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Abstract
In barter exchanges, participants swap goods with one another without exchanging1

money; these exchanges are often facilitated by a central clearinghouse, with the2

goal of maximizing the aggregate quality (or number) of swaps. Barter exchanges3

are subject to many forms of uncertainty–in participant preferences, the feasibility4

and quality of various swaps, and so on. Our work is motivated by kidney exchange,5

a real-world barter market in which patients in need of a kidney transplant swap6

their willing living donors, in order to find a better match. Modern exchanges7

include 2- and 3-way swaps, making the kidney exchange clearing problem NP-8

hard. Planned transplants often fail for a variety of reasons–if the donor organ is9

rejected by the recipient’s medical team, or if the donor and recipient are found10

to be medically incompatible. Due to 2- and 3-way swaps, failed transplants can11

“cascade” through an exchange; one US-based exchange estimated that about 85%12

of planned transplants failed in 2019. Many optimization-based approaches have13

been designed to avoid these failures; however most exchanges cannot implement14

these methods, due to legal and policy constraints. Instead, we consider a setting15

where exchanges can query the preferences of certain donors and recipients–asking16

whether they would accept a particular transplant. We characterize this as a two-17

stage decision problem, in which the exchange program (a) queries a small number18

of transplants before committing to a matching, and (b) constructs a matching19

according to fixed policy. We show that selecting these edges is a challenging20

combinatorial problem, which is non-monotonic and non-submodular, in addition to21

being NP-hard. We propose both a greedy heuristic and a Monte Carlo tree search,22

which outperforms previous approaches, using experiments on both synthetic data23

and real kidney exchange data from the United Network for Organ Sharing.24

1 Introduction25

We consider a multi-stage decision problem in which a decision-maker uses a fixed policy to solve26

a hard (stochastic) problem. Before using the policy, the decision-maker can first measure some of27

the uncertain problem parameters–in a sense, guiding the policy toward a better solution. Our primary28

motivation is kidney exchange, a process where patients in need of a kidney transplant swap their29

(willing) living donors, in order to find a better match. Many government-run kidney exchanges match30

patients and donors using a matching algorithm that follows strict policy guidelines [9]; this matching31

algorithm is often written into law or policy, and is not easily modified. Modern kidney exchanges32

use both cyclical swaps and chain-like structures (initiated by an unpaired altruistic donor) [25], and33

identifying the max-size or max-weight set of transplants is both NP- and APX-hard [1, 7].34

In kidney exchange–as in many resource allocation settings–information used by the decision-35

maker is subject to various forms of uncertainty. Here we are primarily concerned with uncertainty36

in the feasibility of potential transplants: if a donor is matched with a potential recipient, will the37

transplant actually occur? Planned transplants may fail for a variety of reasons: for example, medical38

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



testing may reveal that the donor and recipient are incompatible (a positive crossmatch); the recipient39

or their medical team may reject a donor organ in order to wait for a better match; or the donor40

may decide to donate elsewhere before the exchange is planned. Failed transplants are especially41

troublesome in kidney exchange, due to the cycle and chain structures used: for example, suppose42

that a cyclical swap is planned between three patient/donor pairs; if any one of the planned transplants43

fails, then none of the other transplants in that cycle can occur. Unfortunately, it is quite common for44

planned transplants to fail. For example, the United Network for Organ Sharing (UNOS1) estimates45

that in FY2019, about 85% of their planned kidney transplants failed [18].46

Various matching algorithms have been proposed that aim to mitigate transplant failures (for exam-47

ple, using stochastic optimization [15, 3], robust optimization [22], or conditional value at risk [6]).48

However, implementing these strategies would require modifying fielded matching algorithms–which49

in many cases would require changing law or policy. One way to avoid failures without modifying50

the matching algorithm is to pre-screen potential transplants [18, 10, 11], by communicating with the51

recipients’ medical team and possibly using additional medical tests. Pre-screening transplants is52

costly, as it requires scarce time and resources. Furthermore, there are often many thousand potential53

transplants in any given exchange; selecting which transplants to screen is not easy.54

In this paper we investigate methods for selecting a limited number of transplants to pre-screen, in55

order to “guide” the fixed matching algorithm to a better outcome. We formalize this as a multistage56

stochastic optimization problem, and we consider both an offline setting (where screenings are57

selected all at once), and an online setting (where screenings are selected sequentially).58

Related Work. While kidney exchange is known to be a hard packing problem, several algorithms59

exist that are scalable in practice, and are used by fielded exchanges [14, 3, 20]. Prior work has60

addressed potential transplant failures; our model is inspired by Dickerson et al. [15]. Pre-screening61

potential transplants has also been addressed in prior work ([11, 23], and § 5.1 of [13]), and our model62

is similar to stochastic matching and stochastic k-set packing [5]. However there are substantial63

differences between these models and ours: (a) many prior approaches assume that a large number64

of transplants may be pre-screened [11, 23]–on the order of one for each patient in the exchange;65

we assume far fewer screenings are possible; (b) prior work often assumes a query-commit setting–66

where successfully pre-screened transplants must be matched. Instead we assume that non-screened67

transplants may also be matched–which more-accurately represents the way that modern exchanges68

operate; (c) most prior work assumes that transplants that pass pre-screening are guaranteed to result69

in a transplant. In reality, transplants often fail after pre-screening, a fact reflected in our model.70

One of our approaches is based on Monte Carlo Tree Search (MCTS), which allows efficient explo-71

ration of intractably large decision trees. While MCTS is primarily associated with Markov decision72

processes and game-playing [12], it has been used successfully for combinatorial optimization [16].73

We use a version of MCTS, Upper Confidence Bounds for Trees (UCT), which balances exploration74

and exploitation by treating each tree node as a multi-armed bandit problem [4, 17].75

Our Contributions76

1. (§ 2) We formalize the policy-constrained edge query problem: where a decision-maker77

(such as a kidney exchange program) selects a set of potential edges (potential transplants) to78

pre-screen, prior to constructing a final packing (a set of transplants) using a fixed algorithm.79

This model generalizes existing models in the literature, as edge failure probabilities depend80

on whether or not the edge is pre-screened. Further, we allow for context-specific constraints,81

such as those imposed by public policy or the particular hospital or exchange.82

2. (§ 3) We prove that when the decision-maker uses a max-weight packing policy (the83

most common choice among fielded exchanges), the edge query problem is both non-84

monotonic and non-submodular in the set of queried edges. Despite these worst-case85

findings we show that this problem is nearly monotonic for real and synthetic data, and86

simple algorithms perform quite well. On the other hand, when the decision-maker uses87

a failure-aware (stochastic) packing policy, the edge query problem becomes monotonic88

under mild assumptions.89

3. (§ 4) We conduct numerical experiments on both simulated and real exchange data from the90

United Network for Organ Sharing (UNOS). We demonstrate that our methods substantially91

outperform prior approaches and a randomized baseline.92

1UNOS is the organization tasked with overseeing organ transplantation in the US: https://unos.org/.
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Figure 1: Single-stage edge selection: First, edges are selected to be queried, and responses revealed.
Then, a final matching is constructed according to the exchange’s matching policy. Finally, the
post-match edge failures are revealed.

2 The Policy-Constrained Edge Query Problem93

Kidney exchanges are represented by a graph G = (E, V ) where vertices V represent (incom-94

patible) patient-donor pairs, and non-directed donors (NDDs) who are willing to donate without95

receiving a kidney in return. Directed edges e ∈ E between vertices represent potential transplants96

from the donor of one vertex to the patient of another. Edge weights represent the “utility” of an97

edge, and are typically set by exchange policy. Solutions to a kidney exchange problem (henceforth,98

matchings) consist of both directed cycles on G containing only patient-donor pairs, and directed99

chains beginning with an NDD and passing through one or more pairs; see Appendix A for an100

example exchange graph. Each vertex may participate in only one edge in a matching–as each vertex101

can donate and receive at most one kidney.102

Vectors are denoted in bold, and are indexed by either cycles or edges: ye indicates the element of103

y corresponding to edge e, and xc is the element of x corresponding to cycle c. Our notation uses a104

cycle-chain representation for matchings2: let C represent cycles and chains in G, where each cycle105

and chain corresponds to a list of edges; as is standard in modern exchanges, we assume that cycles106

and chains are limited in length. Matchings are expressed as a binary vector x ∈ {0, 1}|C|, where107

xc = 1 if cycle/chain c is in the matching, and 0 otherwise. Let wc be the weight of cycle/chain c108

(the sum of c’s edge weights). LetM denote the set of legal matchings–that is, the set of vertex-109

disjoint cycles and chains on G, with chains up to length L and cycles up to length C. Cycle length110

cap C and chain length cap L are set by the each exchange, typically C = 3 and L = 4. These111

length limits serve two purposes: (a) longer cycles and chains are risky, in that they are likely to112

be impacted by edge failure, and (b) policy often requires that all transplants in a cycle or chain113

are completed simultaneously, and most transplant centers can only accommodate a handful of114

simultaneous transplants. The total weight of a matching is simply the summed weights of all its115

constituent cycles and chains:
∑
c∈C xcwc. We denote sets of edges using binary vectors, where116

q ∈ {0, 1}|E| represents the set of all edges with qe = 1.117

In the remainder of this paper we refer to pre-screening a transplant as querying an edge, in order118

to be consistent with the literature.119

Selecting Edge Queries. Our setting consists of two phases (see Figure 1): during pre-match, the120

decision-maker selects edges to query, and each queried edge is either accepted or rejected; then121

the decision-maker constructs a matching using a fixed policy. During post-match, each match edge122

either fails (no transplant) or succeeds (the transplant proceeds). We consider two version of the123

pre-match phase: in the single-stage version, the decision-maker selects all queries before observing124

edge responses (accept/reject); in the multi-stage version, one edge is selected at a time and responses125

are observed immediately.126

Unlike most prior work, edges in our model may fail during both the pre- and post-match phase.127

For example, suppose the decision-maker queries an edge from a 60-year-old non-directed donor, to128

2Our experiments use the position-indexed formulation, which is more compact and equivalent [14].
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a 35-year-old recipient; if the recipient or their medical team rejects the elderly donor and decides129

to wait for a younger donor, this is a pre-match rejection. Instead suppose the edge is not queried,130

and it is included in the final matching; if medical screening reveals that the patient and donor are131

incompatible, this is a post-match failure. We refer to pre-match failures as rejections and post-match132

failures as failures; however we make no assumption about their cause. We represent potential failures133

and rejections using binary random variables: r ∈ {0, 1}|E| denotes pre-match rejections, where134

re = 1 if e is queried and rejected, and 0 otherwise (re = 0 for all non-queried edges). Similarly135

f ∈ {0, 1}|E| denotes post-match failures, where fe = 1 if edge e fails post-match, and 0 otherwise.136

We assume that the distribution of rejections r ∼ PR(q) is known, and depends on q; we assume the137

distribution of failures f ∼ PF (q, r) is known, and depends on both q and r.138

Rejections and failures impact the matching through the weight of each cycle and chain. If any
cycle edge fails, then no transplants in the cycle can proceed; if a chain edge fails, than all edges
following it cannot proceed.3 Suppose we observe failures f ; the final matching weight of c is

F (c,y) ≡


∑
e∈c we if

∑
e∈c ye = 0

0 if c is a cycle and
∑
e∈c ye > 0∑

e∈c′ we if c is a chain, where c′ includes all edges up to the first failed edge.

Thus the post-match expected weight of matching x, due to both rejections r and failures f , is139

W (x; q, r) ≡ E
f∼PF (q,r)

[∑
c∈C

xc F (c, r + f)

]
.

Matching Policy In this paper we assume that the final matching is constructed using a fixed matching140

policy, which uses only non-rejected edges; we denote this policy by M(r). We focus primarily141

on the max-weight policy MMAX(·), which is used by most fielded exchanges, and the failure-aware142

policy MFA(·), which maximizes the expected post-match weight [15]:143

MMAX(r) ∈ arg max
x∈M

∑
c∈C

xc F (c, r) , MFA(r) ∈ arg max
x∈M(r)

E
f∼PF (q,r)

[∑
c∈C

xc F (c, r + f)

]
.

Evaluating this policy requires solving a kidney exchange clearing problem, which is NP-hard [1].144

However, state-of-the-art method can solve realistic kidney exchange clearing problems in fractions145

of a second (e.g., our experiments use the PICEF method of Dickerson et al. [14]); thus, throughout146

this paper we treat this policy as a low- or no-cost oracle.147

Next we formalize the edge selection problem–the main focus of this paper. We denote by E the148

set of “legal” edge subsets, subject to exchange-specific constraints; we assume that E is a matroid149

with ground set E. For example, the decision-maker may limit the number of queries issued to any150

one medical team (vertex in G) or transplant center (group of vertices). We aim to select an edge set151

q ∈ E which maximizes the expected weight of the final matching. These edges are selected using152

only the distribution of future rejections and failures; we take a stochastic optimization approach,153

maximizing the expected outcome over this uncertainty.154

Single-Stage Setting. The single-stage policy-constrained edge selection problem (henceforth, the155

edge selection problem) is expressed as156

max
q∈E

V S(q) , with V S(q) ≡ E
r∼PR(q)

[
W (M(r); q, r)

]
, (1)

where, M(r) denotes the matching policy after observing rejections r, and W (x; q, r) denotes the157

post-match expected weight of matching x. Exact evaluation of V S(q) is often intractable, as the158

support of PR(q) grows exponentially in |q|. In experiments we approximate V S(q) using sampling,159

and these approximations converge for a moderate number of samples (see Appendix B).160

Multistage Setting. In the multi-stage setting, edge rejections are observed immediately after each161

edge is queried. The multi-stage problem is expressed as162

max
q1∈E1

E
r1∼PR(q1)

[
max
q2∈E1

E
r2∼PR(q2)

[
. . . max

qK∈E1
E

rK∼PR(qK)
[ W (M(r); q, r) ]

]
. . .

]
, (2)

3This assumes that chains can be partially executed: for example, suppose that the 4th edge in a 10-edge
chain fails; the first three edges can still be matched, and the post-failure chain weight sums only these three
edges. Not all fielded exchanges use this policy: some exchanges cancel the entire chain if one of its edges fails.
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where q ≡
∑K
i=1 q

i denotes all queried edges, r ≡
∑K
i=1 r

i denotes all rejections, and E1 ⊆ E be163

denotes the legal edge subsets containing only one edge. First, we observe that Problems 1 and 2164

require evaluating a matching policy M(r). In the case of kidney exchange, evaluating both the165

max-weight policy MMAX(·) and the failure-aware policy MFA(·) require solving NP-hard problems;166

thus Problems 1 and 2 are at least NP-hard as well.167

However, regardless how difficult the matching policy is, the question remains whether edge168

selection is is hard. We observe that while these problems are difficult in principle, experiments (§ 4)169

show that they are easy in practice. Proofs of the following propositions can be found in Appendix D.170

Proposition 2.1. With matching policy MMAX(·), the objective of Problem 1 is non-monotonic in the171

number of queried edges, even with independent edge distributions.172

In other words, querying additional edges can sometimes lead to a worse outcome. This is173

somewhat counter-intuitive; one might think that providing additional information to the matching174

policy would strictly improve the outcome. This is a worst-case result–and in fact our experiments175

demonstrate that querying edges almost always leads to a better final matching weight.176

Proposition 2.2. With matching policy MMAX(·), the objective of Problem 1 is non-submodular in177

the set of queried edges.178

In other words, certain edges are complementary to each other–and querying complementary edges179

simultaneously can yield a greater improvement than querying them separately. Taken together, these180

propositions indicate that single-stage edge selection with matching policy MMAX(·) is a challenging181

combinatorial optimization problem. On the other hand, using the failure-aware matching policy182

MFA(·) allows us to avoid some of these issues under mild assumptions.183

Assumption 2.3. Let q, r ∈ {0, 1}|E| denote initial edge queries and responses. Let q′ be additional184

edges, such that q + q′ ∈ {0, 1}|E| denotes an augmented edge set; let r′ ∈ {0, 1}|E| denote the185

responses to edges q′ only. We assume that for any such q, r, and q′,186

E [r + f | q, r] ≥ E [r + r′ + f | q + q′, r] .

Intuitively, Assumption 2.3 excludes distributions where queries arbitrarily increase edge failure or187

rejection. For example, Assumption 2.3 disallows the following distribution: suppose all edges are188

independent; all queried edges are accepted (P (re = 1 | q) = 0 for all q), all accepted edges have189

failure probability 0.5 (P (fe = 1 | qe = 1, re = 0) = 0.5), and all non-queried edges have failure190

probability 0.1 (P (fe = 1 | qe = re = 0) = 0.1). In this case, if an edge is not queried, then it has191

overall rejection or failure probability 0.1 (i.e., E[re + fe | q, r] = 0.1 with qe = 0); if this edge is192

queried, then it has rejection or failure probability 0.5 (i.e., E[re + r′e + fe | q + q′, r] = 0.5 with193

q′e = 1).194

We also assume that edge failures are independent.195

Definition 2.4 (Edge Independence). Two edges e, e′ ∈ E are independent if (a) their rejection
distributions are conditionally independent, given whether or not they were queried:

re ⊥⊥ re′ | qe and re ⊥⊥ re′ | qe′

and (b) their failure distributions are conditionally independent, given whether or not they were
queried and rejected:

fe ⊥⊥ fe′ | qe, re and fe ⊥⊥ fe′ | qe′ , re′ .

Proposition 2.5. If edges are independent and Assumption 2.3 holds, then with a failure-aware196

matching policy the objective of Problem 1 is monotonic in the set of queried edges.197

While Propositions 2.1 and 2.2 state that single-stage edge selection is challenging in the worst198

case, our computational results suggest that these problems are often easier on realistic exchanges.199

2.1 Using the Max-Weight Matching Policy as a Baseline200

It might seem as though our edge pre-screening procedure is simply compensating for a flawed201

matching policy (MMAX(·)). If matching policy MMAX(·) performs poorly in practice, then why not202

use MFA(·)? Indeed, MFA(·) can directly account for edge failure, and Proposition 2.5 states that the203

edge selection problem is in fact “easy” when using this policy. However this assumes that the edge204

failure distribution is accurately known. The failure-aware matching policy MFA(·) is very sensitive205

to the specified edge failure distribution, and if the assumed distribution is incorrect then this policy206

can perform very poorly. This is in fact a reason that MFA(·) is not used in practice: edge failure207
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distributions are not accurately known, and exchange programs are hesitant—with good reason—to208

guide their matching policy with a noisy estimation of edge failure.209

In our edge pre-screening setting, the assumed edge distribution may also be noisy, however210

this does not directly affect the matching algorithm. In the worst case, an incorrect edge failure211

distribution will lead us to pre-screen edges that do not provide useful information to the exchange212

(this is the status quo). This is in stark contrast to MFA(·): in the worst case, a bad estimation of the213

edge failure distribution will cause MFA(·) to match risky cycles and chains, potentially decreasing214

the number of transplants.215

2.2 A Note on Match Run Frequency216

In the real world kidney exchange is a dynamic process: patients are constantly entering and217

leaving the pool, and participants are matched every few weeks. One way to deal with edge failure218

uncertainty is to match more frequently. For example if we match patients and donors once every219

month, then each failed edge adds one month to the waiting time for every patient who relied on the220

failed transplant. If we match participants every few hours, this increase in waiting time is far less221

severe.222

However there are good reasons to match infrequently. First, exchanges benefit with the addition223

of more patients and donors—new edges “thicken” the compatibility graph, enabling more cycles224

and chains. Second, each transplant center participating in exchange needs a transplant coordinator to225

manage individual patients and donors. Many small hospitals do not have a full-time staff for organ226

exchange, and they cannot deal with frequent match offers. For these reasons, most exchanges match227

patients and donors very infrequently: the UK national kidney exchange matches patients and donors228

every quarter4 (once every three months); the Canadian national exchange matches participants once229

every four months5; UNOS currently matches patients once every week. 6230

3 Solving the Policy-Constrained Edge Query Problem231

First we propose an exhaustive tree search which returns an optimal solution to Problem 1 given232

enough time. Building on this, we propose a Monte Carlo Tree Search algorithm and a simple greedy233

algorithm. Our multi-stage approaches are very similar to these, and can be found in Appendix E.234

Our optimal exhaustive search uses a search tree where each tree node corresponds to an edge235

subset in q ∈ E . The children of node q correspond to any q′ ∈ E which are equivalent to the parent236

q, but include one additional edge: C(q) ≡ {(q + q′) ∀q′ ∈ E : |q′| = 1 | (q + q′) ∈ E} . We say237

that edge sets (or tree nodes) containing L edges are on the Lth level of the tree. We refer to nodes238

with no children as leaf nodes. Unlike other tree search settings, the optimal solution to Problem 1239

may be at any node of the tree, not only leaf nodes; this is a consequence of non-monotonicity (see240

Proposition 2.1). The tree defined by root node q = 0 and child function C(q) contains all legal edge241

subsets in E , when E is a matroid. Thus, any exhaustive tree search algorithm (such as depth-first242

search) will identify an optimal solution, given enough time and memory.243

Of course exhaustive search is only tractable if E is small. Consider the class of budgeted edge sets244

E(Γ) used in our experiments: E(Γ) ≡ {q ∈ {0, 1}|E| | |q| ≤ Γ} (edge sets containing at most Γ245

edges). The number of edge sets in E(Γ) grows roughly exponentially in Γ and |E|, and is impossible246

to enumerate even for small graphs. Suppose a graph has 50 edges and we have an edge budget of247

five: there are over two million edge sets in E(5). Even small exchange graphs can have thousands of248

edges, and thus E(Γ) cannot be enumerated. Therefore, we propose search-based approach.249

Monte Carlo Tree Search for Edge Selection (MCTS): We propose a tree-search algorithm for
single-stage edge selection, MCTS, based on Monte Carlo Tree Search (MCTS), with the Upper
Confidence for Trees (UCT) algorithm [17]. Our approach keeps track of a value (the objective value
of Problem 1) and a UCB value estimate for each node, and these values are updated during sampling.
The formula used to estimate a node’s UCB value is

U
N − V min

V max − V min
+
√
NP /N

4https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/24443/pol274-4.pdf
5https://profedu.blood.ca/en/organs-and-tissues/programs-and-services/

kidney-paired-donation-kpd-program
6https://unos.org/wp-content/uploads/unos/KPD_emanual_how-matching-works.pdf
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where U is the “UCB value estimate” calculated by MCTS, N is the number of visits to the node, NP250

is the number of visits to the node’s parent, and V max and V min are the largest and smallest node251

values encountered during search.252

When the set of tree nodes is too large to enumerate UCT can use a huge amount of memory–by253

storing values for each visited node. To limit both memory use and runtime, we incrementally254

search the tree from a temporary root node. Beginning from the root (the empty edge set), we use255

UCB sampling on the next L levels of nodes–where L is a small fixed integer. After a fixed time256

limit, sampling stops and we set the new root node to the current root’s best child according to its257

UCB estimate–using the method of [17]. This process repeats until we reach the final level of the258

search tree. Algorithm 1 gives a pseudocode description of MCTS, which uses Algorithm 2 as a259

submethod. While often successful, MCTS requires extensive training and parameter tuning. As a260

simpler alternative, we propose a greedy algorithm.261

Single-Stage Greedy Algorithm: Greedy. Like MCTS, our greedy algorithm (Greedy) begins with262

the empty edge set as the root node, and iteratively searches deeper levels of the tree. However unlike263

MCTS, Greedy simply selects the child node with the greatest objective value in Problem 1–that is,264

greedily improving the objective value; see Appendix E for a pseudocode description.265

ALGORITHM 1: MCTS: Tree Search for
Single-Stage Edge Selection

(input) K: maximum size of any legal edge set
(input) T : time limit per level
(input) L: number of look-ahead levels

qR ← 0 root node (no edges)
q∗ ← 0 the best visited node
V ∗ ← objective value of q∗

for N = 1, . . . ,K do
M ← min{N + L,K}
Q← all nodes in levels N to M
U [q]← 0 ∀q ∈ Q UCB value estimate
V [q]← 0 ∀q ∈ Q objective value
N [q]← 0 ∀q ∈ Q number of visits
while less than time T has passed do

Sample(qR, M )
qR ← arg maxq∈C(qR) U [q]

Delete U [·], V [·], and N [·]
return q∗

ALGORITHM 2: Sample: Sampling function used
by MCTS

(input) q, M

N [q]← N [q] + 1
V [q]← objective of edge set q in Problem 1
if V [q] > V ∗ then

q∗ ← q, V ∗ ← V [q]
if q has no children then

return V [q]
if q has children then

if |q| < M then
q′ ← arg maxq∈C(qR) U [q] + UCB[q]

U [q]← U [q]+ Sample(q′, M )
else

q′ ← a random descendent of q at any level
V ′ ← objective value of q′ in Problem 1
if V ′ > V ∗ then

q∗ ← q′, V ∗ ← V ′

U [q]← U [q] + V ′

266

Runtime. Our methods rely on an “oracle” to solve the NP-hard kidney exchange matching problem;267

while state-of-the-art methods solve real-sized instances of these problems in fractions of a second,268

there is no guaranteed bound for absolute runtime. Instead, we can report the number of calls to269

this oracle for each method as a measure of complexity. Both benchmark methods (max-weight270

matching and failure-aware [15]) as well as IIAB [11] use exactly one oracle call; i.e., they are271

O(1). Both Greedy and MCTS use a fixed number of samples (M ) to evaluate the objective of an272

edge set. Greedy evaluates the objective of an edge set exactly Γ times; thus, Greedy is O(M · Γ).273

Finally, MCTS can in theory visit all potential edge sets of size at most Γ (i.e., an exhaustive search),274

which is O(M ·
∑Γ
γ=1

(|E|
γ

)
). Since this version of MCTS is intractable in both runtime and memory,275

Algorithm 1 imposes reasonable limits on our implementation.276

4 Computational Experiments277

We conduct a series of computational experiments using both synthetic data, and real kidney278

exchange data from UNOS; all code for these experiments is available online.7 In these experiments,279

“legal” edge sets are the budgeted edge sets defined as E(Γ) ≡ {q ∈ {0, 1}|E| | |q| ≤ Γ}.280

In Sections 4.2 and 4.3 we present results in the single- and multi-stage edge selection settings,281

respectively. We use both real data and synthetic data for our experiments.282

7Link removed for review.
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Figure 2: Number of patient donor pairs in each exchange, the number of matchable vertices (who can
participate in a legal cycle or chain), and the number of vertices matched by MMAX(·) in simulation.
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Figure 3: Histogram of the number of compat-
ible donors (edges) for each recipient, over all
UNOS graphs.
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Figure 4: Histogram of the number of match-
able edges for each recipient, over all UNOS
graphs.

4.1 Data283

Real Data. We use exchange graphs from the United Network for Organ Sharing (UNOS), represent-284

ing UNOS match runs between 2010 and 2019. Some of these exchange graphs only have the trivial285

matching (no cycles or chains), or they have only one non-trivial matching. We ignore these graphs286

because the matching policy is a “constant” function (to return the one feasible matching) and edge287

queries cannot change the outcome. Removing these, we are left with 324 UNOS exchange graphs.288

These exchange graphs are relatively small and sparse: most graphs have fewer than 250 vertices,289

and fewer of half of these can be matched via a legal cycle or chain (with cycle cap C = 3 and chain290

cap L = 4); we refer to these vertices as matchable. The number of NDDs (who can initiate chains)291

is extremely small: most exchanges have zero or 1 NDD. Figure 2 shows the number of vertices, the292

number of matchable vertices, and the number matched by MMAX(·) (in simulation). These graphs are293

also sparse: Figure 3 shows the number of edges (compatible donors) for each patient over all UNOS294

graphs. The median number of edges per patients is 29, and 14% have only one edge. Furthermore,295

while many patients have multiple compatible edges, very few of these edges are matchable (see296

Figure 4): 72% of all patients cannot be matched via a legal cycle or chain; of the matchable patients297

(with one or more matchable donor), the median number of matchable donors is 3.298

Synthetic Data. We generate random kidney exchange graphs based on directed Erdős-Rényi graphs299

defined using parameters N and p: let V be a fixed set of N vertices; for each pair of vertices (V1, V2)300

there is an edge from V1 to V2 with probability p, and an edge from V2 to V1 with probability p301

(independent of the edge from V1 to V2). Any vertices with no incoming edges are considered NDDs.302

In simulations we generate graphs which are smaller and more-sparse than the average UNOS graph303

(N ≤ 100 and p = 0.01). These are meant to represent a toy-model of kidney exchange, rather than304

a realistic imitation of exchange graphs.305

8



Table 1: Left: Optimality gap for Greedy, over 100 random graphs with p = 0.01 and various N , with edge
budget Γ = 3; bottom row shows the maximum value of %OPT over all graphs. Right: Single-stage results
on UNOS graphs using the variable IIAB edge budget (top rows), and the failure-aware method (bottom row).
Columns PX indicates the Xth percentile of ∆MAX over all UNOS graphs.

Num. Graphs (out of 100)

%OPT N = 50 N = 75 N = 100

[0, 0.1] 93 93 90

(0.1, 1] 5 4 9

(1, 2] 1 3 1

(2, 100] 1 0 0

Max %OPT 2.8 1.5 1.0

Simple edge dist. KPD edge dist.

Method P10 P50 P90 P10 P50 P90

MCTS 0.40 0.67 1.11 0.05 0.45 3.44

Greedy 0.47 0.64 1.00 0.02 0.47 3.44

Random 0.00 0.10 0.46 −0.11 0.00 0.63

IIAB 0.21 0.45 0.89 −0.27 0.12 2.24

Fail-Aware 0.00 0.09 0.23 −0.27† 0.00† 2.17†

In these experiments edge rejections and failures are independently distributed for each edge e; let306

PR be the rejection probability, PQ is the post-match success probability if e is queried/accepted, and307

PN is the success probability if e is not queried. To simulate edge rejections and failures we use two308

synthetic edge distributions: Simple and KPD. In the Simple distribution, PR = 0.5, PQ = 1, and309

PN = 0.5 for all edges. The KPD distribution is inspired by the fielded exchange setting from which310

we draw our real underlying compatibility graphs. According to UNOS, about 34% of all edges are311

rejected by a donor or recipient pre-match [18]; we draw PR uniformly from U(0.25, 0.43) for each312

edge. Edges ending in highly-sensitized patients (who are often less healthy and more likely to be313

incompatible) are considered high-risk; for these edges we draw PQ from U(0.2, 0.5) and PN from314

U(0.0, 0.2). For other edges we draw PQ from U(0.9, 1.0) and PN from U(0.8, 0.9).315

4.2 Single-Stage Edge Selection Experiments316

In this section we compare against the baseline of a max-weight matching without edge queries317

(using policy MMAX(·)). Many fielded kidney exchanges use a variant of this matching policy, so by318

comparing against this baseline we are illustrating the impact of edge queries on the state-of-the-art319

matching policies used in many real exchanges. Let VX be the objective8 of Problem 1 achieved by320

method X , we calculate ∆MAX (the relative difference from baseline) as ∆MAX ≡ (VX−V S(0))/V S(0).321

A value of ∆MAX = 0 means that method X did not improve over the baseline, a value of ∆MAX = 1322

means that X achieved an objective 100% greater than the baseline, and so on. Furthermore a value323

of ∆MAX > 0 means that method X increases the objective by querying edges, while ∆MAX < 0 means324

that method X decreases the objective by querying edges.325

Result: Greedy is essentially Optimal with small random graphs. First we investigate the dif-326

ficulty of edge selection. Using random graphs, we compare Greedy to the optimal solution to327

Problem 1, found by exhaustive search (OPT). We generate three sets of 100 random graphs with328

N = 50, 75, and 100 vertices, and each with p = 0.01. For all graphs we run both OPT and Greedy329

with edge budget 3; we calculate the optimality gap of Greedy as %OPT ≡ 100×(VOPT−VGreedy)/VOPT,330

where VX denotes the objective achieved by method X . (VOPT > 0 in all graphs used in these exper-331

iments.) If %OPT = 0 then Greedy returns an optimal solution, and %OPT > 0 means that Greedy332

is not optimal. Table 1 (left) shows the number of random graphs binned by %OPT, as well as the333

maximum %OPT over all graphs. For each N , Greedy returns an optimal solution for at least 90 of334

the 100 graphs; the maximum %OPT over all graphs is 2.8.335

In other words, Greedy always returns an optimal or nearly-optimal set of edges to query for small336

random graphs. This is somewhat unexpected, since the edge selection problem is both non-monotone337

and non-submodular (see Section 2).338

Result: Greedy is essentially monotonic with UNOS graphs. We test Greedy on real UNOS339

graphs, using maximum budget 100. Figure 5a shows the median ∆MAX over all UNOS graphs,340

with shading between the 10th and 90th percentiles. Larger edge budgets almost never decrease341

the objective achieved by Greedy, and Greedy never produces a worse outcome than the baseline.342

8All objective values are estimated using up to 1000 sampled rejection scenarios (see Appendix B), as it is
intractable to evaluate the exact objective of large edge sets.
†We use an approximation of Fail-Aware for the KPD dist.; true Fail-Aware should always have ∆MAX > 0.
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Thus–in our setting–single-stage edge selection is effectively monotonic in our setting, and Greedy343

is an effective method.344

Result: MCTS and Greedy are nearly equivalent with UNOS graphs. We compare all methods on345

UNOS graphs, using smaller, more-realistic edge budgets from 1 to 10. For MCTS we use a 1-hour346

time limit per edge (Γ hours total). Figures 5b and 5d compare ∆MAX for MCTS, Greedy, and random347

edge selection, for the Simple and KPD edge distributions, respectively. We draw two conclusions348

from these results: (1) MCTS and Greedy produce almost identical results, further suggesting that349

Greedy is nearly optimal in our setting; (2) in our setting, edge selection is effectively monotonic, as350

∆MAX almost never decreases. However Figure 5d gives an example of non-monotonicity for both351

Greedy and Random: in some cases, querying edges can lead to a worse outcome than querying no352

edges.353

Result: Both MCTS and Greedy outperform benchmarks from the literature. We also compare354

against two state-of-the-art approaches: the edge selection approach of [11] (IIAB), which uses a355

variable edge budget that depends on the graph structure; and and the failure-aware matching policy356

of [15] (Fail-Aware9), which does not query edges To our knowledge, IIAB is the only edge selection357

method in the literature. We compare against the Fail-Aware method because it is a state-of-the-art358

kidney exchange matching policy which aims to maximize the expected matching weight, under a359

similar edge failure model to ours; we compare against this approach to further illustrate the utility of360

querying edges.361

Table 1 (right) shows a comparison of all edge-selection methods–each using the variable edge362

budget of IIAB; the bottom row shows results for Fail-Aware. Both MCTS and Greedy achieve greater363

∆MAX (in distribution) than both benchmark methods. This is expected in both cases: IIAB uses a364

heuristic to select edges to query, which does not consider the final matching weight—the objective of365

our edge selection problem; on the other hand, both MCTS and Greedy are designed to maximize this366

objective. We do not expect Fail-Aware to out-perform any edge selection methods, since Fail-Aware367

does not have access to information revealed after edge queries.368

It is notable that Greedy performs better than MCTS (in distribution). This likely means that MCTS369

is under-trained—that the time and memory limits used in our implementation are too restrictive;370

alternatively, this indicates that Greedy is simply very effective in our setting.371

4.3 Multi-Stage Edge Selection Experiments on UNOS Graphs372

We run initial multi-stage edge selection experiments on all UNOS graphs with the Simple edge373

distribution. For each graph we test our multi-stage variants of MCTS and Greedy, and compare374

with a baseline of random edge selection; as before, MCTS uses a 1-hour training time per level. It375

is substantially harder to evaluate the multi-stage objective, as each edge edge-selection method376

changes depending on rejections observed in prior stages. Similarly, the MCTS search tree is orders of377

magnitude larger in the multi-stage setting: each node in tree corresponds to both an edge set and a378

rejection scenario (see Appendix E).379

In these initial experiments we evaluate each method on 10 edge rejections realizations (only a380

small subset). We estimate ∆MAX for each method and each graph by averaging the final matching381

weight over all realizations. Figure 5c shows the results of these experiments.382

These initial multi-stage results are quite similar to our single-stage results. However it is notable383

that the objective value in the multi-stage setting is somewhat higher than in the single-stage setting–384

even using the simple method Greedy. Further, this suggests that more can be gained by developing385

a more sophisticated multi-stage edge selection policy. We leave this for future work.386

5 Conclusions and Future Research Directions387

Many planned kidney exchange transplants fail for a variety of reasons; these failures greatly388

reduce the number of transplants that an exchange can facilitate, and increase the waiting time for389

many patients in need of a kidney. Avoiding transplant failures is a challenge, as exchanges are often390

constrained by policy and law in how they match patients and donors. We consider a setting where391

exchanges can pre-screen certain transplants, while still matching patients and donors using a fixed392

policy. We formalize a multi-stage optimization problem based on realistic assumptions about how393

transplants fail, and how exchanges match patients and donors; we emphasize that these important394

assumptions are not included in prior work. While this problem is challenging in theory, we show395

9For the KPD distribution we use an approximation of Fail-Aware, which assumes a uniform edge failure
probability.
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Figure 5: Results for UNOS graphs. Right: edge budget up to 10 for the Simple distribution (top)
and the KPD distribution (bottom). Top-left: Greedy with edge budget up to 100, for the simple
distribution. Bottom-left: multi-stage methods using the Simple distribution. In all plots, a solid line
indicates median ∆MAX over all UNOS graphs, and shading is between the 10th and 90th percentiles;
a dotted line indicates the baseline.

that it is much easier in practice–with computational experiments using both synthetic data and real396

data from the United Network for Organ Sharing. In experiments, we find that pre-screening even a397

small number of potential transplants (around 10) significantly increases the overall quality of the398

final match–by more than 100% of the original match weight.399

Our initial study of the pre-screening problem suggests several areas for future work. First we400

assume that the distribution of transplant failures is known, when in reality only rough approximations401

of these distributions are available. Second, we assume that exchange participants (donors, recipients,402

hospitals) are not strategic. In reality, strategic behavior plays a substantial role in real exchanges [2];403

we expect that participants might behave strategically when responding to pre-screening requests.404

Third, our model does not account for equitable treatment of different patients [21]. For example,405

it may be the case that pre-screening a transplant decreases the likelihood of the transplant being406

matched. That might disproportionately impact highly-sensitized patients, which are both sicker and407

more difficult to match than other patients.408
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Broader Impact409

This work lives within the broader context of kidney exchange research. For clarity, we separate410

our broader impacts into two sections: first we discuss the impact of kidney exchange in general; then411

we discuss our work in particular, within the context of kidney exchange research and practice.412

Impacts of Kidney Exchange Patients with end-stage renal disease have only two options: receive413

a transplant, or undergo dialysis once every few days, for the rest of their lives. In many countries414

(including the US), these patients register for a deceased donor waiting list–and it can be months415

or years before they receive a transplant. Many of these patients have a friend or relative willing to416

donate a kidney, however many patients are incompatible with their corresponding donor. Kidney417

exchange allows patients to “swap” their incompatible donor, in order to find a higher-quality match,418

more quickly than a waiting list. Transplants allow patients a higher quality of life, and cost far less,419

than lifelong dialysis. About 10% of kidney transplants in the US are facilitated by an exchange.420

Finding the “most efficient” matching of kidney donors to patients is a (computationally) hard421

problem, which cannot be solved by hand in most cases. For this reason many fielded exchanges422

use algorithms to quickly find an efficient matching of patients and donors. Many researchers study423

kidney exchange from an algorithmic perspective, often with the goal of improving the number or424

quality of transplants facilitated by exchanges. Indeed, this is the purpose of our paper.425

Impacts of Our Work In this paper we investigate the impact of pre-screening certain potential426

transplants (edge) in an exchange, prior to constructing the final patient-donor matching. To our427

knowledge, some modern fielded exchanges pre-screen potential transplants in an ad-hoc manner;428

meaning they do not consider the impacts of pre-screening on the final matching. We propose methods429

to estimate the importance of pre-screening each edge, as measured by the change in the overall430

number and quality of matched transplants.10 Importantly, our methods do not require a change in431

matching policy; instead, they indicate to policymakers which potential transplants are important to432

pre-screen, and which are not. The impacts of our contributions are summarized below:433

Some potential transplants cannot be matched, because they cannot participate in a “legal” cyclical434

or chain-like swap (according to the exchange matching policy). Accordingly, there is no “value”435

gained by pre-screening these transplants; our methods will identify these potential transplants, and436

will recommend that they not be pre-screened. Pre-screening requires doctors to spend valuable time437

reviewing potential donors; removing these unmatchable transplants from pre-screening will allow438

doctors to focus only on transplants that are relevant to the current exchange pool.439

Some transplants are more important to pre-screen than others, and our methods help identify440

which are most important for the final matching. We estimate the value pre-screening of each441

transplant by simulating the exchange matching policy in the case that the pre-screened edge is442

pre-accepted, and in the case that it is pre-refused.443

To estimate the value of pre-screening each transplant, we need to know (a) the likelihood444

that each transplant is pre-accepted and pre-refused, and (b) the likelihood that each planned445

transplant fails for any reason, after being matched. These likelihoods are used as input to our446

methods, and they can influence the estimated value of pre-screening different transplants. Importantly,447

it may not be desirable to calculate these likelihoods for each potential transplant (e.g., using data from448

the past). For example if a patient is especially sick, we may estimate that any potential transplant449

involving this patient is very likely to fail prior to transplantation (e.g., because the patient is to ill to450

undergo an operation). In this case, our methods may estimate that all potential transplants involving451

this patient have very low “value”, and therefore recommend that these transplants should not be452

pre-screened. One way to avoid this issue is to use the same likelihood estimates for all transplants.453

To estimate the impact of our methods (and how they depend on the assumed likelihoods, see454

above), we recommend using extensive modeling of different pre-screening scenarios before455

deploying our methods in a fielded exchange. This is important for several reasons: first, exchange456

programs cannot always require that doctors pre-screen potential transplants prior to matching. Since457

we cannot be sure which transplants will be pre-screened and which will not, simulations should458

be run to evaluate each possible scenario. Second, theoretical analysis shows that pre-screening459

transplants can—in the worst case—negatively impact the final outcome. While this worst-case460

10Quality and quantity of transplants is measured by transplant weight, a numerical representation of transplant
quality (e.g., see UNOS/OPTN Policy 13 regarding KPD prioritization points https://optn.transplant.
hrsa.gov/media/1200/optn_policies.pdf).
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outcome is possible, our computational experiments show that it is very unlikely; this can be addressed461

further with mode experiments tailored to a particular exchange program.462
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A Kidney Exchange and Edge Failures536

Brief history. Rapaport [24] proposed the initial idea for kidney exchange, while the first organized537

kidney exchange, the New England Paired Kidney Exchange (NEPKE), started in 2003–04 [26, 27,538

28]. NEPKE has since ceased to operate; at the point of cessation, its pool of patients and donors was539

merged into the United Network for Organ Sharing (UNOS) exchange in late 2010. That exchange540

now contains over 60% of transplant centers in the US, and performs matching runs via a purely541

algorithmic approach (as we discuss in Sections 1 and 2, and in much greater depth by UNOS [29],542

which is mandated to transparently and publicly reveal its matching process).543

There are also two large private kidney exchanges in the US, the National Kidney Registry (NKR)544

and the Alliance for Paired Donation (APD). They typically only work with large transplant centers.545

NKR makes their matching decisions manually and greatly prefers matching incrementally through546

chains. APD makes their decisions through a combination of algorithmic and manual decision547

making. There are also several smaller private kidney exchanges in the US. They typically only548

involve one or a couple of transplant centers. These include an exchange at Johns Hopkins University,549

a single-center exchange at the Methodist Specialty and Transplant Hospital in San Antonio, and a550

single-center exchange at Barnes-Jewish Hospital affiliated with the Washington University in St.551

Louis. Largely, these exchanges also make their matching decisions via a combined algorithmic and552

manual process. These exchanges compete in a variety of ways (e.g., by allowing patient-donor pairs553

to register in multiple exchange programs); this competition can lead to loss in efficiency [2] as well554

as sub-optimal changes to individual exchanges’ matching polices [19].555

There are now established kidney exchanges in the UK [20], Italy, Germany, Netherlands, Canada,556

England, Portugal, Israel, and many other countries. European countries are also explicitly exploring557

connecting their individual exchanges together in various ways [8].558

Edge failures. The dilemma of edge failures is illustrated in the example exchange graph shown in559

Figure 6. This exchange consists of a 3-chain (dashed edges) and two 2-cycles (solid edges). Suppose560

the decision-maker queries edge eA: if eA is accepted, then the chain from the NDD (n) through pairs561

(d1, p1), (d2, p2), and (d3, p3), i.e., the dashed edges, can be included in the matching. However562

if eA is queried and rejected, then the NDD cannot initiate the chain, and only the cycles may be563

matched. In our model, if eA is not queried then it may still be matched.564

n d1

p1

d2

p2

d3

p3

d4

p4

d5

p5

eA

Figure 6: Sample exchange graph with a 3-chain (dashed edges) and two 2-cycles (solid edges). The
NDD is denoted by n, and each patient (and associated donor) is denoted by pi (di). If edge e1 is not
queried, or queried and accepted, then the chain may be included in the final matching. However if
edge eA is queried and rejected, then only the 2-cycles may be included in the final matching.

B Estimating The Objective of Problem 1565

The objective of the single-stage edge selection problem requires evaluating all rejection scenarios566

r ∼ PR(q), and the support of this distribution grows exponentially in the number of edges |q|. In567

computational experiments, to estimate the objective of Problem 1, we sample up to 1000 scenarios568

from PR(q). More explicitly: we exactly evaluate the objective of edge sets with fewer than 10 edges;569

for larger edge sets, we sample the objective using 1000 draws from PR(q).570

Using bootstrapping experiments we demonstrate that our sampling approach is sufficient to571

accurately estimate the true objective, even for large edge sets. For 152 UNOS graphs, we computed572

edge sets by running Greedy with edge budgets ranging from 1 to 100. For each edge set, we then573

sample a subset of N ∈ {10, 30, 50, 100, 1000} rejection scenarios, with replacement, from the set574

of all sampled edge outcomes. For each edge set and choice of N we repeat 200 times and calculate575

the sample mean for each replication. We then compute the standard deviations of these bootstrap576
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Edge budgets N = 10 N = 30 N = 50 N = 100 N = 1000

1-10 0.10 0.06 0.04 0.03 0.01
11-20 0.12 0.07 0.05 0.04 0.01
21-30 0.13 0.08 0.06 0.04 0.01
31-40 0.14 0.08 0.06 0.04 0.01
41-50 0.14 0.08 0.06 0.04 0.01
51-60 0.15 0.08 0.07 0.05 0.01
61-70 0.15 0.09 0.07 0.05 0.02
71-80 0.16 0.09 0.07 0.05 0.02
81-90 0.17 0.10 0.08 0.05 0.02
91-100 0.18 0.10 0.08 0.06 0.02

Table 2: Median normalized standard deviation of the bootstrap mean, over 200 bootstrap samples
for each sample size N , binned by edge budget.

Table 3: Single-stage results on random graphs with the Simple edge distribution, using the variable
IIAB edge budget (top rows), and the failure-aware method (bottom row). Columns PX indicates the
Xth percentile of ∆MAX over all 30 random graphs, for graphs with N = 50, 75, and 100 vertices.

N = 50 N = 75 N = 100

Method P10 P50 P90 P10 P50 P90 P10 P50 P90

MCTS 0.22 0.30 0.38 0.11 0.33 0.46 0.23 0.33 0.38

Greedy 0.21 0.30 0.38 0.12 0.32 0.48 0.27 0.39 0.43

Random 0.12 0.19 0.23 0.10 0.19 0.28 0.12 0.19 0.23

IIAB 0.07 0.24 0.34 0.11 0.22 0.41 0.07 0.24 0.34

Fail-Aware 0.00 0.02 0.10 0.00 0.06 0.18 0.00 0.02 0.10

sample means to estimate the variance due to sampling. For each N , we calculate the mean sample577

standard deviation, normalized by the sample mean. Table 2 shows the median normalized standard578

deviation for all experiments under each N , with edge budgets aggregated into 10 bins. We find that579

with N = 1000 samples, the standard deviation was on average only about 2% of the overall mean580

value, even for large edge budgets.581

C Additional Computational Results582

First we show results for both single-stage and multi-stage edge selection on random graphs (see583

§ 4 for a description of these graphs). For N = 50, 75, and 100, we generate 30 random graphs with584

N vertices and p = 0.01. For each graph we run single-stage experiments with Γ = 1, . . . , 10 and585

multi-stage experiments with Γ = 1, . . . , 15. Unlike experiments on UNOS graphs we use a time586

limit of 20 minutes per edge; all other parameters are the same. Figure 7a and 7b show single-stage587

and multi-stage results for all random graphs, respectively. Table 3 shows comparisons to IIAB and588

Fail-Aware for random graphs with N = 50, 75, and 100.589

As with UNOS graphs, results for MCTS and Greedy are quite similar, and both methods achieve590

larger ∆MAX than Random, IIAB, and Fail-Aware. We make two observations: (1) Greedy appears to591

achieve larger ∆MAX than MCTS in the single-stage setting, likely because of insufficient training time592

for MCTS; (2) in the multi-stage setting, MCTS performs at least as well as Greedy, and often better.593

Observation (2) is consistent with our experiments on UNOS graphs, and is somewhat surprising given594

that MCTS used less training time in these experiments. This suggests that MCTS may substantially595

improve over Greedy in the multi-stage setting; we leave further investigation to future work.596

D Proofs for Section 2597

In the proofs of Proposition 2.1 and Proposition 2.2 we consider a setting where all edges’ pre-598

match rejections and post-match failures are i.i.d., where PR = 0.5 is the pre-match rejection599

probability, PQ = 1.0 is the post-match success probability if the edge is queried-and-accepted,600
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Figure 7: Results for 30 random graphs with edge probability p = 0.01 and N = 50 vertices (top
row), N = 75 (middle row), and N = 100 (bottom row). All experiments use the Simple edge
distribution. In all plots, a solid line indicates median ∆MAX over all 30 random graphs, and shading is
between the 10th and 90th percentiles; a dotted line indicates the baseline.

A B C D

E F

e1 e2

w(E,B) = 1.5

e3

Figure 8: Exchange graph for Propositions 2.1 and 2.2. All edges have weight 1 except for edge
(E,B), which has weight 1.5.

and PN = 0.5 is the success probability if e is not queried. That is, queried edges have rejection601

probability 0.5, accepted edges have zero failure probability, and non-queried edges have failure602

probability 0.5.603

D.1 Proof of Proposition 2.1604

(Proof by counterexample.) We provide an example where querying a single edge results in a lower605

objective value in Problem 1 (i.e., final expected matching weight) than querying no edges–when606

using the max-weight matching policy MMAX(·).607

Consider the exchange graph in Figure 8; edge (E,B) has weight 1.5, while all other edges have608

weight 1. First we consider the objective due to querying no edges, V S(0). In this case, no edges609

can be rejected pre-match, the max-weight matching includes cycle (C,D, F ) (expected weight610

3 × (1/2)3 = 3/8) and cycle (A,B) (expected weight 2 × (1/2)2 = 1/2), with total expected611

matching weight 7/8. That is, V S(0) = 7/8.612

Next consider the objective due to querying only edge e3 = (C,D), and let q′ denote edge set613

{e3}. With probability 1/2, e3 is rejected and cycle (B,C,E) is the max-weight matching – with614
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expected weight 3.5/8. With probability 1/2, e3 is accepted and the max-weight matching includes615

cycles (A,B) (with expected weight 1/2) and (C,D, F ) (with expected weight 3/4); this matching616

has total expected weight 5/4. Thus, V S(q) = 27/32 < 7/8 = V S(0), which concludes the proof.617

D.2 Proof of Proposition 2.2618

(Proof by counterexample.) We provide an example where the objective value in Problem 1 (i.e.,619

final expected matching weight) is non-submodular–when using the max-weight matching policy620

MMAX(·). We use the same rejection and failure distribution as in the proof of Proposition 2.1.621

Consider the exchange graph in Figure 8; edge (E,B) has weight 1.5, while all other edges
have weight 1. With some abuse of notation, we will denote by V S({ea, . . . , eN}) the objective
of Problem 1 due to edge set {ea, . . . , eN}. Our counterexample for submodulartiy is that, for this
graph,

V S(X ∪ {e1, e2}) + V S(X) > V S(X ∪ {e1}) + V S(X ∪ {e2}),
with set X ≡ {e3}. That is, the objective increase due to of querying both edges e1 and e3 is greater622

than the combined increase due to querying both edges separately. Next we explicitly calculate each623

of the above terms.624

V S(X) = V S({e3}). There are two cases to consider:625

• e3 is accepted, with probability 1/2. The max-weight matching is cycles (A,B) and626

(C,D, F ), with expected weight (1/2 + 3/4),627

• e3 is rejected, with probability 1/2. The max-weight matching is cycle (B,C,E), with628

expected weight 3.5/8.629

Thus, V S(X) = (1/2)(1/2 + 3/4) + (1/2)(3.5/8) = 27/32.630

V S(X ∪ {e1}) = V S({e1, e3}). There are four cases to consider:631

• e1 and e3 are accepted, with probability 1/4. The max-weight matching is cycles (A,B)632

and (C,D, F ), with expected weight (1 + 3/8),633

• e1 is rejected and e3 is accepted, with probability 1/4. The max-weight matching is cycle634

(B,C,E), with expected weight 3.5/8.635

• e1 is accepted and e3 is rejected, with probability 1/4. The max-weight matching is cycle636

(B,C,E), with expected weight 3.5/8.637

• e1 and e3 are rejected, with probability 1/4. The max-weight matching is cycle (B,C,E),638

with expected weight 3.5/8.639

Thus the objective is V S(X ∪ {e3}) = (1/4)(1 + 3/8) + (3/4)(3.5/8) = 43/64.640

V S(X ∪ {e2}) = V S({e2, e3}). There are three cases to consider641

• e3 is accepted, with probability 1/2. The max-weight matching is cycles (A,B) and642

(C,D, F ), with expected weight (1/2 + 3/4),643

• e3 is rejected and e3 is accepted, with probability 1/4. The max-weight matching is cycle644

(B,C,E), with expected weight 3.5/4,645

• e3 and e2 are rejected, with probability 1/4. The max-weight matching is cycle (A,B),646

with expected weight 1/2.647

Thus the objective is V S(X ∪ {e2}) = (1/2)(1/2 + 3/4) + (1/4)(3.5/4) + (1/4)(1/2) = 31/32.648

V S(X ∪ {e1, e2}) = V S({e1, e2, e3}). There are four cases to consider:649

• e1 and e3 are accepted, with probability 1/4. The max-weight matching is cycles (A,B)650

and (C,D, F ), with expected weight (1 + 3/4),651

• e1 is accepted and e2 is rejected, with probability 1/4 (the response from e3 is irrelevant).652

The max-weight matching is (A,B) and (C,D, F ), with expected weight 1 + 3/8.653

• e1 is rejected and e2 is accepted (the response from e3 is irrelevant), with probability 1/4.654

The max-weight matching is cycle (B,C,E), with expected weight 3.5/4.655

• e1 and e2 are rejected (the response from e3 is irrelevant), with probability 1/4. The656

max-weight matching is cycle (C,D, F ), with expected weight 3/8.657
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Thus the objective is V S(X ∪ {e1, e2}) = (1/4)(1 + 3/4) + (1/4)(1 + 3/8) + (1/4)(3.5/4) +658

(1/4)(3/8) = 35/32.659

Finally, we have:660

V S(X ∪ {e1, e2}) + V S(X) = 35/32 + 27/32

= 1.9375

and661

V S(X ∪ {e1}) + V S(X ∪ {e2}) = 43/64 + 31/32

= 1.640625

Therefore, V S(X ∪ {e1, e2}) + V S(X) > V S(X ∪ {e1}) + V S(X ∪ {e2}), which concludes the662

proof.663

D.3 Proof of Proposition 2.5664

For the proof of Proposition 2.5 we make one assumption about the distribution of edge rejections665

and failures: querying additional edges cannot increase the overall probability of rejection or failure666

for any edge.667

First we prove a handful of useful results.668

Lemma D.1. If all edges are independent and Assumption 2.3 holds, then additional edge queries669

cannot decrease expected post-match cycle and chain weights. Formally,670

E [F (c, r + f) | q, r] ≤ E [F (c, r + r′ + f) | q + q′, r]

for any q, q′ ∈ {0, 1}|E| such that q + q′ ∈ {0, 1}|E|, for any r ∈ {0, 1}|E|, and for all c ∈ C.671

Proof. We address cycles and chains separately.672

Cycles. Conditional on fixed q and r, the expected weight of cycle c = (e1, . . . , eL) is expressed673

as674

E [F (c, r + f) | q, r] =

(∑
e∈c

we

)
E

[∏
e∈c

(1− re − fe) | q, r

]

=

(∑
e∈c

we

)∏
e∈c

(1− E [re + fe | q, r])

where the second step is due to the fact that all fe are independent. Similarly, for fixed q′,675

E [F (c, r + r′ + f) | q + q′, r] =

(∑
e∈c

we

)∏
e∈c

(1− E [re + r′e + fe | q + q′, r]) .

Due to Assumption 2.3, the following inequality holds for all edges e ∈ E

E [re + fe | q, r] ≥ E [re + r′e + fe | q + q′, r] ,

and it follows that

E [F (c, r + f) | q, r] ≤ E [F (c, r + r′ + f) | q + q′, r] .

Chains. Similarly, the expected weight of chain c = (e1, . . . , eL) is expressed as676

E [F (c, r + f) | q, r] =

L∑
k=1

 k∑
j=1

wj

E

 k∏
j=1

(1− rej − fej ) | q, r


=

L∑
k=1

 k∑
j=1

wj

 k∏
j=1

(
1− E

[
rej + fej | q, r

])
,

where the second step is due to the fact that fe are independent. Similarly,677

E [F (c, r + r′ + f) | q + q′, r] =

L∑
k=1

 k∑
j=1

wj

 k∏
j=1

(
1− E

[
rej + r′ej + fej | q + q′, r

])
.

19



as before, due to Assumption 2.3 it follows that

E [F (c, r + f) | q, r] ≤ E [F (c, r + r′ + f) | q + q′, r] .

678

Lemma D.2. With a failure-aware matching policy, and if all edges are independent, adding a
single edge to any edge query set weakly improves the objective of Problem 1. Formally, for any
q, q′ ∈ {0, 1}|E| with q + q′ ∈ {0, 1}|E| and |q′| = 1, and M(r) ≡MFA(r),

V S(q) ≤ V S(q + q′)

Proof. The objective of Problem 1 for edge set q is expressed as679

V S(q) = E
r|q

[
E

f |q,r

[∑
c∈C

MFA
c (r)F (c, r + f)

]]

=
∑

r∈{0,1}|q|

Pq(r) E
f |q,r

[∑
c∈C

MFA
c (r)F (c, r + f)

]

=
∑

r∈{0,1}|q|

Pq(r)
∑
c∈C

MFA
c (r) E

f |q,r
[F (c, r + f)]

For edge set q + q′ we partition response variables into r, r′ ∈ {0, 1}|E|, where re is the response680

variable for all edges e ∈ q, and re = 0 for all other edges (including the edge in q′). Similarly, r′e is681

the response variable for edge q′, and r′e = 0 for all other edges. The objective of q + q′ is expressed682

as683

V S(q + q′) = E
r,r′|q+q′

[
E

f |q+q′,r+r′

[∑
c∈C

MFA
c (r + r′)F (c, r + r′ + f)

]]

=
∑

r∈{0,1}|q|

Pq+q′(r) E
r′|q+q′

[
E

f |q+q′,r+r′

[∑
c∈C

MFA
c (r + r′)>F (c, r + r′ + f)

]]

=
∑

r∈{0,1}|q|

Pq(r) E
r′|q+q′

[
E

f |q+q′,r+r′

[∑
c∈C

MFA
c (r + r′)F (c, r + r′ + f)

]]
,

where in the final line we replace Pq+q′(r) with Pq(r), because each re is conditionally independent,684

given qe.685

Next, by definition

E
f |q+q′,r+r′

[∑
c∈C

MFA
c (r + r′)F (c, r + r′ + f)

]
≥ E

f |q+q′,r+r′

[∑
c∈C

xcF (c, r + r′ + f)

]
∀x ∈M.

That is, MFA is guaranteed to maximize this expectation, and thus686

V S(q + q′) ≥
∑

r∈{0,1}|q|

Pq(r) E
r′|q+q′

[
E

f |q+q′,r+r′

[∑
c∈C

MFA
c (r)F (c, r + r′ + f)

]]
(B)

=
∑

r∈{0,1}|q|

Pq(r)
∑
c∈C

MFA
v (r) E

r′|q+q′

[
E

f |q+q′,r+r′
[F (c, r + r′ + f)]

]
(C)

Finally, combining (B) and (C) with Lemma D.1, the following inequality holds

V S(q) ≤ V S(q + q′).

687

Using the above lemmas, the proof of Proposition 2.5 is straightforward:688
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Proposition 2.5 If edges are independent, and Assumption 2.3 holds, then with a failure-aware689

matching policy the objective of Problem 1 is monotonic in the set of queried edges.690

Proof. Let q′, q′′ ∈ E be two edge sets such that q′ ⊆ q′′. It remains to show that, with matching
policy M(r) ≡MFA(r),

V S(q′′) ≤ V S(q′).

First note that because E is a matroid, there is a sequence of edges (qe1 , . . . , qeL) (with each691

|qei | = 1) such that q′′ + qe1 + · · · + qeL = q′. Due to Lemma D.2, the following sequence of692

inequalities hold:693

V (q′′) ≤ V (q′′ + qe1)

≤ V (q′′ + qe1 + qe2)

. . .

≤ V (q′′ + qe1 + · · ·+ qeL)

= V (q′)

which concludes the proof.694

E Algorithm Descriptions695

Here we describe more explicitly the algorithms for Greedy and MCTS, for both the single-stage696

and multi-stage settings.697

E.1 UCB Value Estimates for MCTS698

Both the single- and multi-stage versions of MCTS use the method of [17] to select the next child
node to explore. The formula used to estimate a node’s UCB value is

U
N − V min

V max − V min
+
√
NP /N

where U is the “UCB value estimate” calculated by MCTS, N is the number of visits to the node,699

NP is the number of visits to the node’s parent, and V max and V min are the largest and smallest700

node values encountered during search. In single-stage MCTS, all nodes have both a node value (the701

objective value of Problem 1) and a UCB value estimate; as described below, in multi-stage MCTS only702

query nodes have a UCB value estimate, and only leaf nodes have a node value (expected matched703

weight, after observing responses from all queried edges).704

E.2 Greedy Single-Stage Edge Selection705

Algorithm 3 gives a pseudocode description of Greedy for the single-stage setting.706

ALGORITHM 3: Greedy: Greedy Search Heuristic for Single-Stage Edge Selection

(input) E : legal edge sets

qR ← 0 the root node (no edges)
V ∗ ← objective value of qR Problem 1
while qR has children do

q′ ← child node of qR with maximal objective value in Problem 1
qR ← q′

return qR

E.3 Multi-Stage Edge Selection707

In the following sections we describe multi-stage versions of MCTS and Greedy. Unlike in the708

single-stage setting, these algorithms take as input a set of previously-queried edges q ∈ {0, 1}|E|709

and a corresponding set of observed rejections r ∈ {0, 1}|E|; they output the next edge to query.710
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Multi-Stage MCTS. The multi-stage search tree is somewhat more complicated than in the single-
stage setting, as each node in the search tree corresponds to both a set of queried edges and a set of
observed rejections. For this purpose we use two types of nodes: outcome nodes, and query nodes.
Outcome nodes consist of previously-queried edges q and previously-observed rejections r, and
are represented by tuple (q, r). (The root of the search tree corresponds to no queries or observed
rejections, (0,0).) The children of an outcome node are query nodes, represented by the next edge to
query from the parent (outcome), represented by tuple (q, r, e). Each outcome node has one child for
every edge that has not yet been queried:

CO(q, r) ≡ {(q, r, e) | ∀e ∈ E : q + ue ∈ E}

where ue is the unit vector for element e (uei = 0 for all i 6= e, and uee = 1). Each query node has
exactly two children: one where the queried edge is accepted, and one where the queried edge is
rejected,

CQ(q, r, e) ≡ {(q + ue, r), (q + ue, r + ue)}

As before, the level of a node refers to the number of queried edges: |q| for outcome nodes, and711

|q|+ 1 for query nodes.712

As before we refer to nodes with no children as leaf nodes; note that only outcome nodes are leaf
nodes. Unlike the single-stage version of MCTS, in the multi-stage setting we only consider the value
of leaf nodes11. The value of a leaf (outcome) is

V O(q, r) ≡W (M(r); q, r),

where as before M(r) denotes the matching policy, and W (x; q, r) denotes the expected matching713

weight of x, subject to q and r. The value of leaf outcome nodes is used to by QSample and OSample714

to guide multi-stage MCTS.715

11This decision was made in part because initial results indicate that edge selection is essentially monotonic.
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Algorithm 4 describes the multi-stage version of MCTS, taking previously-queried edges and716

observed responses as input. This algorithm initializes the value estimate U [·] and number of visits717

N [·] for query nodes in the next L levels–these quantities are used in the UCB calculation.718

ALGORITHM 4: Multi-Stage MCTS

(input) E : legal edge sets
(input) K: maximum size of any legal edge set
(input) T : time limit
(input) L: number of look-ahead levels
(input) qR: previously-queried edges
(input) rR: previously-observed rejections

M ← min{N + L,K}
Q← all query nodes which are descendants of (qR, rR), up to level M
U [(q, r, e)]← 0 ∀(q, r, e) ∈ Q UCB value estimate
N [(q, r, e)]← 0 ∀q ∈ Q number of visits
while less than time T has passed do

QSample(qR, rR M )
(qR, rR, e∗)← child node of (qR, rR) with the greatest UCB estimate
return e∗

719

ALGORITHM 5: QSample: Function for sampling query nodes in multi-stage MCTS

(input) (q, r): outcome node
(input) M : maximum level to sample from

if (q, r) has no children then
return V O(q, r) (return the value of this outcome node)

if (q, r) has children then
if |q| < M − 1 then

(q, r, e′)← child node of (q, r) with the greatest UCB estimate
OSample(q, r, e)

else
(q′, r′)← random leaf node, descendant from (q, r)

return V O(q′, r′)

720

ALGORITHM 6: OSample: Function for sampling outcome nodes in multi-stage MCTS

(input) (q, r, e): query node

N [(q, r, e)]← N [(q, r, e)] + 1
q′ ← q + ue (new query vector with edge e added)
Z ← randomly sample a response to edge e (0 if accept, 1 if reject)
r′ ← r + Zue (updated rejection vector)
U [(q, r, e)]← U [(q, r, e)] + QSample(q′, r′)

721

Algorithm 5 (QSample) samples query nodes from an outcome node, while Algorithm 6 (OSample)722

samples outcome nodes from a query node (and updates the query node’s UCB value estimate).723

Multi-Stage Greedy. Algorithm 7 gives a pseudocode description of the multi-stage version of724

Greedy. This search heuristic returns the next edge to query with the highest expected final matching725

weight, ignoring all future queries. In other words, this approach treats every edge as the last edge;726

one might call this heuristic “myopic” as well as greedy.727
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ALGORITHM 7: Greedy Heuristic for Multi-Stage Edge Selection

(input) E : legal edge sets
(input) q: previously-queried edges
(input) r: previously-observed rejections

e∗ ← ∅ V ∗ ← 0
for all q′ in q’s children do

e′ ← the new edge queried in child node q′

rA ← r

rR ← r

rA
e′ ← 0 (response scenario where e′ is accepted, and re′ = 0)

rR
e′ ← 1 (response scenario where e′ is rejected, and re′ = 1)

pA ← probability that e is accepted, conditional on previous responses
pR ← probability that e is rejected, conditional on previous responses
V ′ ← pA ·W (M(rA); q′, rA) + pRW (M(rR); q′, qR) (value of querying edge e′)
if V ′ > V ∗ then

e∗ ← e′

V ∗ ← V ′

return e∗
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