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Abstract

Details about how choice is implemented and the features of the underlying market
are key for the success of the matching procedure. Literature assumes that whenever
choice is implemented, the allocation is going to be different than in the absence
of choice. In a large market with school stratification and where priority is given
to residents in the catchment area of the school, we show that both the Boston
Mechanism and Deferred Acceptance, the most popular assignment mechanisms,
have a limited capacity to provide access to better schools (ABS) and hence that
the default school is likely to remain the assigned option. Top-Trading Cycles is an
alternative that provides more access to better schools than DA.
Key words: priorities, bad school, school choice
JEL classification numbers: D78 C40
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1 Introduction

A large fraction of OECD countries have expanded school choice in the last two decades. In

the past every child was assigned a spot in a school in the neighborhood, but as noted in the

Friedman Foundation for Educational Choice’s website: “School Choice is a public policy

that allows parents/guardians to choose a school regardless of residence and location”.

Hence, a basic idea behind the implementation of choice, is that it shall facilitate access

to other schools than the default school. Or in other words, school choice’s subsumes

providing access to better schools (ABS) for families, beyond their defaults school, that

is, their neighborhood school. This paper shows that under some rather common features

of the market and the choice mechanisms this minimal requirement may not hold. In

particular in large markets with school stratification and where priority is given to residents

in the catchment area of the school, we show that both the Boston Mechanism and Deferred

Acceptance, the most popular assignment mechanisms, may provide close to zero ABS. In

the case of the Boston mechanism, the existence of a bad school leads parents to play

the safest strategy of applying for the school they have highest priority for. For DA, the

existence of a set of schools that are generally perceived as worse by all applicants will lead

to an over-assignment of children to neighborhood schools.

We study the Gale Shapley Deferred Acceptance (DA), the Boston mechanism (BM),

and the Top Trading Cycles (TTC), all introduced in the school choice literature by Ab-

dulkadiroğlu and Sönmez (2003). Demand that exceeds school capacity is resolved by

ordering applicants according to priorities and random lotteries. We consider the case

with coarse priorities defined by residence in the neighborhood of the school and introduce

vertical differentiation between schools: there is a bad school, a school that all families

believe is the worst. We study the extent to which families can move away from their

neighborhood school, the school they are given priority for by the authorities and the de-

fault school when there is no school choice. For this purpose we define Access to Better

School (ABS), which is the expected fraction of individuals who are allocated a school that

is better than their neighborhood school.

We show that priorities for neighborhood and stratification may limit ABS drastically,

both under DA and BM. But the instances under which DA and BM do worst in terms of

ABS differ. BM does worst when the bad school is (cardinally) substantially worse than

the other schools, forcing families to apply for their neighborhood school in order to avoid

the bad school. Instead, under DA the cardinality of the bad school plays no role, but the

number of children living in each good neighborhood as compared to capacity in the school
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does. For instance, when both good schools are overprioritized (i.e. they have no less

students living in the neighborhood than capacity), all students will, at best, be allocated

to their neighborhood school, independently of their preferences. To understand why DA

fails in this case, consider the simple example where all schools have equal capacity and

equal mass of prioritized students, that is 1/3. Clearly, no student in the catchment area

of a good school can end up in the bad school under DA (access to neighborhood school is

guaranteed in any round). In other words, all student living in the catchment area of the

bad school are condemned to stay there, regardless of their tie-breaking lottery number.

Students with priority in the different good schools may want to “exchange” their slots.

Nevertheless, when applying for their preferred school, since they do not have priority

for it, they will have to get a higher lottery number than any of the individuals living in

the bad neighborhood. In a big economy, the individual with highest lottery number in

the bad neighborhood would systematically win, blocking ABS for individuals in the good

neighborhoods. Therefore, stability brings low ABS here– see Roth (2008) for more on the

limitations imposed by stability. 1Importantly, the result in BM stems from risk avoidance

and not from stability.2

Our base model provides a wide characterization of ABS, where not all scenarios are

doomed for the previous mechanisms. However, we also illustrate that TTC becomes a

good alternative to both DA and BM. We show that TTC dominates DA in terms of ABS.

In TTC individuals preferring each others’ schools can always trade (this is precisely how

the mechanism operates), and so a minimum level of ABS, always higher than that under

DA, is guaranteed. From Gale and Shapley (1964) we know that TTC guarantees Pareto-

optimality of the final allocation. Yet this does not imply that TTC Pareto-dominates DA.

Consequently, the finding that TTC ABS-dominates DA is not an obvious implication of

what we already knew from the literature. As we will see in the main text, TTC does not

always ABS-dominate BM. Nevertheless, TTC is immune to the possibility that the bad

school is too bad cardinally, a case in which BM performs extraordinarily worse.

Empirical basis. Ther key feature in our model is the vertical differentiation of

1This result is very related to the results in Combe, Tercieux and Terrier (2017) where they show that
DA for teaching assignment to schools allows for limited number of reassignments if teachers cannot be
forced to move out of their current school. Having priority for the school you are currently assigned before
you apply for a new school needs to be guaranteed for the mechanism to be individually rational. But
then under DA there is limited access to a different school, which is a similar notion to ABS. Hence, their
result is a special case of ours, where the number of prioritized seats is identical to the number of available
seats in the schools.

2Recall that the set of Nash equilibrium assignments in BM necessarily coincides with the set of stable
assignments only if priorities are strict, which is not true in our setup.
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schools. In the US, for instance, the concept of “failing school” is prevalent in the policy

arena and in the media and it refers to the schools that have had poor performance for

two years in a row, constituting 10% of the schools in the US.3 The media emphasizes how

some families have a hard time moving out of their neighborhood failing schools, how choice

does not necessarily improve opportunities for disadvantaged families. However, empirical

evidence on families preferences coinciding at the bottom of the ordering is scarce. The

main challenge is that preferences are unobservable and that the mechanisms that elicit

them often do so through a manipulable mechanism. Hence, empirical evidence on this

comes from structurally estimated preferences. He (2014) structurally estimates preferences

over 4 colleges in Beijing under the Boston mechanism and finds that one of the schools is

surely ranked fourth for at least 58% of individuals.4 This is also the worse school in terms

of average academic performance. He (2014) also finds that only 5% of students rank it as

their first choice.5 Calsamiglia, Fu and Güell (2016) show that 44% of schools in Barcelona

are filled up in the first round and 40% are never filled up. Similarly, Table 4 in Agarwal

and Somaini (2016) shows that one of the pre schools in Cambridge (USA) King Open Ola,

is ranked in the submitted list only by five families, while the next best schools already has

51 applicants. Combe, Tercieux and Terrier (2018) analyse teacher assignment to schools

in France, where there are specific schools that no teachers wants to be assigned to. The

lack of desire for such schools is a problem that has been partially resolved by guaranteeing

future priority to move to better preferred schools to teachers previously assigned to such

schools. Hence, market stratification is not only common in school choice by students but

also by teachers.

An aspect that makes our results more drastic is schools being overprioritized, which

means that the number of applicants with priority for that school is larger or equal than the

number of seats. This is true in markets like the teachers’ market in France or the school

choice market in cities where individuals have a guaranteed spot in their neighborhood, such

as in the Charlotte-Mecklenburg Public School District (see Hastings and Weinstein, 2008).

In most school choice markets there is a transition from a neighborhood based assignment

to a centralized assignment with priorities for neighborhood, where the previously assigned

3In the US the requirement of the federal No Child Left Behind Public Choice Program re-
quires that local school districts allow students in academically unacceptable schools (F-rated
schools) to transfer to higher performing, non-failing schools in the district– if there is capac-
ity available. See See Title I Public School Choice for schools identified as Low Performing:
http://www.ncpie.org/nclbaction/publicchoice.html.

4For the remaining families this fact cannot be proved to be true, but is not rejected either.
5See Table 6 in his paper.
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school becomes the prioritized school. Also administrations want to guarantee that families

have access to a close-by school. Hence overprioritization (with equality) is not unlikely

even in the cases where it is not imposed through providing a default school assignment.

Our results show that under both DA and BM and with neighborhood priorities for all

seats a large fraction of families will be assigned their neighborhood school. Calsamiglia

and Güell (2014) show that in Barcelona priorities play a large role in determining the list

submitted by parents under the BM. They exploit a change in the definition of neighbor-

hoods in the city of Barcelona to identify that a large fraction of parents apply for the

neighborhood school, independently of their preferences. On the other hand, Calsamiglia,

Fu and Güell (2016) also perform counterfactual analysis of the allocation that would result

if DA or TTC were implemented instead. In Barcelona around 40% of families prefer a

school outside of their neighborhood. Table 19 in their paper shows that for families whose

favorite school is not their neighborhood school, both BM and DA assign them to their

favorite school less often than TTC, the proportion of assignment to out of neighborhood

school being 47.2%, 41.8% and 58.9% for BM, DA and TTC respectively. For DA, de-

spite the fact that families can be truthful and reveal that they want to move out of their

neighborhood, the mechanism assigns them most often to the neighborhood school. On

the other hand we also see that TTC clearly facilitates families moving out of their neigh-

borhood, more than DA and BM. Hence, the loss due to overassignment to neighborhood

school induced by both DA and BM limits the power of families’ preferences to determine

the allocation of students to schools.

The provided evidence is no direct proof of our assumptions or conclusions, but is

suggestive that our analysis can shed light on why we may have limited ABS in some cities

where school choice is implemented in a stratified school system and where neighborhood

priorities are warranted.

Literature. The literature has emphasized different properties of the norms char-

acterizing assignment mechanisms: strategy-proofness, stability and efficiency. The first

property consists of providing incentives to reveal true preferences independently of what

other families do, referred to as the mechanism being strategy proof. The Boston mecha-

nism (BM), one of the most widely used but also questioned mechanisms, described later in

the text, lacks this property. This implies that families can get a better allocation by stating

a different ranking from that defined by their true preferences. Alternative mechanisms,

such as the Gale-Shapley Deferred Acceptance algorithm (DA), also described later, do

have this property and therefore elicit true preferences. This greatly simplifies matters for
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families. DA is also valued because its resulting allocation is stable. Stability requires the

final allocation to be such that we cannot simultaneously have 1) an individual who prefers

a given school to her assigned school, and 2) the preferred school has another individual

admitted with lower priority than she has for that school. Importantly, the results on DA

in this paper apply to any stable mechanism. But the DA allocation is not Pareto efficient

except for some specific priority structures (Ergin, 2002). Pareto-efficiency is defined as

the lack of an alternative allocation that makes an individual better off without making

another individual worse off. The Top Trading Cycles mechanism (TTC), also described in

the next section, is strategy proof and efficient, but is not stable. There is no mechanism

that has the three properties (Kesten, 2010). But the efficiency costs of DA, as measured

in experiments, such as Chen and Sönmez (2006), are small and so DA has actually been

adopted in cities like New York and Boston, substituting the former mechanism, referred

to as the Boston Mechanism.6

Both DA and BM, or a combination of the two (see Chen and Kesten (2013)) are by far

the most debated alternatives.7 TTC was only used in New Orleans for the year 2012. This

paper suggests that the choice between Deferred Acceptance and the Boston Mechanism

may be less important, given that in both cases the final allocation of students is largely

determined by (neighborhood) priority rules.

An important reference is the seminal paper Kesten (2010), which shows that for any

vector of school capacities and any set of students, there are priority structures and in-

dividual preferences such that the stable-optimal allocation gives each student one of her

two worst options. Kesten solves this problem by introducing the Efficiency-Adjusted De-

ferred Acceptance Mechanism (EADAM) in which each student previously consents on

waiving priority rights that have no impact on her final allocation, while they may harm

other students’ final placement. Our paper points at a similar direction, however with

some important differences. We instead show that, under the existence of bad schools, a

common and simple catchment area priority structure determines the allocation to a large

extent, regardless students’ preferences for all schools except the worse schools, for which

preference order need to be lowest. In our context, EADAM would not provide any relief.

6Experiments evaluating the efficiency cost have been done in the lab, and the simulated environments
used did not contain bad schools, as we model them here or are found in the data. This paper suggests
that under the presence of bad schools efficiency losses may be very large, since preferences may have a
rather small effect on the final allocation.

7Important contributions to this debate include Abdulkadiroğlu and Sönmez (2003); Abdulkadiroğlu,
Pathak, Roth and Sönmez (2006); Ergin and Sönmez (2006); Miralles (2008); Pathak and Sönmez (2008);
Abdulkadiroğlu, Che and Yasuda (2011)

6



Neighborhood priorities are actively used to prevent prioritized students from falling into

a bad school, thus they cannot be waived. Instead, if one takes priorities that differ across

schools as given, then the solution would be to use Top Trading Cycles.

Our paper considers reasonable coarse priority structures8 lying in between two rather

extreme models in the school choice literature: the strict priority model (e.g. Ergin and

Sönmez, 2006; Pathak and Sönmez, 2008) and the no-priorities model (Abdulkadiroğlu,

Che and Yasuda, 2011; Miralles, 2008). Of course, all these papers discuss their models

beyond the adopted extreme assumption, yet their most illustrative proofs rely on their

chosen assumption. Ergin and Erdil (2008) constitutes an exception that formally ana-

lyzes weak priority structures. Methodologically, Ergin and Erdil focus on improving the

assignment after ties have been broken in some given way, whereas our paper considers the

randomness of tie-breakers explicitly.

The results of this paper are also important for the empirical literature in the economics

of education that evaluates the impact of school choice on school outcomes– see Lavy

(2010), Hastings, Kane and Staiger (2010). This literature assumes that implementing

choice implies that preferences will affect the allocation of children to schools. But these

empirical papers ignore how allocation mechanisms are affected by the priority structure

and therefore they may be attributing the effects to the wrong source of variation.

Section 2 clarifies the concept of Access to Better Schools while discussing its alter-

natives. Section 3 introduces the three mechanisms we compare in this paper. Section

4 contains an example illustrating the main driving forces by which the different mecha-

nisms obtain different ABS outcomes. The results in this paper are presented in a rather

stylized model for ease of exposition. This model is introduced in Section 5. The model

should facilitate understanding the intuition for the results without harming its perceived

robustness. Similarly to Miralles (2008), Abdulkadiroğlu, Che and Yasuda (2014), we fol-

low Aumann (1964) and assume an assignment problem with a continuum of individuals to

be allocated to a finite number of schools. Nevertheless, we include a preliminary section

(Section 3) containing a leading example with a finite number of students. There it can

be seen that our insights hold even for relatively small assignment problems. Section 4

presents the main results, evaluating the performance of the different mechanisms. Section

6 concludes. Appendix A contains a discussion of the discrete model example from Section

4. Appendix B contains all proofs.

8These can be enlarged to include sibling priorities and low-income priorities with no qualitative harm
on our results, upon request.
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2 Acces to Better Schools

Access to Better Schools (ABS) is the expected fraction of individuals who are allocated

a school preferred to their neighborhood school.

According to this definition, the benchmark to measure the success of a school choice

program is neighborhood assignment. Previous to the implementation of a centralized

school choice program, children were assigned to their neighborhood school when possible.

Hence ABS gives us the proportion of students that have improved their situation thanks

to the school choice program.

A fair objection to the concept of Access to Better Schools is that it ignores the assign-

ment of those who did not improve upon their catchment area school. If one understands

“choice” as a measure of how students stand with respect to their catchment areas, should

not we also take count of those students who actually end worse-off ? This count, that

could be named Access to Worse Schools (AWS), would serve to calculate a “net” ABS,

NABS = ABS − AWS.

We point out, however, that this critique is not out of question either. Consider a

stratified model of school choice, as seen in the folllowing sections, in which there is a

bad neighborhood with a bad school everyone dislikes. If one wants to minimize AWS,

one could pervasively suggest that students from such bad neighborhood should have no

chances at other schools but that bad school. If either such student gained access to a

better school, some other student from a better neighborhood with a better school had

to end up assigned to the bad school. The net count would be zero. In other words,

NABS gives no merit to mechanisms that allow children to scape from ghettos, due to a

crowding-out effect. Yet, according to the No Child Left Behind initiative, access to better

schools is particularly important for families from disadvantaged neighborhoods.

Such NCLB ideas are taken into account to the extent that, in some school districts,

students from the bad school catchment areas have priority at all schools over students

from good school catchment areas. For instance, the San Francisco Unified School District

gives highest priority in all schools to families living in areas with “bad schools” (the lowest

20% percentile of average test scores).9

There are obviously other ways to compare the families’ satisfaction generated by (dif-

ferent) school choice mechanisms. Pareto domination is the natural guide for comparison.

An alternative criterion is rank domination (Featherstone, 2014). A mechanism outcome

9http://www.sfusd.edu/en/assets/sfusd-staff/enroll/files/2012-13/annual report march 5 2012 FINAL.pdf,
page 81.
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rank-dominates another mechanism’s outcome if for every position n, the precentage of

students allocated to the n-th ranked school or better is higher under the first outcome.

Pareto-dominance implies rank dominance, which implies weakly higher ABS, yet the con-

verse implications are not forcefully true.

A caveat of such altenative domination criteria is that they often do not allow us

to unambiguously rank different mechanisms, above all with the usual presence of weak

priorities. ABS is a measure that always allows for comparison, instead.

3 The Mechanisms

The mechanisms we compare are the Deferred Acceptance (DA), the Boston Mechanism

(BM) and the Top-Trading Cycles (TTC). In all these mechanisms, parents (students) are

requested to submit a ranked list of schools. The student’s strategy space is the set of all

rankings among the schools. Each student may belong to the catchment area of a school.

Belonging to a school’s catchment area is the main priority criterion when resolving excess

demands. Additionally, a unique lottery number per agent breaks any other eventual tie.

The outcome of the lottery is uncertain at the moment students submit their lists.

Deferred Acceptance (DA):

• In every round, each student applies for the highest school in its submitted list that

has not rejected her yet.

• For every round k, k ≥ 1: Each school tentatively assigns seats to the students that

apply to it or that were preaccepted in the previous round following its priority order

(breaking ties through a fair lottery)10. When the school capacity is attained the

school rejects any remaining students that apply to it in that round.

• The DA mechanism terminates when no student is rejected. The tentative matching

becomes final.11

Boston Mechanism (BM):

10We assume that there is a single tie-breaker that serves to break ties when necessary at all schools.
In the absence of priorities, a single-tie breaker guarantees ex-post efficiency, while a separate tie-breaker
per school cannot guarantee such a property (Abdulkadiroğlu, Che and Yasuda, 2014.)

11Abdulkadiroğlu, Che and Yasuda (2014) show that this algorithm converges to an assignment in big
continuum economies, even though not necessarily in finite time.
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• In every round, each students applies for the highest school in its submitted list that

has not rejected her yet.

• For every round k, k ≥ 1: Each school assigns its remaining seats to the students

that apply to it following its priority order, and breaking ties through a random

lottery when necessary. If the school capacity is or was attained, the school rejects

any remaining students that point to it.

• The Boston mechanism algorithm terminates when all students have been assigned

to a school, in at most three rounds.

Top-Trading Cycles (TTC):

• In each round, we find a cycle as follows. Taking a school s, we choose its first

student in the priority list, i. This student points at her most preferred school s′,

which points at its highest-priority student i′, etc. A cycle is always found because

there is a finite number of schools.

• We assign to each student of the cycle a slot of the school she points at. We remove

these students and slots.

• We repeat the process round by round (having erased completely filled schools from

students’ lists and assigned students from schools’ priority lists) until we have as-

signed all the students.12

4 A Finite Economy Example

Our main model uses a continuum economy for ease of exposition. In this section we illus-

trate the main insights of the paper through an example with a finite set of individuals. We

12TTC converges in the continuum (Leshno and Lo, 2017). An idea is to discretize both the mass of
applicants and school capacity and to show that the discrete version converges as the size of the units
goes to 0. In order to do this on the demand side, define a given type t by individuals with particular
preferences and priorities (before ties are broken). Since the set of priorities and schools is finite, so is the
set of orderings and types. Next, divide each type into units of size 1/n. Let n be a natural number such
that each type and each school capacity is larger than 1/n, so that each type and school is composed of at
least one unit un. However, each type and school capacity may not be divisible by an integer number of
units. Note that the total mass of leftovers on the demand side is divisible by an integer number of units,
since the total mass is of unit 1. Similarly for the supply side. Now define the preference ordering for the
leftover units on demand side as a random preference ordering of the leftover types in that unit. Similarly
distort capacities so that the remaining seats are all of one of the schools. We can now run TTC on units
of individuals and schools. The assignment is distorted by mass of the leftovers. But one can show that
the mass of leftovers on both sides goes to 0 as n goes to infinity.

10



have three neighborhoods with n families living in each of them, and each with a school of

capacity n. Let i ∈ {i1, i2, i3} denote that the individual lives in the neighborhood of school

s ∈ {1, 2, 3}, and therefore has priority at school s. Ties in priorities given by residence are

broken through a unique fair lottery. Individual preferences can be represented through

the following von Neumann - Morgenstern valuations for schools, where v ∈ (0, 1):

type\school 1 2 3

i1 v 1 0

i2 1 v 0

i3 1 v 0

Note that we have constructed an example where potential for choice benefiting students

is maximal. That is, we have assumed all students would rather be assigned to a different

school than their neighborhood school. Any Pareto-efficient allocation in this example

involves having no pair of students in the catchment area of school 1 to be assigned to their

own neighborhood school, since they would be better off by trading their seats (individuals

living in neighborhood 1 prefer attending s2 and vice versa). Since no prioritized student

occupies a slot of school 1 at any Pareto-efficient allocation, it follows that those slots are

occupied by other students who have school 1 as their favorite.

In Deferred Acceptance, students with priority at a good school have guaranteed as-

signment to a good school. This implies that all students of the i3 type are eventually

assigned to the worst school. Students i1 and i2 would like to “exchange” their guaran-

teed slots. But through the DA, since they do not have priority for their preferred school,

this “exchange” will only happen if two individuals, an i1 and an i2, get a better lottery

number than the i3−student with the highest lottery number. The student i3 with the

highest lottery number can block each trade with a probability higher or equal to 2/3.

The probability of blocking the x-th exchange rapidly increases with x, since not doing so

requires both x-th best lottery numbers in i1 and i2 to beat the best lottery number in

i3. In the Appendix we provide the exact method of calculation of the chances to obtain

exactly x = 1, .., n exchanges. Thus, Table 1 presents the results from calculating the

expected proportion of students that obtain access to a better school than the catchment

area school. This percentage rapidly decreases to zero as n grows large. Even with n being

small, the percentage is dramatically low (1.77% with twenty students per school).

This trade-blocking cannot happen under TTC. School 1 points at a student with type

i1, who points at school 2, which points at a student with type i2, who points at school 1,

and the cycle is closed. Students from types i1 and i2 are assigned to a school that is better
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than their priority-giving schools regardless of how lucky students of type i3 are with their

lottery numbers.

As for BM, we distinguish two different cases. In case 1, where v = 0.9, the bad school

is much worse than the second-best school for every student. The unique Nash equilibrium

(in undominated strategies) involves students of types i1 and i2 ranking their respective

neighborhood school first, and each student is assigned his neighborhood school. Hence

ABS in this case is equal to 0.

In case 2, where v = 0.1 the bad school is similar to the second-best school for every

student. Even though the former Nash equilibrium still exists, another Nash equilibrium

(in undominated strategies) exists in which all students submit a truthful ranking over

schools. For any n, all students of type i1 obtain a slot at school 2, while students of types

i2 and i3 have fifty per cent chances of obtaining a slot at school 1, and fifty per cent to

obtain a slot at the worst school. In case 2 then, an equilibrium exists in which all the

slots at good schools are given to students who prefer these more than their priority-giving

schools. Hence, in this case ABS is maximal and equal to 67%.

Table 1 summarizes the expected number of students who obtain a better placement

than the school for which they had priority (weighted by the size 3n of the market).

Table 1: Expected percentage of students who get Access to Better School (ABS)

Mechanism \ n 1 2 5 10 20 ∞
BM (v = 0.9) 0 0 0 0 0 0

DA 22 13.3 6.3 3.4 1.77 0

BM (v = 0.1) 66.7 66.7 66.7 66.7 66.7 66.7

TTC 66.7 66.7 66.7 66.7 66.7 66.7

BM (case 1) obtains the worst performance possible in terms of access to a better school.

The assignment is fully determined by the priority structure. BM (case 1) performs worse

than DA, although insignificantly so as n goes large. In fact both perform extremely

bad. Notice how the expected percentage of students who improve upon their catchment

areas rapidly decreases to zero under DA. With ten students per school, only 3.4% of

them are expected to obtain a better assignment outside their catchment areas. With

twenty students per school, this percentage is 1.77%. This exemplifies that the bad results

obtained by DA later in the model are not an artifact of the continuum.

In contrast, BM (case 2), which performs as good as TTC, obtain maximum access to

better schools for any n. The comparison between DA and BM crucially depends on the
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intensity of students’ preferences between the second-best school and the worst school. In

case 1, preferences lead to a (bad) equilibrium in BM where agents manipulate preferences

and use safe options. In case 2, students do not strategize, hence reaching a “good”

equilibrium that outperforms DA.

Although TTC and BM (case 2) are similar in terms of ABS, they are very different

in other respects. While TTC ensures that students with priority at good schools do not

worsen their positions, BM (case 2) involves a risk of ending in the worst school. At the

same time, BM (case 2) gives chances to i3, the student with priority the bad school, of

getting access to a better school. In the discussion at the end of the paper we comment

on the limitations of our ABS measure.

5 The Model

We present a simple model that sufficiently illustrates our insights.13 We have a unit mass

of students i ∈ [0, 1], each of them to be allocated to one of three schools. Two of the

schools are “good” and one is “bad”, in the sense that all students rank it worse. Good

schools are labelled 1 and 2, respectively, whereas the bad school is labelled w (as for

”worst”.) Schools have capacities Q1, Q2 and Qw that add up to one. Students have

cardinal preferences over the schools. We represent them by a measurable vNM valuation

for the second-best school v : [0, 1]→ (0, 1). We normalize valuations so that each student’s

preferred school has valuation 1 and the least preferred school (w) has valuation 0. No

student is indifferent between any two schools. Ordinal preferences are more extensively

explained below.

There is a measurable catchment area function π : [0, 1]→ {1, 2, w}. Each student has

a unique catchment area where she has priority over students outside the catchment area.

Other ties are resolved when needed using a fair lottery outcome n : [0, 1] → [0, 1] that

assigns one number to each student. We apply the convention that a lower lottery number

beats a higher lottery number.

There is a mass N1, N2 and Nw of students for the catchment areas of schools 1, 2

and w, respectively. Belonging to the catchment area of a school gives priority there over

13In previous versions of this paper we use a more general model with an arbitrary number of schools.
Results are qualitatively similar to the ones we find here. For DA, there is an upper bound to ABS that
collapses to zero when good schools are overprioritized. As for BM, when the bad school is sufficiently bad
in cardinal utility terms, all students put the safe option first, leading to minimum ABS. This material is
available upon request.
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students outside its catchment area. Without loss of generality we assume that students in

the catchment area of the good school actually prefer the other good school.14 Regarding

the students at the bad school’s catchment area, Nw1 students prefer school 1 the most,

and Nw2 = Nw −Nw1 students prefer school 2.

For each school s, define ρs = Qs/Ns. We say school s is overprioritized if ρs < 1

(capacity is smaller than the number of individuals with priority in the school), and un-

derprioritized in the opposite case. Notice that we cannot have the three schools being

either all overprioritized or all underprioritized, since we have assumed that total capacity

is equal to total mass of students. For two schools s and s′ we say that s is more prior-

itized than s′ if ρs < ρs′ . This variable comes out to be important when comparing the

performance of the studied mechanisms.

For each assignment mechanism we compute the mass of students who obtain a slot in

a school preferred to that of their catchment areas, as a measure of students’ real choice

(since catchment school is the default option when no choice is available). We call this

measure Access to Better Schools, denoted ABS.

Pareto-domination clearly implies having higher ABS, although intuitively the converse

is not true. While an ordering of mechanisms regarding ABS is calculated, we point

out that it does not necessarily imply existence of a Pareto-domination ranking. Indeed,

mechanisms that may induce higher access to better schools may do so in exchange of

placing prioritized students from good schools’ catchment areas to bad schools. At the same

time, mechanisms that perform poorly in terms of ABS may be protecting these students

from being assigned to the bad school. Finally, we also observe that rank-domination

(Featherstone, 2014) does not imply (or is implied by) ABS domination. A mechanism

may be good in placing students from the worst school’s catchment area in either one of

the good schools, while being bad in placing them to her favorite good school. Another

mechanism could rank-dominate the former and at the same time it could be dominated

by it in terms of ABS.

5.1 Worst and Best Cases under the Boston Mechanism

It is well known that both DA and TTC are strategy-proof: there is a dominant strategy

equilibrium in which all students submit the true ranking of schools according to their

14Those who prefer their catchment area school obtain a sure slot there, so we can safely ignore them
and their occupied slots. In case some school’s capacity is less than the number of prioritized students who
prefer it, the model becomes uninteresting in that this school gives all their slots to prioritized students
only, in all the mechanisms we study.
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preferences. It is also known that agents have incentives to manipulate their rankings in

BM, depending on their cardinal preferences– see for example Abdulkadiroğlu and Sönmez

(2003), Miralles (2008) or Abdulkadiroğlu, Che and Yasuda (2011). We illustrate two

extreme cases that may constitute part of a Nash equilibrium (in undominated strategies)

for limit preference structures.

The first extreme, which we call Boston Mechanism (worst case), involves every

student manipulating her preferences in order to minimize the probability of being assigned

the bad school. More precisely, for each underprioritized good school, all the prioritized

students rank it first. And for every overprioritized good school, the number of prioritized

students who rank it first exceeds the school’s capacity. This maximum manipulation arises

as the unique Nash equilibrium outcome when the valuation of the bad school is sufficiently

bad for every student. It is also one, yet not necessarily unique, Nash equilibrium prediction

when both good schools are overprioritized, regardless of how worse the bad school is

(compared to the second school). It is easy to envision that this maximal manipulation

equilibrium leads to a dreadful level of access to better schools, since prioritized students

use their safest options, resigning from achieving a slot in a better school while blocking

others from getting access to good schools.

Lemma 1: There is ṽ ∈ (0, 1) such that if the range of v lies strictly above ṽ, every

Nash equilibrium (undominated strategies) of the game induced by BM meets the worst

case of the Boston Mechanism.

Appendix A contains the proofs to all lemmas and propositions.

On the other extreme we have the Boston Mechanism (best case), where agents

submit a ranking according their true preferences. This is a limit Nash equilibrium pre-

diction when the valuation every agent has for the worst school is almost as good as the

valuation for her second-best school. That is, there is almost no punishment for being re-

jected in the first round of the assignment algorithm, thus being sincere is optimal. In this

case it is clear that access to better schools is dramatically increased. Prioritized students

at good schools make no use of this privilege, aiming to better schools and thereby letting

others get access to their preferred schools.15

Lemma 2: There exists v̄ ∈ (0, 1) such that if the range of v lies strictly below v̄, there

is a Nash equilibrium (undominated strategies) of the game induced by BM that coincides

with the best case of the Boston Mechanism.

15See Kojima and Ünver (2014) for a characterization of the Boston Mechanism under truthtelling.
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The Nash equilibrium (in undominated strategies) outcome of the Boston Mechanism is

neither unique nor predictable without knowing the distribution of cardinal von Neumann

- Morgenstern utilities. Fortunately, we can state that the access to better schools measure

would stay between the lower bound and the upper bound provided by the worst case and

best case scenarios. Interestingly, this is also true if there is a proportion of nonstrategic

students that compulsorily rank the schools according to their true preferences.

We calculate ABS under BM (worst case and best case). In the worst-case scenario,

agents aim to minimize the probability of ending assigned at the bad school. A school s

is overdemanded if the mass of students ranking it in first position exceeds its capacity.

School s is underdemanded otherwise. Notice that since ranking the bad school other than

last is part of a dominated strategy, it cannot be the case that both two good schools are

underdemanded. Here is our result. Let ABS=
∑

s∈{1,2}max{0, Qs − Ns} be the lower

bound for the access to better schools that can be attained by any mechanism. Essentially,

every slot at each good school is given to a prioritized student, until either all students of

its catchment area have been already assigned or the school capacity is filled.

Proposition 1 ABSBMworst =ABS.

In the Boston Mechanism (best case), all the students truthfully rank their schools

according to their preferences. As in the previous case, it cannot be that both two good

schools are underdemanded in the first round of the assignment algorithm. Thus, either

N1 + Nw2 > Q2 or N2 + Nw1 > Q1 (or both). Let ABS = Q1 + Q2 be the obvious upper

bound for the access to better schools that can be attained by any mechanism. If both

good schools have sufficient number of students who have it as its first best, then maximal

access to better schools is attained, since both good schools are filled by students who

desire it most. If one of the schools (call it u as for ”underdemanded”; the other school

is denoted with o as for ”overdemanded”) does not have a sufficient amount of students

who prefer it, No + Nwu < Qu, then school u remaining capacity after the first round,

Qu−No+Nwo, will be filled by those who have priority at u that did not get their assigned

to their preferred school o (a mass Nu

(
1− Qo

Nu+Nwo

)
). If there is still capacity left after

that, then it will be filled by individuals from the bad neighborhood. Therefore, the only

seats that will not be used to improve access to better schools will be the capacity available

in the second round occupied by applicants to the overdemanded school that did not get

in and that live in the underdemanded school.
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Proposition 2 1) If both good schools are filled when all students who have it as their first

best demand it, that is, N1 +Nw2 > Q2 and N2 +Nw1 > Q1, then ABSBMbest = ABS.

2) If one school is not filled when all students who have it as their first best demand

it (label this school as u and the other school as o), that is, if No + Nwo < Qu, then

ABSBMbest = ABS −min
{
Nu

(
1− Qo

Nu+Nwo

)
, Qu −No −Nwu

}
.

5.2 Access to better schools under Deferred Acceptance

The properties derived from DA in this paper are direct implications of it being stable. In

other words, the results in DA would result from any stable mechanism. Stability in our

framework limits ABS largely, because it leads to individuals in the bad neighborhoods

blocking Pareto improving exchanges between individuals in the good schools. Individuals

in the good neighborhoods will apply for their first best and if they do not get in they

will apply and get their neighborhood school, capacity permitting. Therefore no individual

living in a good neighborhood will be placed in the bad school, unless her neighborhood

school is overprioritized. If both good schools are overprioritized, then clearly no individual

from the bad neighborhood will have access to a good school. But by stability then, no

individual from a good neighborhood can get better access, since, lacking priority to their

preferred school requires that they get a higher lottery number than any student in the

bad neighborhood. Therefore ABS in that case is 0.

On the other hand, if one school is underprioritized, Qh − Nh > 0, then some trade

may arise. The intuition is as follows. Since Qh > Nh some seats at h are available that

no individual living in h will “claim” back. This implies that some individuals from the

bad and from the other good neighborhood will access those seats and thereby achieve

improved access. Additional access may be provided if the individuals from the other good

school that access school h do not fill their own school, creating some leftover capacity

to be filled by non-prioritized students (this will depend on how overprioritized the other

good school is). This process may lead to ABS being substantial in this case. The following

proposition formally states these results.

Proposition 3 1) If both good schools are (weakly) overprioritized, ABSDA = 0.

2) If one school (h) is underprioritized and the other one is (weakly) more prioritized

than the bad school, ABSDA = Qh −Nh.

3) If one school is underprioritized and the other one is less prioritized than the bad

school, ABSDA = ABS −N1(1− c2)−N2(1− ch).
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where cs ∈ [0, 1], are cut-offs such that no non-prioritized student with lottery number

above the cut-off can obtain access to school s. The Appendix provides the exact analytical

expressions for these cut-offs. Notice that in cases 1 and 2 DA reaches the lower bound

of ABS, that is, ABSDA = ABS. More generally, this “trade blocking” systematically

happens as long as min{ρ1, ρ2} ≤ ρw. Performance under DA improves when schools are

less prioritized. As long as more slots at good schools can be given to students from

the catchment area of the bad school, access to better schools is less blocked. Satisfying

students with best lottery numbers from the bad school catchment area allows students

from the catchment area of good schools to “exchange slots”, as long as they also have

sufficiently good lottery numbers. However, DA never reaches the upper bound ABS.

5.3 Access under Boston versus Deferred Acceptance

We can now provide a comparison between BM and DA regarding access to better schools.

Proposition 4 Access to better schools under BM and DA:

1) If min{ρ1, ρ2} ≤ ρw, then ABS= ABSDA = ABSBMworst < ABSBMbest.

2) If min{ρ1, ρ2} > ρw, then ABS= ABSBMworst < ABSDA < ABSBMbest.

We first consider the case where at least one good school is more prioritized than the

bad school. This case arises, for instance (though not exclusively), when the bad school

is underprioritized. Deferred Acceptance provides the minimum possible level of access to

better schools, coinciding with the worst case of the Boston Mechanism. Yet the best case

scenario of the Boston Mechanism provides higher access to better schools. In some cases,

it reaches the maximum attainable level of access. In such environments, switching from

BM to DA can only worsen the level of access to better schools.

Secondly, we consider the case where both good schools are less prioritized than the

bad school. This case arises, for instance (though not only), when both good schools are

underprioritized. While the worst case scenario of BM still obtains the minimal level of

access to better schools, DA improves upon that. Yet it does reach the access level of

the BM (best case), which is maximal in case of overdemands. In such environments,

the comparison between DA and BM is ambiguous, crucially depending on the level of

preference manipulation under BM.
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5.4 An Alternative: Top Trading Cycles

An alternative would be Top Trading Cycles (TTC), which has been proven to be strategy

proof and efficient. With TTC the lower bound ABS is never reached. The reason is simple.

In our model we have that all i1 individuals prefer school 2, and vice versa. Therefore,

at least 2 min{Q1, N1, Q2, N2}, agents with sufficiently good lottery numbers and priority

at a good school get access to their preferred school through exchanging their priorities

for the good schools. Contrarily to what happens at DA, students from the worst school’s

catchment area cannot “block” this trade. We provide a full calculation of ABS given

by TTC in the Appendix (Proposition 7). The next result summarizes comprehensible

corollaries that help us characterize how good TTC is regarding ABS.

Proposition 5 1) ABS − ABSTTC ≤ |min{Q1, N1} −min{Q2, N2}|.
2) This upper bound is not necessarily binding. There are cases in which

|min{Q1, N1} −min{Q2, N2}| > 0 and ABSTTC = ABS.

3) In all cases we have ABSTTC >ABS= ABSBMworst.

The upper bound in part 1) has an easy explanation. The amount of slots to be

potentially traded for each good school s ∈ {1, 2} is the minimum between its capacity

and the mass of its prioritized students. Then the loss of ABS with respect to the maximum

attainable amount is the difference between the long side of the market and the short side

of the market.

TTC clearly outperforms DA when min{ρ1, ρ2} ≤ ρw, that is, when DA obtains minimal

access to better schools. The following proposition shows that this also true in general.

Proposition 6 TTC dominates DA in terms of ABS, that is, ABSTTC > ABSDA.

We are not able to provide a clear characterization of the ordering between TTC and

BM with respect to ABS. There are environments in which TTC reaches maximal ABS

whereas BM (best case) does not, and cases in which the opposite happens. We provide

examples illustrating both possibilities.

Example 1: When N1 = N2 < min{Q1, Q2} and some good school is underdemanded

under BM (best case), we have ABS = ABSTTC > ABSBMbest. �

Example 2: When min{N1, N2} > max{Q1, Q2} and Q1 6= Q2, we have: ABS =

ABSBMbest > ABSTTC = 2 min{Q1, Q2}. �
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These examples illustrate cases in which both mechanisms fail to guarantee maximal

ABS depending on different cases. In example 1, BM (best case) fails because the under-

demanded good school gives some slots to prioritized students in the assignment’s second

round, blocking those slots against students from the bad school’s catchment area that

otherwise could have improved their positions. In example 2, the difference |Q1 − Q2|
of slots in the biggest good school would not be tradable under TTC, hence these slots

would be occupied by prioritize students, again precluding access to students from the bad

school’s catchment area.

ABS is an aggregate measure of choice that abstracts from potentially important aspects

when allowing families to choose. For instance, BM (best case) may outperform TTC or

vice versa, but qualitatively there are differences in the identity of the agents who obtain

a better choice outside their catchment area. In TTC, no prioritized student from an

underprioritized good school could ever be assigned to a bad school. Hence, access to

better schools arises primarily because students with priority at good schools exchange

their positions. Note that students from the bad school’s catchment area get no indirect

benefit from this. Conditional on not having traded a good school seat, the prioritized

student’s lottery number is worse than that of the students from the bad school’s catchment

area. This way the latter students may obtain access to better schools as well. In BM (best

case), the first round works as if no priorities existed. Prioritized students at good schools

apply for a different school, directly emptying a slot for other students. Consequently,

chances are that a student from a good school’s catchment area ends assigned at the bad

school. The good side of this is that students from the bad school’s catchment area have

more chances to get access to a good school.

6 Conclusions

Since Abdulkadiroğlu and Sönmez (2003) the Boston Mechanism has been widely criticized

in the school choice literature. Since then many cities around the world have substituted

this mechanism by the Gale Shapley Deferred Acceptance mechanism.16 Deferred Ac-

ceptance has been adapted from matching theory as a good alternative, since it is not

manipulable, it protects nonstrategic parents and provides more efficient assignments in

setups with strict priorities. The debate between these two mechanisms was based upon

16See Pathak and Sönmez (2013) for evidence on the number of cities around the word where the Boston
mechanism has been banned.
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models that did not incorporate some important realities about the schools system, such as

the vertical differentiation among schools. We solve a simple model of school choice with

coarse residential priorities and vertical differentiation separating good from bad schools.

We show that if school choice aims to improve access to better schools than the neighbor-

hood school, then both mechanisms are likely to perform very poorly. We illustrate that

the priority structure, under the presence of a stratified school system, can determine the

final allocation to a great extent in both of these mechanisms.

We have also discussed a third, natural alternative in this debate, which is Top-Trading

Cycles. TTC is more immune to the priority structure because prioritized students at good

schools are allowed to trade their slots with no interferences from students of a bad school’s

catchment area. Top-Trading Cycles obtains higher access to better schools than Deferred

Acceptance. It therefore constitutes a safe mechanism with respect to both the Boston

Mechanism and Deferred Acceptance, in school choice problems where coarse zone priorities

exist.

More generally this paper puts forth the extreme relevance that neighborhood priorities

can have on the final allocation of students to schools, inhibiting the role that preferences

may have in determining the final allocation. The literature has deemed these priorities

as exogenous, but ultimately they constitute a key feature of the final assignment that the

administration can and does change whenever needed.17 Future work should incorporate

the design of these priorities as a fundamental part of the mechanism design problem.

7 Appendix

7.1 Appendix A: ABS under DA in the finite economy example.

As said in the main text, students with priority at different good schools would like to

“exchange” their guaranteed slots, yet then the students from the bad school catchment

area may block this trade. We want to derive the chances of exactly a number x of

exchanges occurring. In order to gain more understanding we illustrate a simple case

where n = 2 and x = 1. We calculate all the cases in which this event happens. It could be

that the two top-ranked students in the tie-breaking lottery are one student of type i1 and

another one of type i2, and the third-ranked student is i3. We could have picked
(

2
1

)
= 2

students from each type, and the order between types i1 and i2 does not matter (there

17In cities such as Madrid, Barcelona, Boston, San Francisco and New Orleans, among others, priorities
have changed over the last decade.
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are 2! = 2 ways to arrange them). There are also (6 − 3)! ways to arrange the remaining

students among themselves. Hence we find 2 · 2 · 2 · 2! · 3! = 96 lottery outcomes satisfying

this condition. But we have not covered all cases. It could also be that two students of

type i1 and another one of type i2 occupy the first three positions in the lottery ranking,

while the fourth position is occupied by an i3 student. In this case There is only one way,

or
(

2
2

)
, to pick two students out of the two existing i1 students. We could still pick

(
2
1

)
= 2

students from each of the other types. The way we arrange the two i1 students and the i2

student does not matter (there are 3! combinations). There are (6 − 4)! ways to arrange

the remaining students. We have found other 1 · 2 · 2 · 3! · 2! = 48 such lottery outcomes.

This number has to be multiplied by 2, to cover the final yet symmetric case in which two

students of type i2 and another one of type i1 occupy the first three positions in the lottery

ranking, while the fourth position is occupied by an i3 student. We obtain a total of 192

favorable cases out of 6! = 720 possible lottery outcomes. The probability of exactly one

exchange with two students per school is P (1, 2) = 4
15
. More generally

P (x, n) =
1

(3n)!
[

(
n

x

)(
n

x

)
n(2x)!(3n− 2x− 1)! +

+2
n∑

i=x+1

(
n

x

)(
n

i

)
n(x+ i)!(3n− x− i− 1)!]

=

(
n

x

)[
n

3n− 2x

(
n
x

)(
3n
2x

) + 2
n∑

i=x+1

n

3n− x− i

(
n
i

)(
3n
x+i

)]

Let X(n) denote the expected percentage of students that obtain a slot in a school

better than their catchment area school under DA, when each school has n slots and n

prioritized students. Then

X(n) =
2

3

1

n

n∑
x=1

xP (x, n)

The 2
3

fraction appears because one third of students (those with priority at the bad

school) have no chance to escape from the bad school. Values for X(n) are reported in Table

1 (main text). It can be shown that X(n)→ 0, in fact quite fast (e.g. X(20) = 0.0177).18

18In a previous version of this paper we show that if we fix a proportion of agents wishing to exchange
good school slots, the probability they all do so shrinks to zero at factorial speed as n grows.
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7.2 Appendix B: proofs

Proof Lemma1.

Denote with Ñs the mass of students with priority at a good school s who rank s in

first position. We want to find conditions under which Ñs < min{Qs, Ns} cannot occur

for any s ∈ {1, 2} in a Nash equilibrium. By way of contradiction, we suppose that

Ñs < min{Qs, Ns} for some s ∈ {1, 2}.

We restrict attention to undominated strategies, which involve ranking the worst school

in last position. Therefore, the mass of students applying for either school 1 or 2 in the

first round of the assignment algorithm is 1, while the overall capacity of these schools is

Q1 +Q2. One of these schools must be overdemanded in the first round: we call it o. The

other good school is denoted as u.

Suppose u is underdemanded in the first round. Then, among those students applying

for school o in the first round without priority there, the chances of ending assigned at w

are at least Qw = 1−Q1 −Q2, since the bad school is filled only with students that used

this strategy. The payoff from this latter strategy for these agents is no more than Q1 +Q2.

Instead, the payoff from applying for the underdemanded school is higher than ṽ.

Setting ṽ ≥ Q1 +Q2 we force every Nash equilibrium to have both good schools overde-

manded. Otherwise all students without priority at o would best respond by ranking the

underdemanded school u first. Since all students with priority at o would also best respond

by ranking the preferred underdemanded school u first, we would contradict the fact that

u is underdemanded.

Since both good schools are overdemanded, every rejected student at the first round

is eventually assigned at the bad school. Use qs for the Nash equilibrium probability of

being accepted at s ∈ {1, 2} for a student without priority at s that applies there in the

first round of the BM algorithm. WLOG assume qu ≥ qo and notice that it must be the

case that qo ≤ Q1 + Q2. Let 0 < ε < Qw. We find conditions under which every Nash

equilibrium meets qu ≤ 1− ε. Suppose the contrary, thus applying for this school renders

a payoff of more than (1 − ε)ṽ. Applying for the other school renders a payoff bounded

by qo ≤ Q1 + Q2. Set ṽ ≥ Q1+Q2

1−ε . Under this condition all non-prioritized students at o

(a mass Nu + Nw) would best respond by ranking u first. But then, since Ñu = Nu, our

initial assumption implies Ño < min{Qo, No}, yielding o underdemanded, a contradiction.

Finally, we fix ε ∈ (0, Qw) and we use qo ≤ qu ≤ 1 − ε. Let Ñs < min{Qs, Ns} for

some s ∈ {o, u}. For a prioritized student at school s applying for the other good school,
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the payoff is not more than 1− ε, whereas applying for school s gives payoff above ṽ. Set

ṽ = max{Q1+Q2

1−ε , 1− ε}. With this, the best response for all students with priority at s is

to rank s in first position, contradicting Ñs < min{Qs, Ns} as part of a Nash equilibrium.

�

Proof Lemma2.

We restrict attention to undominated strategies, where all students rank the worst

school in last position. Suppose that the profile of submitted rankings coincides with the

profile of ordinal preferences. We show that the best response for all students is precisely

to rank the schools sincerely, when valuations for second-best schools are sufficiently low

(capped by a properly chosen v̄).

First, consider the case where both good schools (labelled s and s′) are overdemanded

in the first round. For a student i who prefers s and abides by the sincere ranking strategy

the payoff is Qs

Ns′+Nws
. Instead, the payoff from the best alternative, putting s′ first in the

ranking, cannot exceed v(i). Setting v̄ ≤ v̄1 = min{ Q1

N2+Nw1
, Q2

N1+Nw2
} we make sure that all

such i best respond by ranking schools truthfully.

Consider now the case in which one school, labelled u, is underdemanded in the first

round (the other one, o, must be overdemanded). For a student who prefers u the most,

truthful ranking is obviously a best response. Consider a student i who prefers o the most.

If she ranks o in first position according to her true preferences, she obtains a payoff higher

than Qo

Nu+Nwo
. If she instead ranks u first she obtains a payoff v(i). Setting v̄ ≤ v̄2 = Qo

Nu+Nwo

we make sure that all such i best respond by ranking o in first position. Notice that v̄1 = v̄2,

thus v̄ = min{ Q1

N2+Nw1
, Q2

N1+Nw2
} suffices to obtain the desired result. �

Proof Proposition 1.

In BM (worst case), if some good school s is underprioritized, all of its prioritized

students optimally rank the school of their catchment area first. If a good school s is

overprioritized, no Nash equilibrium (undominated strategies) exists where the number of

prioritized students that rank s first does not exceed its capacity. Altogether we obtain

ABSBMworst =
∑

s∈{1,2}max{0, Qs −Ns} =ABS. �

Proof Proposition 2.

Clear for overdemanded schools (all good slots are given to students that prefer them

the most). When u is underdemanded (hence o is overdemanded), Qu − No − Nwu slots
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of u are still available after the first assignment round. This is the maximum number of

slots that students with priority at u who were rejected from o in the first round, a total

of Nu

(
1− Qo

Nu+Nwo

)
, can occupy. All other slots are occupied by agents who had priority

at a less-preferred school. �

Proof Proposition 3.

Following in Abdulkadiroğlu, Che and Yasuda (2015), the outcome of DA can be char-

acterized via cutoffs c1 and c2. Provided a student i with π(i) 6= s applies at some point for

school s, she would be definitely accepted if her lottery number meets n(i) ≤ cs. Obviously

the cut-off for the worst school is 1. We easily adapt Abdulkadiroğlu, Che and Yasuda’s

calculation method to the existence of a zone priority structure. Let l be the good school

with lowest cut-off, and h the good school with highest cut-off. Then cl and ch meet

cl(Nh +Nwl) = max{0, Ql − (1− ch)Nl}

ch(Nl +Nwh) + (ch − cl)Nwl = max{0, Qh − (1− cl)Nh}

1) Qh− (1− cl)Nh ≤ 0. Then cl and ch are both zero. This case arises when both good

schools are (weakly) overprioritized.

2) Ql − (1 − ch)Nl ≤ 0 and Qh − (1 − cl)Nh > 0. In such a case we have cl = 0 and

ch = Qh−Nh

Nl+Nw
. This case arises when Qh > Nh (that is, ρh > 1) and, after some algebra,

ρl ≤ ρw. This algebra goes as follows. Ql − (1 − ch)Nl ≤ 0 iff Ql − (1 − Qh−Nh

Nl+Nw
)Nl ≤ 0,

or Ql − Nl+Nw+Nh−Qh

Nl+Nw
Nl ≤ 0, or Ql − 1−Qh

Nl+Nw
Nl ≤ 0, or Ql − Ql+Qw

Nl+Nw
Nl ≤ 0, or Ql

Nl
≤ Ql+Qw

Nl+Nw
,

which happens if and only if Ql

Nl
≤ Qw

Nw
.

3) Ql − (1 − ch)Nl > 0 and Qh − (1 − cl)Nh > 0. Solving for the system of equations

gives cl = Nl(ρl−ρw)
Nh+Nwl

and ch = 1− ρw. We have, of course, that this is met when ρh > 1 and

ρl > ρw. Notice that this implies ρw < 1.

In this case ABSDA = N1c2 + N2c1 + Nw max{c1, c2} = N1c2 + N2c1 + Nw(1 − ρw) =

N1c2 +N2c1 +Nw −Qw = N1c2 +N2c1 +Q1 +Q2 −N1 −N2. �

Proof Proposition 4.

We already saw that ABSBMworst =ABS. From the preceding Proposition it is clear

thatABSDA =ABS in its cases 1 and 2 (summarized as min{ρ1, ρ2} ≤ ρw), whileABSDA >ABS

if min{ρ1, ρ2} > ρw. It is also clear that ABSBMbest = ABS > ABSDA if both good schools

are overdemanded under BM (best case). It remains to check that ABSBMbest > ABSDA
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also when there is one underdemanded good school under BM (best case). We use the la-

belling from previous propositions: u for the underdemanded good school under BM (best

case), o for the overdemanded good school under BM (best case), l for the good school

with lowest cut-off under DA, and h for the good school with highest cut-off under DA.

If min{ρ1, ρ2} ≤ ρw, we show that ABSBMbest > max{Qu − Nu, Qo − No} (≥ ABS).

On the one hand, ABSBMbest ≥ Qu +Qo−{Qu −No −Nwu} = Qo +No +Nwu > Qo−No.

On the other hand, ABSBMbest ≥ Qu +Qo −Nu

(
1− Qo

Nu+Nwo

)
> Qu −Nu.

If min{ρ1, ρ2} > ρw, we need to show that min{Nu

(
1− Qo

Nu+Nwo

)
, Qu −No −Nwu} <

Nl(1− ch) +Nh(1− cl).

Case 1: u = h, o = l. It is enough to show Nu

(
1− Qo

Nu+Nwo

)
= Nh

(
1− Ql

Nh+Nwl

)
<

Nh(1− cl), or cl <
Ql

Nh+Nwl
. This follows immediately since cl = Ql−Nlρw

Nh+Nwl
.

Case 2: u = l, o = h. It suffices to show Qu−No−Nwu = Ql−Nh−Nwl < Nl(1−ch) =

Nlρw. We use the fact that cl = Ql−Nlρw
Nh+Nwl

< 1 (since cl ≤ ch = 1 − ρw < 1). This implies

exactly Ql −Nh −Nwl < Nlρw.

�

Proof Proposition 5.

We use the following notation in order to shorten the exposition: s and s′ denote generic

good schools, Ms = min{Qs, Ns}, and ∆ss′ = NsNw

Ns′−Nws′
if Ns′ > Nws′ and +∞ otherwise.

The calculations and the presentation of results include five cases.

Proposition 7 1) If Qs = min{Qs, Ns, Qs′ , Ns′}, then ABSTTC = ABS − [Ms′ −Qs].

2) If Ns = min{Qs, Ns, Qs′ , Ns′} and Qs − Ns < min{∆ss′ , (Ms′ − Ns)
Nw

Nws′
}, then

ABSTTC = ABS −
[
Ms′ −Ns − (Qs −Ns)

Nws′
Nw

]
.

3) If Ns = min{Qs, Ns, Qs′ , Ns′} and max{Qs − Ns,∆ss′} ≥ (Ms′ − Ns)
Nw

Nws′
, then

ABSTTC = ABS.

4) If Ns = min{Qs, Ns, Qs′ , Ns′}, ∆ss′ < min{Qs−Ns, (Ms′−Ns)
Nw

Nws′
} and

Qs−Ns−∆ss′
Nws+Ns

<

Ms′−Ns−∆ss′
Nws′
Nw

Nws′
, then ABSTTC = ABS− [Ms′ −Ns−∆ss′

Nws′
Nw
− (Qs−Ns−∆ss′)

Nws′
Nws+Ns′

].

5) If Ns = min{Qs, Ns, Qs′ , Ns′}, ∆ss′ < min{Qs−Ns, (Ms′−Ns)
Nw

Nws′
} and

Qs−Ns−∆ss′
Nws+Ns

≥
Ms′−Ns−∆ss′

Nws′
Nw

Nws′
, then ABSTTC = ABS.

Proof. Case 1 is easy. Prioritized students at good schools trade their slots until school

s is filled. The assignment process continues with school s′ only, in order of priority, where
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Ms′−Qs slots are assigned to students of school s′ catchment area. The waste with respect

to maximal ABS, ABS − ABSTTC , is the mass of good school slots that are assigned to

students of its catchment area.

For the rest of cases. Prioritized students at good schools trade their slots until every

prioritized student at school s obtains a slot at s′. The marginal prioritized student at

school s′ that traded with a prioritized student at school s has lottery number n0 = Ns/Ns′ .

School s now points to the non-prioritized student with best lottery number, who comes

from the bad school catchment area and has number ñ0 = 0 < n0. With probability
Nws

Nw
she keeps this slot and with probability

Nws′
Nw

she points at s′, hence trading with the

marginal prioritized student at school s′. Then, for every ∆ slots that the assignment

process continues giving at school s, it also assigns
Nws′
Nw

∆ at school s′.

For prioritized students at school s′ the marginal lottery number for any given ∆ evolves

as n∆ =
Ns+

Nws′
Nw

∆

Ns′
. For prioritized students at school w the marginal lottery number

evolves as ñ∆ = ∆/Nw. ∆ss′ is the point at which both marginal lottery numbers coincide,

n∆ss′
= ñ∆ss′

. This coincidence does not happen in cases 2 and 3. In case 2, all slots at

school s are filled before marginal lottery numbers equalize. In case 3, either all slots at

school s′ are given before marginal lottery numbers equalize or all its prioritized students

obtain a slot at s. In case 2, the assignment process continues with school s′ only, in order

of priority. Finally, non-traded Ms′ − Ns − (Qs −Ns)
Nws′
Nw

slots are assigned to students

of school s′ catchment area (and this is ABS −ABSTTC). In case 3, students who remain

to be placed can only be assigned to better schools than the catchment area school, thus

there is no waste in terms of ABS.

In cases 4 and 5, marginal lottery numbers coincide, n∆ss′
= ñ∆ss′

, before either cases

2 or 3 arise. After lottery numbers coincide, school s′ continues pointing at the remaining

student with best lottery number. Yet in this case, with probability
Nws+Ns′
Nw+Ns′

(notice the

difference with respect to Nws

Nw
because prioritized students at s′ do not longer have worse

lottery numbers than other students) s points at a student who directly keeps this slot and

with probability
Nws′

Nw+Ns′
the pointed student points at s′, hence trading with the marginal

prioritized student at school s′. In sum, for every δ slots given, δ
Nws′

Nw+Ns′
are given at school

s′ and δ
Nws+Ns′
Nw+Ns′

are given at school s. As cases 2 and 3 do, cases 4 and 5 arise depending on

whether all slots at school s are filled first, or either all slots at school s′ are filled first or all

its prioritized students obtain a slot at s. In case 4, the assignment process continues with

school s′ only, in order of priority, where Ms′−Ns−∆ss′
Nws′
Nw
−(Qs−Ns−∆ss′)

Nws′
Nws+Ns′

slots

are finally assigned to students of school s′ catchment area (and this is ABS −ABSTTC).
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In case 5, as in case 3, slots that remain to be placed belong to school s, that is better

than the catchment area school for all unassigned students, thus there is no waste in terms

of ABS. �

Proof Proposition 6.

We omit cases where min{ρ1, ρ2} ≤ ρw, that is, when ABSDA =ABS. Consider the

case where Qs = min{Qs, Ns, Qs′ , Ns′}. Then ABS−ABSDA = Ns(1− cs′)+ Ns′(1− cs) >
Ns′(1−cs) ≥ Ns′−Qs ≥ min{Qs′ , Ns′}−Qs = ABS−ABSTTC . The first inequality arises

from the fact that no cutoff equals 1. The second inequality is a feasibility condition (at

least Ns′ −Qs students with priority at school s′ cannot enter at school s).

We next consider the case where Ns = min{Qs, Ns, Qs′ , Ns′}, and we assume that

ABS − ABSTTC > 0. Otherwise we would be done because DA never reaches this upper

bound. Since all students with priority at school s obtain a slot at s′, ABS−ABSTTC > 0

implies that a positive mass of students with priority at school s′ are assigned at school s′

under TTC (thus they cannot obtain access to the more preferred school s).

Focus then on TTC. Let ns
′
s be the maximum lottery number among the students with

priority at school s′ that are assigned at school s. Let nwss be the maximum lottery number

among the students with priority at school w who prefer s among all schools and are

assigned at school s. Notice that ns
′
s ≥ nwss . The reason is that the latter students can

only gain access to school s by directly being pointed by school s. They cannot be pointed

by school s′ before s fills all slots. Simply because not all students with priority at s′ are

pointed by s′ as part of a trading cycle either (before s fills all positions). On the contrary,

students with priority at s′ can gain access to school s either by directly being pointed by

school s or by being part of a trading cycle.

Moreover, notice that only students of the latter and the former types are assigned to

school s. All students with priority at school s obtain a slot at s′. No student with priority

at school w who prefers s′ among all schools is assigned to s. If they are pointed by school

s, they must be part of a trading cycle (this is implied by the fact that a positive mass of

students with priority at school s′ cannot obtain access to the more preferred school s).

Therefore we have ns
′
s Ns′ + nwss Nws = Qs.

But in DA where min{ρ1, ρ2} > ρw, the cutoff for school s meets cs(Ns′ + Nws) =

Qs−(1−cs′)Ns− max{0, (cs−cs′)Nws′}, implying cs <
ns′
s Ns′+n

ws
s Nws

Ns′+Nws
. Given that ns

′
s ≥ nwss

we obtain ns
′
s > cs. But then ABS −ABSDA = Ns(1− cs′)+ Ns′(1− cs) > Ns′(1− cs) >

Ns′(1− ns
′
s ) = ABS − ABSTTC . �
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