israel to explore coronavirus 

transmission characterized by spatial features distinctive of early infection scattering, 

community spread, and full-scale outbreak [9,10] 

 

In Mexico only 0.4 qRT-PCR COVID-19 tests per 1,000 inhabitants have been 

administered, a proportion 25 and 30 times lower than that of South Korea and the US, 

respectively [11]. The limited resources to conduct extensive diagnostic tests for early 

detection of SARS-CoV-2 infection hotspots in San Luis Potosí prompted us to develop the 

Health Sentinel (CDS), a mobile crowdsourcing platform with an app for real-time surveys 

of self-reported COVID-19 risk factors from the users. The CDS platform could predict 

actual COVID-19 clusters since the spatial distribution and evolution of the risk indexes 

from SLPMA users’ coincided with those of the COVID-19 cases confirmed later by the 

local health authorities.  

  

2. Methods  
 

2.1 Study design 

This study stemmed from the VIRUS Program (Surveillance of Respiratory Infections 

Creating Health Units, http://www.genomica.uaslp.mx/Research/COVID-19/Programa-

Virus.pdf) of the School of Medicine of the Autonomous University of San Luis Potosí, 

started in March 2020, when the COVID-19 pandemic was declared in Mexico. It is an 

interventional model inspired by the United Nations Human Security methodology [12] to 

face the emergency caused by SARS-CoV-2 based on an action scheme of “Health Units” 

(construction of local health systems and community capabilities based on primary health 

care, health promotion, prevention, and protection) to reduce the risks of biological agents 

in vulnerable localities.   

http://www.genomica.uaslp.mx/Research/COVID-19/Programa-Virus.pdf
http://www.genomica.uaslp.mx/Research/COVID-19/Programa-Virus.pdf


 

The VIRUS Program interventional model focuses on collective community actions to 

address the pandemic using an accumulated risk approach that considers the population’s 

comorbidities and chemical/physical/biological threats to quantify the community’s 

accumulated risk associated with COVID-19.  

A multimodal vulnerability index enables the computation of accumulated risk to integrate 

four key elements: comorbidities, access to health services, economic status, and 

chemical, physical and biological co-threats. Comorbidity indicators include food security, 

absolute index of migratory intensity, municipal overcrowding, and prevalence of 

hypertension, obesity, diabetes, pneumonia/influenza, acute respiratory infections, and 

COVID-19. Based on the vulnerability index of each geographic area in the state of San 

Luis Potosí, a three-phase program was implemented with an initial focus on the Huasteca 

Potosina region and San Luis Potosí City. 

 

The program’s first phase consists of a detailed characterization of risk scenarios from 

vulnerable communities using data collected previously. The second phase consists of 

organizing a community-based health care system using two main strategies: effective risk 

communication with emphasis on human rights, and development of human resources 

through educational programs and technical training. The community-based health system 

integrates mobile technology (CDS app) for COVID-19 community triage, and a telehealth 

system to enable technical support to the community. The third phase consists of 

strengthening the creation of horizontal community networks, developing bottom-up 

solutions to problems, and facilitating the top-to-bottom flow of economic resources. All 

phases are led by a task force of four groups: Epidemiological Intelligence, Total Health, 

Social Toxicology, and Health for Peace. The Epidemiological Intelligence group focuses 

on envisioning epidemiological scenarios and developing tools to support community risk 

assessment programs for effective prevention and timely intervention (Diaz-Barriga, et al. 

2020). 

 

2.2 CDS architecture      

The CDS platform has a Service-Oriented Architecture approach with three systems: a 

backend server enabling the system's logic and data flow control, the CDS mobile 

application, and the front-end server, which provided geographic information services and 

a web app. Two main system layers support a modular design of the backend. An API 

endpoint implements data acquisition rules that maintain data integrity and provide data 

transfer security [13]. The second layer enables the execution of business rules processes 

abstracted through Create-Read-Update-Delete operations [14]. The front-end server 

implementation follows software architecture patterns for data-driven applications 

facilitating the data structure's management and raw data storage. A Model-View-

Presenter architecture implements the CDS app in a fashion suitable to efficiently handle 

background processes. The platform includes a web service that feeds a data processing 

pipeline, enabling the collected data's geospatial analysis. The CDS app was deployed on 

1st April 2020 and became freely available through Google Play Store on 1st May 2020. 

 



2.3 Setting and participants  

    

2.3.1 Local context 

The SLPMA includes the neighboring Soledad de Graciano Sánchez and other 

surrounding municipalities and has an estimated 1,221,526 inhabitants. SLPMA is 

subdivided into primary geostatistical areas (also known locally via their Spanish acronym, 

AGEBs), the basic units of the Mexican Geostatistical Framework which are the territorial 

extensions corresponding to subdivisions of urban or rural municipal geostatistical areas 

[15].  

  

2.3.2 Participants 

The VIRUS Program launched a social media campaign through Facebook and 

WhatsApp  in mid-March 2020 to distribute the CDS app until it was available through the 

Google Store (early May). The campaign informed the public about the following key 

COVID-19 topics: 

 

1. Signs and symptoms, personal and community risk factors. 

2. Prevention of transmission at work, at home, within public transportation, at 

restaurants, and other means and locations. 

3. Official information published by local and national health authorities. 

4. National and regional public health campaigns, online conferences and workshops 

offered by health specialists. 

5. Scientific advances published by national and international organizations (WHO, 

UNICEF, OIT, IHME, Johns Hopkins Coronavirus Resource Center, and others). 

6. Risk scenarios developed by VIRUS Program specialists. 

7. Feedback to CDS users. 

8. Vaccine developments. 

9. Guidelines to maintain physical and mental health. 

 

This study includes the self-reported risk data collected by Android smartphone volunteer 

users of the SLPMA between 1st April 2020 and 31st July 2020. From the 9,971 

anonymized COVID-19 cases confirmed through qRT-PCR tests by the state health 

authorities (known locally by the acronym SSSLP) between 12th March 2020 and 3rd 

August 2020, in the SLPMA, only 9,453 (94.8%) with known postal addresses were 

included in this study. 

 

2.4 Personal COVID-19 risk index assessment 

The CDS app enables the administration of 11 questions. Three correspond to the user’s 

profile, and eight to risk items corresponding to the operational guidelines for COVID-19 

epidemiological surveillance of the World Health Organization [16] and the Mexican 

System for Epidemiological Surveillance [17] that were available at the time of CDS 

development. 

The personal profile includes the user's gender, age, and occupation. Risk index 

calculation is based on three categories of variables: contact, signs-and-symptoms, and 



comorbidity. Contact variables consider whether the user recently traveled to a country 

with a COVID-19 epidemic, has had close contact with someone who recently returned 

from abroad, or is someone with suspected or confirmed infection. Signs and symptoms 

include cough and fever above 37.5 °C, six general symptoms, and two respiratory 

symptoms. Comorbidity variables include risk factors that can aggravate the disease and 

considers whether the user belongs to one or more risk groups or has one or more 

concomitant illnesses that can worsen COVID-19. Risk groups are those of pregnant 

women and people aged 65 years or more. Concomitant diseases include diabetes, 

hypertension, heart problems, liver disease, asthma, chronic pulmonary obstructive 

disease (COPD), HIV/AIDS, cancer, chronic kidney failure, obesity, and smoking. Two 

questions address social vulnerabilities: whether the user can keep lockdown and have a 

supportive network if affected by COVID-19. 

 

An algorithm computes the personal risk index with the answers provided by the user. The 

values assigned to the risk factor categories are personal contact, signs and symptoms, 

and vulnerability. Personal risk indexes are, in order of increasing severity: risk-free, low-

risk, moderate-risk, high- risk, severe-risk, and respiratory-risk. Based on the personal risk 

index, users were subdivided into risk-free cases, risk cases, and respiratory-risk cases 

(Table 1). 

Depending on an individual's risk index, the CDS app issues health authorities' 

recommendations and provides a hotline phone and links to reliable COVID-19 information 

sources. 

 

2.5 Georeferenced database 

Data collected through the CDS app consists of the georeferenced contributions stored 

into a non-relational database within the CDS platform. A geographic information system 

enables the display of data layers, including population density, poverty index, 

overcrowding, medical center locations, business locations, and contributing users' 

location. A web application allows real- time data visualization through a dashboard (Fig. 

1) and descriptive statistics of the survey variables. 

 

2.6 Spatial data analysis 

Point process analysis [17] was performed to determine CDS users' contributions' 

geographical features. Intensity functions were obtained for risk-free and risk cases using 

standard kernel density estimation techniques. Ripley's K-function and Monte Carlo 

simulations explored risk cases' geographic clustering. A K-function is a good indicator of 

spatial point structures [18] since its values for a given scale h are proportional to the 

average number of additional points within distance h of an arbitrary point in a point set. In 

practice, it is convenient to use the L- function for spatial analyses. This function, 

computed from the K-function, determines whether the point set shows clustering 

properties (L > 0) or dispersion properties (L < 0) at a given scale h. K and L-functions are 

useful to determine whether a point set fulfills the Complete Spatial Randomness (CSR) 

hypothesis. If data exhibit CSR, there is no underlying structure, and little to be gained 

from further analysis. The presence of point clusters (L > 0) disproves the CSR hypothesis. 



Different CSR models are useful in practice, such as the CSR homogeneous model, which 

assumes a uniform probability measure describing a single random point [18]. A 

homogeneous set of points in the plane is such that approximately the same number of 

points occurs in any circular region of a given area; a set of points lacking homogeneity 

may show spatial clustering at a specific spatial scale. The CSR nonhomogeneous model 

assumes a probability measure distinct from the uniform distribution. A concrete example 

is the probability measure defined by the population distribution over a geographic area 

[19]. 

 

2.7 Ethical considerations   

The SSSLP registered the CDS app in the Google Play Store after checking its 

compliance with institutional data privacy, security, and ethical requirements. To activate 

the app, users had to read and agree with the terms of use and consent form. The GPS 

location of users completing the survey was the only personally identifiable information 

collected. All CDS data remain in a Tier 3 data center of the National Supercomputer 

Center. Data storing followed strict security and privacy protocols compliant with Mexican 

law. Only researchers and health officials participating in the study had access to the 

pilot's data. 

     

3. Results 
 

Contributors to CDS surveys resided in Mexico (n = 2,125) and other countries (United 

States, Bolivia, Chile, Spain, Argentina, France, and Bangladesh; n = 64). Only SLPMA 

users (n = 1,554) were included in this study. The overall mean age ± SD of users was 

33.5 ± 11.5 years, with a median of 30.0 years (Table 2). 

 

3.1 Spatial analysis of the risk cases 

 

3.1.1 Geographic location 

The map in Fig. 2 shows the AGEBs with risk cases. Each AGEB is color-coded according 

to the number of contributions recorded within it. The color palette used in each map 

shows a specific risk level. 

 

3.1.2 Intensity functions in geographic space 

The point process analysis of the risk cases (represented in maps as black plus signs and 

shaded green areas) show darker areas indicating higher intensity. Fig. 3 depicts the 

spatial distribution of all users, no-risk cases, and risk cases. A red plus sign indicates the 

location of maximum empirical intensities. These functions consider kernel density 

estimation techniques with a bandwidth h = 1200 m. Lower bandwidth values are more 

likely to overfit data. 

 



To check our results' consistency, intensity functions were computed in two periods along 

four months: Period I (first two months, April 1-May 31; 998 users), and Period II (all four 

months, April 1-July 31; 1,554 users). 

 

The intensity functions computed for Period I are similar to those of Period II (Fig. 3). The 

Period I risk cases' maximum intensity point was located at 22° 8' 18.276" N, 100° 58' 

15.708" W, quite close (300 m) to the maximum intensity location of the Period II data. 

 

The maximum intensity area for risk cases is located across the street of the ISSSTE 

General Hospital (22° 8' 22.5456" N, 100° 58' 10.3476" W), a few meters from a highly-

transited pedestrian street (Calzada de Guadalupe), a children's park, the Center for the 

Arts, the Red Cross, and the Military Zone garrison. 

 

3.1.3 Spatial point patterns 

Ripley’s K and L functions were applied to test whether the point patterns of risk cases 

(Fig. 4) fulfill the nonhomogeneous CSR hypothesis. The reference probability measure 

was given by the AGEBs population density to avoid detecting cluster patterns reflecting 

population density features from Periods I and II. 

 

3.1.3.1 Period I patterns      

Fig. 4a shows the L-function (solid line) and upper and lower envelopes (dashed lines) for 

the risk cases. The L function is above the upper envelope at scales between 5 and 600 

m, suggesting significant clustering features (L > Lup > 0, p < 0.001). Fig. 4b shows the p-

values for each h value. The red dashed line represents a p-value of 0.01. 

 

Using the K function over a grid combined with MC techniques enables computation of p-

values over the geographic space to reveal point clusters at different scales. A reference 

probability measure given by the AGEB ś population densities was also considered. The 

top row of Fig. 5 shows color-labeled geographic areas with p-values calculated at 

different scales: (a) h = 300 m, (b) h = 450 m, and (c) h = 600 m. The central row of Fig. 5 

shows the same geographic areas with p < 0.05 values to emphasize point clusters. Many 

clusters detected at h = 300 m grow across other scales (compare Figures 5d, 5e, 5f). 

 

3.1.3.2 Period II patterns 

Fig. 4c shows the L-function (solid line) and the upper and lower envelopes (dashed lines) 

for the risk cases. The L function is above the upper envelope at scales between 5 and 

730 m, suggesting significant clustering features (L > Lup > 0, p < 0.001). Fig. 4d shows the 

p-values for each h value in the analysis range.  

 

The bottom row of Fig. 5 shows point cluster analysis at different scales for Period II. the 

geographic areas for which p < 0.05 show clusters that expand across scales (compare 

Figures 5g, 5h, and 5i).   

    



Many clusters detected using Period I data (central row of Fig. 5) intersect with those using 

more abundant Period II data (bottom row of Fig. 5) which, as expected, tend to be larger 

than those in the central figure. 

 

3.2 Distribution of risk-clusters and confirmed COVID-19-clusters 
The distribution of clusters identified from 9,971 anonymized COVID-19 cases confirmed 

by qRT-PCR between March 12 and August 31 was compared with the cluster distribution 

of risk cases surveyed in April-May (Period I). Only 9,453 confirmed COVID-19 patients 

(94.8%) residing in the SLPMA with known postal addresses were included in the 

comparison. Individual records included gender, age, risk factors, and the dates when 

symptoms started, and diagnoses were confirmed per individual. Several neighborhoods 

had COVID-19 cases confirmed between June and August (Table 3). 

 

Risk case clusters A-E shown in Fig. 6 were compared with the quantitative cluster 

analysis of COVID-19 confirmed cases. Cluster A (274 confirmed COVID-19 cases) had 

several cases comparable to the top-five confirmed clusters (Tables 3 and 4). Cluster B 

(138 confirmed COVID-19 cases) intersects the Tequisquiapan area that ranks second 

among the confirmed SARS-CoV-2 hotspots. Cluster C (37 confirmed COVID-19 cases) 

intersects neighborhoods adjacent to the Tequisquiapan area. Cluster D (56 confirmed 

COVID-19 cases) includes the largest city park surrounded by a trail for 

strolling/jogging/biking. Cluster E (68 COVID-19 cases), on the northwest side of the park, 

intersect five neighborhoods. Cluster F (77 confirmed COVID-19 cases), intersects 

Graciano Sanchez's municipality, which includes seven neighborhoods. 

 

3.3 Policy implications 

CDS is the first mobile health (mhealth) platform used for real time epidemiological 

surveillance in the state of San Luis Potosí. Furthermore, our collaboration with the state 

health authorities has recently been reinforced by a formal agreement to improve 

epidemiological surveillance and analysis. On the other hand, we are currently analyzing 

the database of the more than 40,000 COVID-19 cases that had been confirmed in the 

SLPMA from March 2020 up to July 2021. In addition, we are also starting a project in 

collaboration with the state health and education authorities to implement a network of 

sensors to remotely monitor the carbon dioxide (CO2) concentration in inner spaces, to 

assure their proper ventilation to prevent COVID-19 transmission.  

 

The most important policy outcome of the CDS however is that it paved the way for 

transparent communication with key policy makers within the SSSLP. Though CDS results 

were not hard-coded into policy (by pre-emptively defining a specific relationship between 

CDS reports and concrete government actions), they certainly were a focal data point 

taken into consideration at every stage and level of the decision-making process of 

policies related to the pandemic. While we were not privy to discussions concerning top-

level actions, such as extended lockdowns of entire neighbourhoods, the outcomes of 

these discussions often correlated with salient observations from the CDS, which were 

promptly shared with key decision makers. 



 

In the future, we expect that the relevant data collected by subsequent iterations of the 

CDS, as well as the CO2 remote sensing project will provide key inputs to policy decisions 

of a different nature, such as the allocation of various resources (medical, economic, etc.). 

Most notably, colleagues from the IPICYT and the University of Oxford have been 

developing algorithmic methods to allocate limited testing resources to a heterogeneous 

population in a way that balances viral spread and unnecessary self-isolation [22]. Key 

inputs to this algorithmic framework are parameters that represent rates of infection in 

distinct segments of a heterogeneous population, which can be estimated with methods 

similar to the CDS. In addition, the model incorporates co-transmission probabilities, for 

which CO2 remote sensing (to be integrated in the CDS and SSSLP partnership framework) 

is a crucial proxy.  

 

The CDS impact on policy extends far beyond the mere data it provides decision makers. 

The entire information pipeline which was fostered carefully over months of social and 

traditional media presence is a huge asset for maintaining open channels of 

communication with marginalized communities as the pandemic evolves.  

 

 

4. Discussion 
 

4.1 Core results 
The coincidence of the spatial distribution of risk-case clusters generated with data from 

surveys of the first two-months with that of clusters containing substantial numbers of 

COVID-19 cases confirmed the following two-months indicates that the real-time analysis 

performed by the platform’s processing pipeline of risk factors self-reported by CDS app 

users enables the early prediction of actual COVID-19 clusters. 

 

Each survey recorded the geographic location of the CDS app and computed the risk 

index of the user based on its self-assessed signs, symptoms, and vulnerabilities. Analysis 

of 1,554 surveys of SLPMA users collected from April 1 to August 31 revealed statistically 

significant and consistent point-pattern and spatial clustering of risk cases independent of 

population density across geographical scales from 5 to 730 meters. Risk case clusters 

intersected neighborhoods with areas fostering social interactions/commercial activities 

and most of their locations coincided with those of SARS-CoV-2 infection hotspots with a 

substantial number of the SLPMA COVID-19 cases confirmed from March 12 to August 31 

[17]. 

 

The exponential growth of COVID-19 cases in the SLPMA began in June, when public 

activities partially reopened, and SARS-CoV-2 hotspots increased significantly between 

May and August, while the number of confirmed COVID-19 cases in the top infection 

hotspots increased 81.1% during the first two months, and 82.0% during the last two 

months (Tables 3 and 4). 



 

Some risk clusters inferred from data collected in April and May expanded and merged 

with clusters of COVID-19 cases confirmed the following three months. New risk clusters 

also appeared with time, and they merged and expanded to cover part of the largest 

infection hotspot containing 161 confirmed cases (Clusters A-D of Fig. 6). 

 

Most CDS contributions corresponded to non-risk cases (Fig. 4b); risk cases amounted to 

15.77%, and their maximum intensity was located in a densely populated residential area 

of high mobility and social interaction (Fig. 4c). 

 

Risk cases from Period II (April-July) had statistically significant spatial clustering 

independent of population density across geographical scales from 5 to 730 m (Fig. 6 d-f) 

and risk clusters were computed at a scale of 730 m. Similar results were obtained for 

clusters of COVID-19 cases confirmed in Period I (April-May) at a scale of 600 m (Fig. 6 a-

c). Many Period II clusters have significant overlap, are more prominent and expand 

several Period I clusters (Fig. 8). 

 

Period II clusters also overlap city areas where the exceedance probabilities are close to 

one (Fig. 7). Risk case clusters in areas with a high incidence of risk of symptoms in 

Period I evolved to become the larger confirmed COVID-19 clusters of Period II (Fig. 8). 

Risk case clusters A-E (Fig. 8) were compared with the quantitative cluster analysis of 

COVID-19 confirmed cases. Cluster A (294 cases) had several cases comparable to the 

top-five confirmed neighborhoods. Cluster B (138 cases) and Cluster C (37 cases) 

intersect an area ranking second among confirmed SARS-CoV-2 hotspots. Cluster D (56 

cases) includes the largest city park surrounded by a trail for strolling/jogging/biking. 

Cluster E (68 cases), on the northwest side of the park, intersects five neighborhoods. 

Cluster F (77 cases) intersects the Graciano Sanchez municipality, which includes seven 

neighborhoods. 

 

Comparing the curve of cluster A showing the cumulative number of risk cases per week 

surveyed in Period II with that of confirmed cases in March 12 and August 3 (Fig. 9) we 

observed that risk cases started in Period I, before the transition to the exponential phase 

of confirmed COVID-19 cases. 

 

4.1.1 Sampling bias 

The sampling bias implicit in our mobile crowdsourcing approach restricts the assessment 

of epidemiological data, which are valid only for the surveyed population. The need to 

preserve the participants' privacy prevents individual trending analysis. On the other hand, 

it is difficult to quantify temporal disease trends from CDS data because surveys’ 

timestamps encode temporal CDS usage patterns. 

 

The bias sources include the age of the sampled population, the  availability of 

technological resources and the availability of PCR COVID-19 tests.The highest proportion 

of CDS users were those of 20-29 years (44.02%) and 30-39 years (26.96%). The 



predominant age groups were, in descending order, those of 10-19 years (18.65%), 20-29 

years (17.54%), 0-9 years (16.65%), and 40-49-years (13.29%). Children under 10 years 

were not considered in this study. The predominant CDS groups are adults with a 

smartphone and internet connection. The elderly population is less likely to have access to 

and master the mobile technology deployed in the field; the analysis was directed to risk 

cases younger than 65 years. The CDS app was available for Android OS only; 68.3% of 

Mexico’s population has access to a smartphone, with 82.5% Android OS users, and 

17.1% iOS users; the rest use Samsung, Windows, and PlayStation devices. 

Asymptomatic individuals infected with SARS-CoV-2 were not eligible for COVID-19 

testing due to the limited number of tests available and therefore are not considered in the 

SSSLP data. 

 

4.2 Reflections on the Mexican context 
 

The pandemic has been an unprecedented public health crisis. In the context of the CDS, 

we found it key to collaborate with existing teams—both in academia and on the ground— 

involved in combating viral spread and navigating ever-increasing public fears at the early 

stages of the pandemic. As mentioned previously, while we were developing the core 

functionality of the CDS, both the SSSLP and VIRUS program had epidemiological teams 

tasked with surveillance and information provision for marginalized communities 

(especially within the Huasteca Potosina). Our work tied in naturally with the pre-existing 

objectives of this team, and of note is the fact that the Potosinian Council of Science and 

Technology (COPOCYT) provided a crucial spark in connecting all our teams to work 

together. Indeed a strong recommendation we can provide for researchers seeking to 

bridge theory and practice in the Mexican context is to partner with or seek help from local 

research councils from the National Network of State Councils and Organizations of 

Science and Technology (REDNACECYT) of which COPOCYT forms a part. 

Collaborations in Mexico can often be accelerated when there are pre-existing personal 

relationships between stakeholders, and these very organizations can provide that initial 

step.  

 

Indeed getting policy off the ground can be a lengthy process in the Mexican context, but a 

crucial component in the rapidity of the deployment of the CDS was the emphasis that we 

placed on civic engagement and participation in the platform. From the moment the app 

was created in early April 2020, through the first month of its availability on the Google 

play store (May 2020) and beyond, our team ensured public awareness through a series of 

social media campaigns. Most importantly, we focused on Facebook and Whatsapp (over 

Twitter, for example) as platforms since these are the most widely used communication 

channels amongst individuals in marginalized communities. These campaigns, coupled 

with the initial level of public fear during the pandemic provided with ample momentum to 

kick the project off, which ensured that policymakers from the SSSLP were willing to 

partner with us.  

 



Finally, perhaps this was due to the unforeseen nature of the pandemic, but 

communication with the SSSLP, VIRUS program and the COPOCYT was very open 

throughout all stages of deployment of the CDS. This allowed results from the CDS to 

become key data points for government decisions and continues to prove a great asset as 

we further develop our technology and research to practice pipeline. 

 

4.3 Future steps 
To coordinate an adequate response to the COVID-19 pandemic it is imperative to have a 

fine- grained understanding of the heterogeneous nature of the population under study. 

Different intervention policies can have disparate effects depending on the underlying 

variation of multiple factors [20]. Variation in the outcomes of rate effects on target 

populations of pandemic interventions involves allocating extremely limited resources; as 

mentioned previously, since limited resources elicit different outcomes when allocated to 

different population sectors, the CDS platform's may be used as a valuable tool to optimize 

resource allocation. 

 

Having a limited supply of COVID-19 tests is not a constraint unique to San Luis Potosí. 

Much of the Global South struggles with the same limitation. Whatever few tests available 

are often used to diagnose those already with symptoms, which is not as informative as to 

when part of the pandemic's scourge are the asymptomatic cases that can ravage a 

population. Whereas extensive contact tracing via testing has been touted as a success in 

South Korea and other countries, such a scale of testing is infeasible in Mexico. It is 

unclear whether approaching a given testing strategy is the optimal course of action due to 

the severe testing constraints faced. One possible solution involves using heterogeneous 

population factors to decide how to allocate testing kits differentially [21,22]. These 

approaches can profit from an underlying tool such as CDS to quantify risk and different 

citizen profiles in diverse geographies. 

 

Information on the spatial distribution of cases during the spread of transmissible diseases 

is crucial to design and execute effective interventions. The CDS platform allows 

documentation and exploration of COVID-19 risk self-assessment data to enable 

epidemiological intelligence tasks and may be extended to address epidemiological events 

concurrent with COVID-19, such as the influenza A and B outbreaks expected in the 

coming months. Survey data could also provide useful information to allocate anti-COVID-

19 vaccines across the state of San Luis Potosí and elsewhere. 
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Table 1. Calculation of the users’ personal risk index 

Contact a 
(1-3 points) 

Signs and symptoms b 
(4-6 points) 

Vulnerability c 
(7-8 points) 

Color coded 
risk index 

No No No No No 

Risk-free 
No No No No Yes 

No No Yes No No 

No No Yes No Yes 

Yes No No No No 

Low risk 
Yes No No No Yes 

Yes No Yes No No 

Yes No Yes No Yes 

No Yes No No No 

Moderate risk 
No Yes Yes No No 

Yes Yes No No No 

Yes Yes Yes No No 

No Yes No No Yes 

High risk 

No Yes No Yes No 

No Yes Yes No Yes 

No Yes Yes Yes No 

Yes No No Yes No 

Yes No Yes Yes No 

Yes Yes No Yes No 

Yes Yes Yes Yes No 

No Yes No Yes Yes 

Severe risk 

No Yes Yes Yes Yes 

Yes No No Yes Yes 

Yes No Yes Yes Yes 

Yes Yes No No Yes 

Yes Yes No Yes Yes 

Yes Yes Yes No Yes 

Yes Yes Yes Yes Yes 

No No No Yes No 

Respiratory risk 
No No No Yes Yes 

No No Yes Yes No 

No No Yes Yes Yes 
a Contact factors: travel exposure, exposition to suspect or confirmed COVID-19 case. 

b Signs and symptoms: cough and fever, general symptoms, respiratory symptoms. 

c High risk and comorbidity factors. 

  



Table 2. Age and gender distribution of risk cases 

Age group 
(years) 

Male (M) Female (F) All 
M/F 
ratio 

10-19 33 2.1% 22 1.4% 55 3.5% 1.50 

20-29 346 22.3% 338 21.8% 684 44.0% 1.02 

30-39 202 13.0% 217 14.0% 419 27.0% 0.93 

40-49 115 7.4% 104 6.7% 219 14.1% 1.11 

50-59 63 4.1% 61 3.9% 124 8.0% 1.03 

60-69 21 1.4% 25 1.6% 46 3.0% 0.84 

70-79 3 0.2% 4 0.3% 7 0.5% 0.75 

Total 783 50.4% 771 49.6% 1554 100.0%  

 

  



Table 3. Top five SLPMA neighborhoods with confirmed COVID-19 case clusters (March-

August, 2020) 

Month 
Accumulated 

neighborhoods 
Accumulated 

cases 

The top five COVID-19 case clusters per neighborhood 

Neighborhood 
Cases 

Latitude Longitude 
Number % 

March (M1) 27 42 

La Forestal 5 11.9 22.186728N 101.014444W 

La Loma 5 11.9 22.170625N 100.939759W 

Colonia 107 3 7.1 22.137671N 100.969575W 

Tangamanga 2 4.8 22.140680N 100.996548W 

San Pedro 2 4.8 22.157031N 100.998313W 

April (M2) 85 147 

Industrial Aviación 7 4.8 22.174750N 100.994764W 

Maya Mil 6 4.1 22.143625N 100.940586W 

21 de Marzo 6 4.1 22.147852N 100.926246W 

La Forestal 5 3.4 22.186887N 101.013832W 

La Loma 5 3.4 22.170625N 100.939759W 

May (M3) 287 616 

Tequisquiapan area 13 2.1 22.151746N 100.991206W 

Jardines del Sur 12 2.0 22.130786N 100.935747W 

21 de Marzo 12 2.0 22.147852N 100.926246W 

San Ángel 11 1.8 22.181965N 101.002597W 

San Ángel Inn 9 1.5 22.197854N 101.008545W 

June (M4) 587 1827 

Centro 29 1.6 22.152322N 100.976087W 

Tequisquiapan area 26 1.4 22.151746N 100.991206W 

San Ángel 26 1.4 22.181965N 101.002597W 

Jardines Sur 24 1.3 22.130786N 100.935747W 

Las Mercedes 22 1.2 22.119295N 100.887001W 

July(M5) 1,076 6180 

Centro 133 2.2 22.152322N 100.976087W 

Tequisquiapan area 106 1.7 22.151746N 100.991206W 

Simón Díaz 72 1.7 22.113709N 100.945591W 

Las Mercedes 69 1.1 22.119295N 100.887001W 

Satélite 66 1.1 22.106064N 100.950143W 

August (M6) 1,315 8592 

Centro 161 1.9 22.152322N 100.976087W 

Tequisquiapan area 138 1.6 22.151746N 100.991206W 

Progreso 107 1.2 22.126021N 100.949854W 

Simón Díaz 97 1.1 22.113709N 100.945591W 

Capricornio 97 1.1 22.144624N 100.953180W 

  



Table 4. Persistence and growth of COVID-19 case clusters in the SLPMA 

Neighborhoods with 
five top clusters 

Cases 
accumulated 

Cluster growth 
across time 

Persistence 
(months) 

Centro 161 82.0% (M4-M6) 3 
Tequisquiapan area 138 81.1% (M3-M6) 4 
Progreso 107 0.0% (M6) 1 
Simón Díaz 97 25.8% (M5-M6) 2 
Capricornio 97 0.0% (M6) 1 
Las Mercedes 69 68.1% (M4-M5) 2 
Satelite 66 0.0% (M5) 1 
San Angel 26 57.7% (M3-M4) 2 
Jardines Sur 24 50.0% (M3-M4) 2 
21 de Marzo 12 50.0% (M2-M3) 2 
San Angel Inn 9 0.0% (M3) 1 
Industrial Aviación 7 0.0% (M2) 1 
Maya Mil 6 0.0% (M2) 1 
Forestal 5 0.0% (M1-M2) 2 
La Loma 5 0.0% (M1-M2) 2 
Tangamanga 2 0.0% (M1) 1 
San Pedro 2 0.0% (M1) 1 

  



 

Figure 1. CDS platform front-end dashboard 

The web application allows epidemiologists and public health specialists to visualize real-time data 

through a dashboard that facilitates decision-making. Besides displaying georeferenced data in a 

map, the dashboard shows descriptive statistics of all the variables associated with the CDS survey. 

  



 

Figure 2. Geographic distribution of the risk index of the app users’ contributions 

AGEBs in the maps are color-coded based on the number of contributions recorded. Darker colors 

in a given AGEB indicate higher contributions count. The color palette used for each map indicates 

a specific risk level: (a) no-risk/no-symptoms, green; (b) low-risk, yellow; (c) medium-risk, orange; 

(d) high-risk, red; (e) very high-risk, brown; (f) respiratory symptoms, purple. 

  



 

 

Figure 3. Intensity functions in the geographic space 

Estimated sample intensity functions are shown as green-shaded areas in the maps for the point 

processes representing app users’ contributions: (a) all users' contributions; (b) no-risk cases; (c) 

risk cases. Black plus signs represent app users’ contributions. Darker green areas represent higher 

intensity. Locations with maximum empirical intensity values are shown as a red plus sign. Kernel 

density estimation techniques (with kernel bandwidth h = 1200 m) enabled calculation of intensity 

functions. 

  



 

Figure 4. Spatial distribution patterns of risk cases 

Period I: (a) L-function (solid line) and upper and lower envelopes (dashed lines) from Monte Carlo 

simulations for risk cases. The L function is above the upper envelope at scales between 5 and 600 

m, suggesting significant clustering features (L > Lup > 0, p < 0.001) at these scales. (b) The 

corresponding p-values for each h in the analysis range. The red dashed line represents a p-value 

of 0.0. Period II: (c) L-function (solid line) and upper and lower envelopes (dashed lines) resulting 

from MC simulations for the risk cases. (d) The L function is above the upper envelope at scales 

between 5 and 730 m, suggesting significant clustering features (L > Lup > 0, p < 0.001) at these 

scales. 

  



 

 

Figure 5. Point clusters at different spatial scales 

Period I: Using Ripley’s K function over a grid, combined with MC techniques, enables 

computation of p-values over the geographical space to reveal possible point clusters at different 

scales. The maps show the point clusters with p values < 0.05 at different scales, from left to right, 

h = 300, 450, and 600 m. (a-c). The top row shows the point clusters for the risk cases computed at 

the three scales. (d-f) The center row shows the geographical areas where p-values < 0.05. Period 

II: (g-i) The bottom row shows the point clusters at the three scales. 

  



 

 

Figure 6. Socio-urban analysis of statistically significant point-pattern clusters 

 



Supplementary tables 

 

Table S 1. Personal risk index distribution by gender and age 

Age group 
(years)  

No risk Low risk Medium risk High risk Very high risk Respiratory symptoms All 

Male Female Male Female Male Female Male Female Male Female Male Female Male Female 
M/F 

ratio 

10-19 19 1.2% 15 1.0% 5 0.3% 4 0.3% 1 0.1% 0 0.0% 1 0.1% 0 0.0% 2 0.1% 0 0.0% 5 0.3% 3 0.2% 33 2.1% 22 1.4% 1.5 
20-29 279 18.0% 249 16.0% 34 2.2% 33 2.1% 4 0.3% 6 0.4% 8 0.5% 7 0.5% 1 0.1% 4 0.3% 20 1.3% 39 2.5% 346 22.3% 338 21.8% 1.02 
30-39 154 9.9% 171 11.0% 23 1.5% 28 1.8% 5 0.3% 1 0.1% 2 0.1% 4 0.3% 5 0.3% 4 0.3% 13 0.8% 9 0.6% 202 13.0% 217 14.0% 0.93 
40-49 92 5.9% 91 5.9% 9 0.6% 6 0.4% 3 0.2% 1 0.1% 0 0.0% 3 0.2% 2 0.1% 1 0.1% 9 0.6% 2 0.1% 115 7.4% 104 6.7% 1.11 
50-59 52 3.3% 44 2.8% 9 0.6% 10 0.6% 0 0.0% 1 0.1% 0 0.0% 2 0.1% 1 0.1% 2 0.1% 1 0.1% 2 0.1% 63 4.1% 61 3.9% 1.03 
60-69 16 1.0% 20 1.3% 2 0.1% 2 0.1% 0 0.0% 0 0.0% 2 0.1% 2 0.1% 1 0.1% 0 0.0% 0 0.0% 1 0.1% 21 1.4% 25 1.6% 0.84 
70-79 3 0.2% 4 0.3% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 3 0.2% 4 0.3% 0.75 

Total 615 39.6% 594 38.2% 82 5.3% 83 5.3% 13 0.8% 9 0.6% 13 0.8% 18 1.2% 12 0.8% 11 0.7% 48 3.1% 56 3.6% 783 50.4% 771 49.6%  

 



Table S 2. Occupation distribution of risk cases by gender 

Occupation Male Female All M/F ratio 

Self-employed 163 10.5% 100 6.4% 263 16.9% 1.63 

Business employee 260 16.7% 197 12.7% 457 29.4% 1.32 

Student 195 12.5% 159 10.2% 354 22.8% 1.23 

Government employee 141 9.1% 149 9.6% 290 18.7% 0.95 

Unemployed 18 1.2% 65 4.2% 83 5.3% 0.28 

Housekeeper 6 0.4% 101 6.5% 107 6.9% 0.06 

Total 783 50.4% 771 49.6% 1554 100.0%  

  



Table S 3. Personal risk index distribution by gender 

Risk index Male Female All M/F ratio 

No risk 615 39.6% 594 38.2% 1209 77.8% 1.04 

Low risk 82 5.3% 83 5.3% 165 10.6% 0.99 

Medium risk 13 0.8% 9 0.6% 22 1.4% 1.44 

High risk 13 0.8% 18 1.2% 31 2.0% 0.72 

Very high risk 12 0.8% 11 0.7% 23 1.5% 1.09 

Respiratory symptoms 48 3.1% 56 3.6% 104 6.7% 0.86 

Total 783 50.4% 771 49.6% 1554 100.0%  

  



Table S 4. Overall distribution of risk factors 

Risk category Risk factor Cases Subtotal 

Contact Contact with suspect COVID-9 case 152 9.8% 268 17.2% 

Contact with confirmed COVID-19 case 64 4.1% 

Travel exposure 52 3.3% 

Signs and symptoms General symptoms 526 33.8% 715 46.0% 

Respiratory symptoms 138 8.9% 

Fever, dry cough 51 3.3% 

Vulnerability Comorbidities 504 32.4% 1178 75.8% 

Risk conditions 267 17.2% 

Cannot keep lockdown 298 19.2% 

Lack of safety net 109 7.0% 

  



Table S 5. General features of confirmed COVID-19 cases in the state of San Luis Potosí 
(September 8, 2020) 

Total cases 19,888 (100.0%) 

Gender Male 10,122 (50.9%) 

Female 9,766 (49.1%) 
218 pregnant (2.2%) 

Age Mean ± SD 43.5 ± 16.8 years 

Median 42 years 

Contact with COVID-19 patient(s) 7,283 (36.6%) 

Comorbidities Hypertension 3,962 (19.9%) 

Obesity 3,848 (19.4%) 

Diabetes 3,026 (15.2%) 

Smoking 1,172 (5.9%) 

Asthma 612 (3.1%) 

Other 469 (2.4%) 

EPOC 349 (1.8%) 

Chronic renal insufficiency 375 (1.9%) 

Heart disease 312 (1.6%) 

Immunosuppression 205 (1.0%) 

Pneumonia 2,394 (12%) 

Medical attention Ambulatory 
Hospitalized 

16,969 (85.3%) 
2,919 (14.7%) 

  



Table S 6. Logit mortality by COVID-19 in SLPMA (n = 19,888) 

Comorbidity/Vulnerability Odds ratio 
Confidence 

interval (95%) 

Chronic renal insufficiency (Yes/No) 3.701** 2.84 - 4.81 

Diabetes (Yes/No) 2.090** 1.83 - 2.39 

Chronic obstructive pulmonary disease (Yes/No) 1.899** 1.45 - 2.49 

Gender (male/female) 1.839** 1.62 - 2.09 

Obesity (Yes/No) 1.487** 1.28 - 1.72 

Hypertension (Yes/No) 1.244** 1.08 - 1.43 

Immunosuppression (Yes/No) 1.182 0.73 - 1.92 

Age (probability increase per additional year of age) 1.071** 1.07 - 1.08 

Smoking (Yes/No) 1.071 0.84 - 1.36 

Heart disease (Yes/No) 1.030 0.75 - 1.42 

Asthma (Yes/No) 0.668 0.43 - 1.04 

Exponentiated coefficients, * p < 0.05, ** p < 0.01. 

  



Contributions of the study 

Research Question Contributions 

1. Can we develop a mobile crowdsourcing 
platform as a community triage tool of COVID-
19 through the assessment of self-reported 
contributions from the San Luis Potosí 
Metropolitan Area (SLPMA) residents? 

Yes. 
We were able to develop the CDS platform with an app for 
data collection of COVID-19 signs, symptoms, and 
vulnerabilities self-reported by users, that enabled the 
computation of an anonymized COVID-19 risk index for each 
user through a data processing pipeline. 
These health mobile tools were deployed in the SLPMA to 
support health authorities and the VIRUS Program to fight 
the COVID-19 epidemic. 
The CDS app provides users with official information on 
COVID-19 to prevent transmission and ensure that those 
most in need get the right treatment. 
The platform enabled a community triage with 
geolocalization of the COVID-19 risk cases in a pilot survey 
of real-time self-assessment data from 1,554 users residing 
in the SLPMA. This triage was conducted under strict ethical 
guidelines to protect the privacy rights, health, and wellbeing 
of the participating volunteers. 
The data collected and the information distilled were 
available to health authorities through a web interface that 
enables a geographic information system’s capability. 

2. Data collected through the app can be used 
to characterize the sociodemographic features 
of the participants and to compute the COVID-
19 risk index for each user? 

Yes. 
Self-reported user data collected by the app such as gender, 
age, comorbidities, risk factors and vulnerabilities, was 
sufficient to meaningfully categorize these variables and 
computing the personal risk index for each user. 
Nearly one-third of the users reported one or more 
comorbidities, and 17.2% had at least one risk condition 
known to increase COVID-19 lethality. 
Data analysis also revealed statistically significant different 
bivariate associations. 

3. Are the clustering and point-pattern 
distribution of risk indexes statistically 
significant and consistent? 

Yes. 
Point pattern analysis revealed that risk cases exhibit 
statistically significant clustering features at spatial scales 
between 5 and 730 meters. 
The point clustering features analyzed over two intersecting 
time periods revealed consistent clusters across significant 
spatial scales. 
The socio-urban environment of the city areas covered by 
different risk case clusters suggests that their spatial 
distribution correlates with urban spaces fostering person-to-
person contact such as commercial areas, shops, city 
spaces for community social interactions, recreation, 
religious events, and recreational sports. 

4. Do risk index clusters and SARS-CoV-2 
hotspots have similar spatial distributions? 

Yes. 
Risk case clusters cover representative city areas. Those 
computed from CDS app data collected in April-May 
intersect city neighborhoods with substantial numbers of 
COVID-19 cases confirmed the next three months, including 
the Tequisquiapan area, with the second highest number of 
confirmed cases. 
Risk case clusters intersected neighborhoods containing 650 
COVID-19 confirmed cases (7.6% of the total). 
Risk case clusters estimated with CDS data collected in 
April-May expanded, and some merged during the following 
three months. 



Risk case clusters appearing later intersected infection 
clusters such as that of the City center, the top infection 
hotspot. 
Growth of the risk case clusters determined by the CDS 
platform derives from the COVID-19 transmission dynamics. 

5. Is the CDS platform useful in the fight 
against the COVID-19 pandemic? 

Yes. 
Social media outlets reinforced the risk communication 
process to the VIRUS Program communities, CDS users, 
and general population. 
Population-wide surveys of risk factors administered through 
the CDS app provide a geospatial picture of COVID-19 risk 
and predict infection hotspots and potential outbreaks that 
help the VIRUS Program and health authorities intervene 
accordingly.  
Real-time information provided by the users complements 
COVID-19 field test results, which are often delayed up to 10 
days. 
A risk case cluster analysis could help implement 
interventions and public health policies to fight COVID-19 
and other epidemics in the SLPMA and elsewhere. 

 

 


