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SUBMISSION 150
We consider a revenue-maximizing seller with multiple items for sale to a single population of buyers. In ad

auction domains the items correspond to views from particular demographics, and recent works have therefore

identified a novel fairness constraint: equally-qualified users from different demographics should be shown the

same desired ad at equal rates. Prior work abstracts this to the following fairness guarantee: if an advertiser

places an identical bid on two users, those two users should view the ad with the same probability [27, 35].

We first propose a relaxation of this guarantee from worst-case to Bayesian settings, which circumvents

strong impossibility results from these works. We then study this guarantee through the lens of symmetries, as

any item-symmetric auction is also fair (by this definition). Our main result shows that for a single population

of additive buyers with independent (but not necessarily identically distributed) item values, bundling all

items together achieves a constant-factor approximation to the revenue-optimal item-symmetric mechanism.

Observe that in this setting, bundling all items together corresponds to concealing all demographic data and

treating all users the same [22].
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1 INTRODUCTION

Ad auctions are a significant source of revenue for numerous firms, causing their theoretical study

to be a mainstay in both the Economics and Computer Science communities. Classical works

typically design and analyze auctions that optimize the participants’ collective utility (i.e. the sum

of bidders’ values for items they receive, also called the welfare) [19, 30, 50], or perhaps just the

auctioneer’s utility (i.e., her revenue) [42]. Recently, the ubiquity of ad auctions in domains where

fairness constraints are first-order concerns has motivated a new desideratum for consideration:

the items’ utility for the outcome selected.

While it makes little sense to consider the utility of an apple or orange, recall that the items in

ad auction domains are in fact users. That is, when an advertiser (bidder) wins an item (impression

on a particular user), that item (the user) also enjoys some utility.

In practice, these utilities are hard to quantify (even moreso than typical values for an item),

and this side of the market is typically not monetized. As a result, there are no ‘bids’ or ‘utilities’

of the users (items) to consider. However, some examples of high-utility ads include those for

desirable jobs, low-interest loans, etc. and are subject to anti-discrimination laws. Specifically, it is

considered unfair for users (items) who are equally qualified for jobs/loans/etc. to view protected

ads at different rates. Therefore, recent works have proposed considering the utility of users (items)

through the lens of fairness [27, 35]. That is, these works propose to still consider the utility of the

auctioneer and bidders (ads) in the classical sense, but to additionally ensure that the outcomes are

fair to the users (items).

In practice, a non-discriminatory advertiser (bidder) might submit identical bids for equally-

qualified users (items) of different demographics. But [27] observes that this fair behavior is

insufficient to achieve a fair outcome. Indeed, protected ads are bidding against non-protected ads

(e.g. Men’s Shoes, Maternity Clothes, etc.) which legally place discriminatory bids. If discrimina-

tory advertisers (bidders) place higher bids on demographic 𝐴 than 𝐵 (items), then the price of

impressions for demographic 𝐴 (items) will be higher, and then even a non-discriminatory ad will

be displayed in a discriminatory manner.

To have a simple example in mind (taken from [27]), consider the case that the auctioneer runs a

second-price auction on each of two items. This auction format is ostensibly fair: there is nothing in

its description that seems to bias it against any item (user) or bidder (ad). But consider when Bidder

One (a protected ad) submits a bid of 1 for both items (users), and Bidder Two (a non-protected ad)

submits a bid of 2 for item one and 0 for item two. Then Bidder One wins item two, and Bidder Two

wins item one. As a result, the (user) demographic corresponding to item one views no protected

ads, while the (user) demographic corresponding to item two views protected ads with probability

one. That is, despite the fact that the protected advertiser bids in a non-discriminatory manner, and

that the auction is ostensibly fair, the result is an unfair outcome (assuming that users prefer to see

the protected ad).

While the above example is clearly stylized, this phenomenon is not just of theoretical concern.

Indeed, automated systems are constantly making decisions that affect our daily lives. These systems

rely on advanced algorithms and big data to make decisions which, in theory, have the potential

to be better informed and more equitable. However, studies have shown that they may instead

internalize and perpetuate societal biases [1, 2, 18, 36, 39, 44]. Efforts on mitigating bias have ranged

from examinations of the data [8, 49, 51], to machine learning algorithmic contributions [7, 47, 54],

to theoretical analyses [15, 27, 35]. In our domain of study, works indeed find that impressions for

female users are more expensive than impressions for male users, and that female users are less
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likely to see ads for high paying jobs [24] and STEM jobs [38], even when advertisers for such jobs

are unbiased [3].

[27, 35] posit that it is the job of the auction designer to guarantee fair outcomes, and propose

formal fairness definitions motivated by individual fairness [26]. Requiring an auction to satisfy

these constraints of course limits the auctioneer’s ability to optimize its revenue and/or the bidders’

welfare, so these works study the tradeoff between fairness and optimality. Our work follows this

same paradigm, but deviates from prior work in a few fundamental ways, highlighted below.
1

Bayesian vs. Worst-Case. [15, 27, 35] consider worst-case definitions of fairness. For example,

they might demand that for all possible bids of non-protected advertisers, if a protected advertiser

submits an identical bid for two demographics (items), those demographics view the protected ad

with (almost) equal probability. These definitions arise naturally from the fairness literature upon

which they build, but unfortunately also lead to strong impossibility results.

Ad auctions, however, are executed millions of times daily, and auctioneers have quite extensive

Bayesian priors. Indeed, revenue optimization is typically studied in Bayesian settings, where the

designer seeks to maximize their expected revenue.We propose to also consider a Bayesian, rather

than worst-case, notion of fairness. Indeed, unfairness is undesirable exactly when it is systemic, and

Bayesian notions are best suited to capture systemic phenomena. A formal definition appears in

Section 2, and a discussion appears in Section A.1. By considering a Bayesian notion of fairness,

we’re able to circumvent the impossibility results proved in [35].

Revenue vs. Welfare. [15, 27, 35] consider auctions that attempt to maximize welfare (more

specifically: they attempt to maximize the “declared welfare,” but don’t assume that the declared

bids correspond to the bidders’ actual values). In the absence of fairness constraints, such auctions

are extremely well-understood, and are particularly simple in the settings considered (e.g. if the

ads/bidders are additive
2
, welfare is maximized by awarding the item/user to the highest bidder).

However, if an auctioneer truly wishes to optimize their expected revenue, it is well-understood

that revenue-optimal auctions are significantly more complex [17, 20, 21, 33, 41, 43, 48]. We pro-

pose to consider an auctioneer who wishes to optimize their expected revenue in a multi-dimensional

Bayesian setting, rather than one who wishes to optimize the declared welfare. Our model is the

standard setup for multi-dimensional mechanism design (formally defined in Section 2): the auc-

tioneer has multiple items for sale, and bidders’ values for the items (users) are drawn independently.

Direct vs. Indirect Competition. [15, 27, 35] consider advertisers (bidders) who directly compete

to display their ads to a limited supply of users (items). In such settings, even a benevolent platform

must fail to show some ads to some users. While our model is rich enough to capture this setting,

our analysis isolates a different source of competition.

Specifically, even when there is unlimited supply, a revenue-maximizing designer may choose not

to show every ad to every user. Indeed, if they cannot offer different prices to different advertisers,

they may achieve greater revenue by setting a high price that excludes some advertisers from

purchasing. In this sense, advertisers indirectly compete with each other: one advertiser’s bids

affect the impressions sold to another due to the fact that the seller wishes to optimize their revenue,

rather than due to limited supply. We study the seller’s revenue objective (rather than the limited

supply of users) as a driving source of unfairness.

1
The below paragraphs distinguish our model from [15, 27, 35]. We discuss other related works such as [12] in Section 1.2.

2
A valuation function 𝑣 ( ·) is additive if for all sets 𝑆 of items, 𝑣 (𝑆) = ∑

𝑗∈𝑆 𝑣 ( { 𝑗 }) .
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Connection to Symmetries. We adopt (a Bayesian version of) the individual fairness notion

proposed in [27]: an auction is fair if whenever a bidder (ad) submits an identical bid for two items

(users), they receive those items with the same probability (in expectation over other bidders’ bids).

We further observe that this notion is implied by the stronger definition of item-symmetric [23].

Specifically, an auction is item-symmetric if whenever a bidder (ad) swaps their bids for two items

(users), this swaps the probabilities with which they receive those items (in expectation over other

bidders’ bids).

Item-symmetric auctions have been studied in the multi-dimensional mechanism design literature

for their own sake as a tool to optimize revenue in a computationally-efficient manner [23, 37],

but we use them here as a tool to guarantee fair outcomes. Specifically, we target the design of

item-symmetric auctions.

1.1 Results and Technical Highlights

The previous paragraphs motivate our modeling decisions within the multi-dimensional mechanism

design domain: we consider a single seller with 𝑚 items (users) for sale, and the buyers’ (ads’)

values are drawn from a distribution known to the seller (Bayesian vs. Worst-Case). The seller’s

goal is to design a truthful auction that optimizes their expected revenue (Revenue vs. Welfare).

We focus on the case where there is unlimited supply, which can alternatively be represented by a

single population of potential bidders (Direct vs. Indirect Competition).
3

From here, we wish to study item-symmetric auctions, and do so through the lens of simplicity

vs. optimality [13, 14, 32, 34]: is there a simple, approximately-optimal item-symmetric auction? For

example, one particularly simple auction is to bundle the items together (that is, pick a price 𝑝 and

allow the buyer to receive all items for price 𝑝 , or no items). It is also easy to see that this auction

is item-symmetric (and therefore fair). Indeed, in the language of ad auctions, it corresponds to an

auction which does not use personalized data at all, and chooses to display an ad to whatever user

shows up independently of their demographics [22].

Another particularly simple auction is to sell the items separately (that is, for each item 𝑗 , pick

a price 𝑝 𝑗 , and allow the buyer to pick any set of items 𝑆 to purchase at price

∑
𝑗 ∈𝑆 𝑝 𝑗 ). Auctions

of this format, while simple, are not necessarily item-symmetric (nor fair): if 𝑝1 > 𝑝2, then an

advertiser could submit an identical bid of 𝑝2 for both items yet receive only item two. A proper

subclass of such auctions, which is item-symmetric (and therefore fair), is to sell the items separately

and symmetrically (that is, set a single price 𝑝 , and allow the buyer to pick any set of items and pay

𝑝 per item). In the language of ad auctions, selling separately and symmetrically corresponds to

setting a price of 𝑝 to display an ad (independently of any data), but letting the advertisers choose

any subsets of demographics to display their ads.

Our main result is that bundling the items together achieves a constant-factor approximation to

the revenue-optimal item-symmetric mechanism, and that this factor can be improved by consider-

ing the better of bundling together and selling separately and symmetrically.

MainResult (See Theorems 3.1 and 3.2): For a single additive buyer, and any number of independent

items, bundling together achieves a 𝑂 (1)-approximation to the revenue-optimal item-symmetric

mechanism. The maximum between bundling together and selling separately and symmetrically

improves this constant.

3
To quickly see why the unlimited supply setting is equivalent to the single bidder setting: Because there are no supply

constraints, it is feasible to pick any single-bidder mechanism and just use it for every bidder.
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We also provide several auxiliary results in Appendix F, which study the relationships between

simple mechanisms such as bundling together, selling separately, and selling separately and sym-

metrically.

1.2 Related Work

Multi-dimensional Mechanism Design. At a technical level, the most closely-related field to

our work is that of simple vs. optimal multi-dimensional mechanism design. For example, our proof

outline is reminiscent of [5, 40], and we provide an alternative proof outline reminiscent of [9].

Note also that our main result (that bundling together is a constant-factor approximation of the

optimal revenue from any symmetric auction) implies one result from [40] (that bundling together

is a constant-factor approximation of the optimal revenue when all items are i.i.d.).
4
[22] were the

first to explicitly note the connection between the sale of an “uncertain item” (e.g. an impression

to a user whose demographic is known only to the designer) and the classic multi-dimensional

mechanism design setting.

Individual Fairness inAuctionDesign. To our knowledge, [27] were the first to consider fairness
in auction design from a theoretical perspective. Their work provides fairness definitions based

on individual fairness and motivating examples demonstrating that unfair outcomes can arise

from ostensibly fair auctions and non-discriminatory behavior of auctioneers. Follow-up works

such as [15, 35] proceed in similar models. These works provide strong impossibility results in the

worst-case, but also provide matching positive results (and improve the guarantees of these positive

results under restrictions on the otherwise worst-case input). Section 1 discusses extensively several

ways in which our work contributes to this line of work, along with the technical differences.

The other related work in this direction is [12], who also consider the theoretical design of fair

auctions from the perspective of a revenue-maximizing seller. The biggest difference between their

work and ours is that they essentially consider a single-dimensional setting (that is, they seek to

optimize the Myersonian virtual value of the winning bidder (ad) for each item (user)), but place

fairness constraints across auctions for different items. They formulate a linear program in their

setting and optimize their problem (exactly) computationally efficiently. Put another way, their

work exclusively considers auctions which “sell items separately” from a revenue perspective, but

with cross-item constraints concerning fairness.

One simple way to compare our work to these is that we focus on a simple notion of fairness,

but in the sophisticated multi-dimensional mechanism design setting, whereas these prior works

consider more sophisticated/quantitative notions of fairness but in simpler auction settings (either

welfare-maximization or single-dimensional revenue-maximization).

Empirical Studies of Fairness in Auction Design. Empirical studies on the rate at which ads

are displayed to different demographics motivate the line of work to which we contribute [3, 24, 38].

For example, [24] finds that ads for high-paying jobs are shown to more men than women, and [38]

draws the same conclusion for STEM jobs. The empirical studies in [3] support the conjecture that

this is due to “spillover effects” caused by higher competition for female views.

2 PRELIMINARIES

Our main results consider a single seller (the advertising platform) with𝑚 items for sale (each item

corresponds to an impression for a different demographic of user) to a single buyer (representing the

4
This follows as the optimal auction when all items are i.i.d. is in fact item-symmetric.
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population of advertisers, who do not directly compete for limited supply). However, we instantiate

our model with 𝑛 ≥ 1 buyers (directly competing advertisers), to best compare with prior work.

Each buyer 𝑖 has a value 𝑣𝑖 𝑗 for each item 𝑗 , and has value

∑
𝑗 ∈𝑆 𝑣𝑖 𝑗 for set 𝑆 (that is, the bidders

are additive). Each 𝑣𝑖 𝑗 is drawn independently from a distribution 𝐷𝑖 𝑗 , and we define 𝐷𝑖 := ×𝑗𝐷𝑖 𝑗

to represent the 𝑖𝑡ℎ population of advertisers,
5
and a particular ®𝑣𝑖 represents a particular advertiser.

We denote by 𝐷 := ×𝑖𝐷𝑖 as the entire population, and ®𝑣 as a particular profile of advertisers. When

there is just a single bidder, we abuse notation and let𝐷 := 𝐷1, and ®𝑣 := ®𝑣1. For discrete distributions,

we let 𝑓 𝐷 (®𝑣) := Pr ®𝑤←𝐷 [ ®𝑤 = ®𝑣]. For a single variable discrete distribution 𝐷 , we let 𝐹𝐷 (·) denote
the CDF, so 𝐹𝐷 (𝑣) :=

∑
𝑤∈[0,𝑣 ] 𝑓

𝐷 (𝑤).
The seller’s goal is to design a truthful mechanism that maximizes their expected revenue.

Specifically, a mechanism consists of a mapping from valuation profiles ®𝑣 to ex-post allocation

probabilities 𝑥𝑖 𝑗 (®𝑣) for all bidders 𝑖 and items 𝑗 , and an ex-post price 𝑝𝑖 (®𝑣) for all bidders 𝑖 . This
denotes the probability that bidder 𝑖 gets item 𝑗 when the full vector of bids is ®𝑣 , and the price

that bidder 𝑖 pays (respectively). The interim allocation rule is a mapping from valuation vector

®𝑣𝑖 to the interim allocation probability 𝜋𝑖 𝑗 (®𝑣𝑖 ) := E®𝑣−𝑖←𝐷−𝑖 [𝑥𝑖 𝑗 (®𝑣𝑖 ; ®𝑣−𝑖 )]. The interim price paid is

𝑞𝑖 (®𝑣𝑖 ) := E®𝑣−𝑖←𝐷−𝑖 [𝑝𝑖 (®𝑣𝑖 ; ®𝑣−𝑖 )].6 These quantities denote the probability that bidder 𝑖 receives item

𝑗 and the price bidder 𝑖 pays (respectively), conditioned on reporting ®𝑣𝑖 and in expectation over

the remaining bids being drawn from 𝐷−𝑖 . If we wish to emphasize that these terms come from a

specific mechanism𝑀 , we will write 𝑥𝑀𝑖 𝑗 (·), 𝑝𝑀𝑖 (·), etc. We say that a mechanism is truthful if it is

Bayesian individually rational and Bayesian incentive compatible. That is:∑
𝑗

𝑣𝑖 𝑗 · 𝜋𝑖 𝑗 (®𝑣𝑖 ) − 𝑞𝑖 (®𝑣𝑖 ) ≥ 0, ∀𝑖, ®𝑣𝑖 . (Bayesian Individually Rational)∑
𝑗

𝑣𝑖 𝑗 · 𝜋𝑖 𝑗 (®𝑣𝑖 ) − 𝑞𝑖 (®𝑣𝑖 ) ≥
∑
𝑗

𝑣𝑖 𝑗 · 𝜋𝑖 𝑗 (®𝑣 ′𝑖 ) − 𝑞𝑖 (®𝑣 ′𝑖 ),∀𝑖, ®𝑣𝑖 , ®𝑣 ′. (Bayesian Incentive Compatible)

The seller’s goal is to find, over all truthful mechanisms, the one maximizing her expected

revenue (which can be written either as E®𝑣←𝐷 [
∑

𝑖 𝑝𝑖 (®𝑣)] or
∑

𝑖 E®𝑣𝑖←𝐷𝑖
[𝑞𝑖 (®𝑣𝑖 )]).

Fairness and Symmetries.Motivated by the discussion in Section 1, we define an auction to be

fair if whenever an advertiser places the same bid for an impression for two different demographics,

those two demographics view the ad with the same probability. After mapping from advertiser to

buyer, and demographics to items, this yields the following two definitions, depending on whether

we seek a guarantee ex-post or in the interim.

Definition 2.1 (Fair Auction). An auction is ex-post fair with respect to bidder 𝑖 if for all valuation

profiles ®𝑣 , and items 𝑗, 𝑘 :

𝑣𝑖 𝑗 = 𝑣𝑖𝑘 ⇒ 𝑥𝑖 𝑗 (®𝑣) = 𝑥𝑖𝑘 (®𝑣) ∀𝑖 .
An auction is interim fair if for all bidders 𝑖 , valuation vectors ®𝑣𝑖 , and items 𝑗, 𝑘 :

𝑣𝑖 𝑗 = 𝑣𝑖𝑘 ⇒ 𝜋𝑖 𝑗 (®𝑣𝑖 ) = 𝜋𝑖𝑘 (®𝑣𝑖 ).

Intuitively, an auction is ex-post fair with respect to bidder 𝑖 if no matter the bids of the other

bidders (advertisers), when bidder 𝑖 places an identical bid for two items (views from particular

5
For example, it could be that 𝐷𝑖 = 𝐷𝑖′ for all 𝑖, 𝑖

′
, and each bidder is drawn from the same population. This represents

settings where the platform cannot price-discriminate based on properties of the advertiser. It could also be that 𝐷𝑖 ≠ 𝐷𝑖′ .

In such settings, perhaps 𝐷𝑖 is the population of ‘big’ advertisers, and 𝐷𝑖′ is the population of ‘small’ advertisers, and the

platform knows from which population each individual advertiser is drawn.

6
We use the standard notation ®𝑣−𝑖 to refer to the vector of bids excluding bidder 𝑖 , and 𝐷−𝑖 to refer to the distribution over

valuation profiles, excluding bidder 𝑖 .
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demographics), they receive those items with the same probability (those demographics view the ad

with the same probability). An auction is interim fair with respect to bidder 𝑖 if when bidder 𝑖 places

an identical bid for two items, they receive those items with the same probability in expectation

over the other bidders’ bids (assuming they are drawn from 𝐷−𝑖 ).
Both definitions are implied by the following stronger definitions (respectively), which require

that the auction be invariant under relabeling of items/demographics. Below, the notation 𝜎 (®𝑣)
refers to a vector satisfying (𝜎 (®𝑣))𝑖𝜎 ( 𝑗) = ®𝑣𝑖 𝑗 for all 𝑖, 𝑗 (that is, the items/demographics have been

relabeled according to 𝜎).

Definition 2.2 (Symmetric Auction). An auction is ex-post symmetric with respect to bidder 𝑖 if for

all permutations 𝜎 on [𝑚], valuation vectors ®𝑣𝑖 , and partial valuation profiles ®𝑣−𝑖 :
𝜎 ( ®𝑥𝑖 (®𝑣𝑖 ; ®𝑣−𝑖 )) = ®𝑥𝑖 (𝜎 (®𝑣𝑖 ), ®𝑣−𝑖 ).

An auction is interim symmetric if for all permutations 𝜎 , bidders 𝑖 , and valuation vectors ®𝑣𝑖 :
𝜎 ( ®𝜋𝑖 (®𝑣𝑖 )) = ®𝜋𝑖 (𝜎 ( ®𝑣𝑖 )) .

Intuitively, an auction is symmetric if permuting a valuation vector by 𝜎 permutes the allocation

vector by 𝜎 as well. We briefly observe that symmetry implies fairness.

Observation 1. If an auction is ex-post (respectively, interim) symmetric, it is also ex-post (respec-

tively, interim) fair.

Proof. Let 𝑣𝑖 𝑗 = 𝑣𝑖𝑘 , and consider the permutation 𝜎 which swaps 𝑗 and 𝑘 . Then 𝜎 (®𝑣𝑖 ) = ®𝑣𝑖 .
Symmetry therefore implies

7
that 𝑥𝑖 𝑗 (®𝑣𝑖 ; ®𝑣−𝑖 ) = 𝑥𝑖𝜎 ( 𝑗) (𝜎 (®𝑣𝑖 ); ®𝑣−𝑖 )) = 𝑥𝑖𝑘 (®𝑣𝑖 ; ®𝑣−𝑖 ). This completes the

proof for ex-post.

Similarly by symmetry: 𝜋𝑖 𝑗 (®𝑣𝑖 ) = 𝜋𝑖𝜎 ( 𝑗) (𝜎 (®𝑣𝑖 )) = 𝜋𝑖𝑘 (®𝑣𝑖 ). This completes the proof for interim.

□

A Stronger Fairness Guarantee via Symmetry. The fairness guarantees above (and those in

prior work) demand that equally-valued users are shown an ad with the same probability. A

stronger fairness guarantee might instead demand that if demographic (item) 𝑖 is valued higher by

an advertiser (bidder) than demographic (item) 𝑗 , then users from demographic 𝑖 are shown that ad

at least as often as those from demographic 𝑗 . We term this property strong monotonicity in fairness,

defined below (after mapping from advertiser to buyer, and demographics to items).

Definition 2.3 (Strong Monotonicity in Fairness). An auction satisfies ex-post strong monotonicity

in fairness with respect to bidder 𝑖 , if for all valuation profiles ®𝑣 , and items 𝑗, 𝑘 :

𝑣𝑖 𝑗 ≥ 𝑣𝑖𝑘 ⇒ 𝑥𝑖 𝑗 (®𝑣) ≥ 𝑥𝑖𝑘 (®𝑣) ∀𝑖 .
An auction is interim strong monotonicity in fairness if for all bidders 𝑖 , valuation vectors ®𝑣𝑖 , and

items 𝑗, 𝑘 :

𝑣𝑖 𝑗 ≥ 𝑣𝑖𝑘 ⇒ 𝜋𝑖 𝑗 (®𝑣𝑖 ) ≥ 𝜋𝑖𝑘 (®𝑣𝑖 ).

Note that ex-post (resp. interim) fairness does not imply ex-post (resp. interim) strong mono-

tonicity in fairness. Interestingly, however, [23] has already previously studied interim strong

monotonicity in fairness (under the name strong monotonicity), and shown that it is implied by

interim symmetry! That is, while previously studied notions of fairness alone do not imply this

stronger fairness notion, symmetry does. Below we briefly repeat their observation (and it’s short

proof, for completeness).

7
To see this, recall that 𝜎 ( ®𝑥 (®𝑣𝑖 ; ®𝑣−𝑖 )) is a vector that puts 𝑥𝑖 𝑗 (®𝑣𝑖 ; ®𝑣−𝑖 )) in the 𝑖, 𝜎 ( 𝑗) coordinate.
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Observation 2 ([23]). If an auction is interim symmetric and Bayesian Incentive Compatible, then

it satisfies interim strong monotonicity in fairness.

Proof. By Observation 1, any auction that is interim symmetric is also interim fair. This means

that if 𝑣𝑖 𝑗 = 𝑣𝑖𝑘 , then 𝜋𝑖 𝑗 (®𝑣𝑖 ) ≥ 𝜋𝑖𝑘 (®𝑣𝑖 ), so the conditions for interim strong monotonicity in fairness

hold whenever 𝑣𝑖 𝑗 = 𝑣𝑖𝑘 , and we need only consider the case when 𝑣𝑖 𝑗 > 𝑣𝑖𝑘 .

Assume for contradiction that 𝑣𝑖 𝑗 > 𝑣𝑖𝑘 but 𝜋𝑖 𝑗 (®𝑣) < 𝜋𝑖𝑘 (®𝑣). Advertiser 𝑖 could lie and swap 𝑣𝑖 𝑗
and 𝑣𝑖𝑘 . By symmetry, this swaps 𝜋𝑖 𝑗 (®𝑣) and 𝜋𝑖𝑘 (®𝑣), and strictly increases the advertiser’s interim

expected value (by (𝑣𝑖 𝑗 − 𝑣𝑖𝑘 ) · (𝜋𝑖𝑘 (®𝑣) − 𝜋𝑖 𝑗 (®𝑣)). The auctioneer still charges advertiser 𝑖 the

same interim expected price (also by symmetry), giving them strictly more expected utility, and

contradicting that the auction is Bayesian Incentive Compatible. □

We briefly note that ex-post symmetry and ex-post incentive compatibility also imply ex-post

strong monotonicity in fairness, and the proof outline is identical (but we will not formally

state/prove this, as we did not formally define ex-post incentive compatibility).

Observation 3. If an auction satisfies ex-post (respectively, interim) strong monotonicity in fairness,

then it is also ex-post (respectively, interim) fair.

Proof. Let 𝑣𝑖 𝑗 = 𝑣𝑖𝑘 , then 𝑣𝑖 𝑗 ≥ 𝑣𝑖𝑘 and 𝑣𝑖 𝑗 ≤ 𝑣𝑖𝑘 . By ex-post strong monotonicity in fairness, we

get 𝑥𝑖 𝑗 (®𝑣) ≥ 𝑥𝑖𝑘 (®𝑣) and 𝑥𝑖 𝑗 (®𝑣) ≤ 𝑥𝑖𝑘 (®𝑣). Therefore, 𝑥𝑖 𝑗 (®𝑣) = 𝑥𝑖𝑘 (®𝑣).
Similarly, by interim strong monotonicity in fairness, we get 𝜋𝑖 𝑗 (®𝑣) ≥ 𝜋𝑖𝑘 (®𝑣) and 𝜋𝑖 𝑗 (®𝑣) ≤ 𝜋𝑖𝑘 (®𝑣).

Therefore, 𝜋𝑖 𝑗 (®𝑣) = 𝜋𝑖𝑘 (®𝑣). This completes the proof for ex-post. □

Selling Separately and Bundling Together. For a single bidder distribution 𝐷 , we use the

following notation:

• Rev𝑀 (𝐷): the revenue of a particular mechanism𝑀 for distribution 𝐷 .

• Rev(𝐷): the optimal revenue achieved by any truthful mechanism for 𝐷 (formally, this is:

sup𝑀, 𝑀 is truthful
{Rev𝑀 (𝐷)}). Observe that mechanisms achieving Rev(𝐷) are not necessarily

fair nor symmetric.

• SymRev(𝐷): the optimal revenue achieved by any truthful and interim symmetric mechanism

for 𝐷 . By definition, the mechanism witnessing SymRev(𝐷) is symmetric.

• SRev(𝐷): the optimal revenue achieved by selling separately to a bidder drawn from𝐷 . That is,

the seller sets a price 𝑝 𝑗 := arg max𝑝 {𝑝 · Pr𝑣←𝐷 𝑗
[𝑣 ≥ 𝑝]} on item 𝑗 , and the buyer purchases

all items for which 𝑣 𝑗 ≥ 𝑝 𝑗 . Observe that such mechanisms are not necessarily fair nor

symmetric. In the context of our running example, this corresponds to the platform setting a

different price to display an ad to each demographic, and allowing each advertiser to choose

which demographic views to purchase.

• SSRev(𝐷): the optimal revenue achieved by symmetrically selling separately to a bidder drawn

from 𝐷 . That is, the seller sets the same price 𝑝 := arg max𝑞{𝑞 ·
∑

𝑗 Pr𝑣←𝐷 𝑗
[𝑣 ≥ 𝑞]} on all

items, and the buyer purchases all items for which 𝑣 𝑗 ≥ 𝑝 . Observe that such mechanisms

are both fair and symmetric. In the context of our running example, this corresponds to the

platform setting the same price to display an ad to each demographic, and allowing each

advertiser to choose which demographic views to purchase.

• BRev(𝐷): the optimal revenue achieved by bundling together. That is, the seller sets a price

𝑝 := arg max𝑞{𝑞 · Pr®𝑣←𝐷 [
∑

𝑗 𝑣 𝑗 ≥ 𝑞]} on the grand bundle of all items, and the buyer

either purchases all items at total price 𝑝 (when

∑
𝑗 𝑣 𝑗 ≥ 𝑝), or nothing. Observe that

such mechanisms are both fair and symmetric. In the context of our running example, this

corresponds to the platform ignoring all demographic information, and allowing advertisers

to show their ads to all users or none.
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Mapping between ad auctions andmulti-dimensionalmechanism design.We briefly repeat

the connection between ad auctions and the classical multi-item auction setup formally identified

by [22, Theorem 2]. An item 𝑗 in the classic setting corresponds to a demographic 𝑗 in the ad

auction domain. Moreover, awarding the buyer item 𝑗 with probability 𝑥 𝑗 corresponds to showing

a user with type 𝑗 their ad with probability 𝑥 𝑗 . Therefore, if advertisers have a value of 𝑣 𝑗 per

click from demographic 𝑗 , and demographic 𝑗 represents a 𝑑 𝑗 fraction of the population, then

the advertiser’s value for an allocation ®𝑥 is

∑
𝑗 𝑣 𝑗 · 𝑑 𝑗𝑥 𝑗 . Observe that when each demographic

represents the same fraction of the population (e.g. male/female) that the advertiser’s valuation

is simply additive. Therefore, our main results on item-symmetric mechanisms with an additive

buyer directly have bite in the ad auction domain when each demographic is equally likely.
8

Wealso remind the reader that [22, Theorem 2] observes that bundling items together in the classic

setting corresponds to concealing demographic data in the ad auction setting. Similarly, selling

separately in the classic setting corresponds to setting a price 𝑝 𝑗 to display an ad to demographic

𝑗 , and letting advertisers choose which subset of demographics to target. Selling separately and

symmetrically further enforces that 𝑝𝑖 = 𝑝 𝑗 for all 𝑖, 𝑗 .

3 MAIN RESULT: BRev IS A CONSTANT-FACTOR APPROXIMATION TO SymRev.

In this section, we prove our main result: BRev is a constant factor approximation to SymRev.

Recall that in our setting, BRev corresponds to the optimal revenue achieved by a mechanism

which ignores demographic data entirely.

Theorem 3.1. Let 𝐷 be any additive single-bidder distribution over any number of independent

items. Then 204BRev(𝐷) ≥ SymRev(𝐷).

We prove Theorem 3.1 in two steps. The first step is the main step, and proves a theorem

reminiscent of the main result of [5], establishing that either BRev(𝐷) or SSRev(𝐷) is a constant-
factor approximation to SymRev(𝐷) (Theorem 3.2). The second step argues that in fact BRev(𝐷) is
a constant factor approximation to SSRev(𝐷) (Proposition 3.3).

Theorem 3.2. Let 𝐷 be any additive single-bidder distribution over any number of independent

items. Then 24BRev(𝐷) + 20SSRev(𝐷) ≥ SymRev(𝐷).

Proposition 3.3. Let 𝐷 be any additive single-bidder distribution over any number of independent

items. Then 9BRev(𝐷) ≥ SSRev(𝐷).

We defer the proof of Theorem 3.1 to Appendix B. In Appendix B.1 we show how to upper

bound SymRev(𝐷) with Rev(𝐷 ′) for a modified distribution 𝐷 ′. To prove Theorem 3.2, we will

first provide a modified distribution 𝐷 ′, show that its revenue is close to that of 𝐷 , and then design

a flow for 𝐷 ′. In Appendix B.2 we upper bound Rev(𝐷 ′) with 24BRev(𝐷) + 20SSRev(𝐷), and we

provide a proof based on tools used in [32]. In Section 3.1 we prove Proposition 3.3.

In Appendix C, we provide an alternative proof based on the [9] duality framework (for the case

when the distribution of the bidder’s maximum value for the items is regular). In Appendix C.2 we

also overview a naive attempt at applying their framework (using their “canonical flow”), which

helps provide intuition for the need to go through 𝐷 ′.

3.1 Comparing BRev to SSRev

In this section, we prove Proposition 3.3: BRev is a constant factor approximation to SSRev. Recall

that in our setting, BRev corresponds to the optimal revenue achieved by a mechanism which

8
We also note that it is an interesting open direction to extend our main results from an additive bidder to a ’scaled additive’

bidder so that this connection holds even for non-uniform demographic distributions.
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ignores demographic data entirely, while SSRev corresponds to the optimal revenue achieved by

a mechanism which sets the same price to display an ad to each demographic, and allows each

advertiser to choose which demographic views to purchase.

To prove Proposition 3.3, consider any mechanism that sets price 𝑝 on each item separately,

and let 𝑞 𝑗 (𝑝) denote the probability that the bidder purchases item 𝑗 (that is, that 𝑣 𝑗 ≥ 𝑝), and

let 𝑞(𝑝) :=
∑

𝑗 𝑞 𝑗 (𝑝) denote the expected number of items purchased at price 𝑝 (and therefore,

SSRev(𝐷) := sup𝑝 {𝑝 · 𝑞(𝑝)}). We will show that there is always a price 𝑝 ′ for the grand bundle

that collects a constant fraction of 𝑝 · 𝑞(𝑝).
We will first consider the case where 𝑞(𝑝) ≤ 8 (that is, at most 8 items are sold at price 𝑝 in

expectation). Unsurprisingly, in this case it suffices to set a price 𝑝 ′ := 𝑝 on the grand bundle.

Lemma 3.4. Let 𝑞(𝑝) ≤ 8. Then selling the grand bundle at price 𝑝 generates expected revenue at

least 𝑝 · 𝑞(𝑝)/9.
Proof. The proof follows from straight-forward calculations:

Pr

®𝑣←𝐷
[
∑
𝑗

𝑣 𝑗 ≥ 𝑝] ≥ Pr

®𝑣←𝐷
[max

𝑗
{𝑣 𝑗 } ≥ 𝑝] = 1 − Pr

®𝑣←𝐷
[∀𝑗, 𝑣 𝑗 < 𝑝]

= 1 −
∏
𝑗

Pr

𝑣𝑗←𝐷 𝑗

[𝑣 𝑗 < 𝑝] = 1 −
∏
𝑗

(1 − 𝑞 𝑗 (𝑝))

≥ 1 −
∏
𝑖

𝑒−𝑞 𝑗 (𝑝) = 1 − 𝑒−𝑞 (𝑝)

≥ 𝑞(𝑝)/9.
Above, the first line holds since the distribution for

∑
𝑗 𝑣 𝑗 stochastically dominates max𝑗 𝑣 𝑗 . The

second line follows as values are independent. The third line holds as 𝑒−𝑞 𝑗 (𝑝) ≥ 1 − 𝑞 𝑗 (𝑝), and the

last line holds for all values 𝑞(𝑝) ≤ 8. In particular, this means that we can set price 𝑝 on the grand

bundle, and it will sell with probability at least 𝑞(𝑝), completing the proof. □

This completes our analysis of the first case. We now consider the case where 𝑞(𝑝) > 8, and we

set the grand bundle price to be 𝑝 ′ = 𝑞(𝑝)𝑝/2. We will also use the notation 𝜎2 (𝑝) to denote the

variance of the random variable

∑
𝑗 I(𝑣 𝑗 ≥ 𝑝). We quickly observe a bound on 𝜎2 (𝑝), which follows

as all values are independent.

Observation 4. 𝜎2 (𝑝) = ∑
𝑗 𝑞 𝑗 (𝑝) (1 − 𝑞 𝑗 (𝑝)) ≤

∑
𝑗 𝑞 𝑗 (𝑝) = 𝑞(𝑝).

Lemma 3.5. Let 𝑞(𝑝) > 8. Then selling the grand bundle at price 𝑝 · 𝑞(𝑝)/2 generates expected

revenue at least 𝑝 · 𝑞(𝑝)/9.
Proof. Observe that certainly

∑
𝑗 𝑣 𝑗 ≥ 𝑝 ·𝑞(𝑝)/2 when there are at least 𝑞(𝑝)/2 items with value

greater than 𝑝 . We lower bound the probability of this event using Chebyshev’s inequality:

Pr

®𝑣←𝐷
[
∑
𝑗

𝑣 𝑗 ≥ 𝑝 · 𝑞(𝑝)/2] ≥ Pr

®𝑣←𝐷
[
∑
𝑗

I(𝑣 𝑗 ≥ 𝑝) ≥ 1

2

𝑥 (𝑝)]

≥ Pr

®𝑣←𝐷
[|
∑
𝑖

I(𝑣 𝑗 ≥ 𝑝) − 𝑞(𝑝) | ≤ 1

2

𝑥 (𝑝)]

≥ 1 − 𝜎2 (𝑝)
𝑞(𝑝)2/4

≥ 1 − 4/𝑞(𝑝) ≥ 1/2
□
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Proposition 3.3 now follows from Lemma 3.4 and Lemma 3.5.

While not related to our main result, we also explore the relationship between SSRev and BRev

in the other direction, and include a proof in Appendix E. The outline is similar to a related claim

in [5].

Theorem 3.6 (SSRev is a log approximation of BRev). For any distribution 𝐷 for a single

additive buyer and𝑚 not necessarily independent items, BRev(𝐷) ≤ 5 log(𝑚)SSRev(𝐷).
In Appendix F, we analyze several examples demonstrating the relationship between BRev and

SSRev.

4 CONCLUSIONS

Motivated by recent works which consider fairness constraints in welfare-maximizing or single-

dimensional auctions [12, 15, 27, 35], we introduce fairness considerations in multi-dimensional

mechanism design. We study interim (rather than worst-case) notions of fairness, and use this to

motivate the study of simple item-symmetric auctions. Our main technical result is that the simple

auction which ignores demographic information entirely is a constant-factor approximation to the

optimal item-symmetric auction.

REFERENCES

[1] 2013. Google Translate’s Gender Problem (And Bing Translate’s, And Systran’s). https://www.fastcompany.com/

3010223/google-translates-gender-problem-and-bing-translates-and-systrans.

[2] 2015. Google Photos labeled black people ’gorillas’. USA Today. https://www.usatoday.com/story/tech/2015/07/01/

google-apologizes-after-photos-identify-black-people-as-gorillas/29567465/.

[3] Muhammad Ali, Piotr Sapiezynski, Miranda Bogen, Aleksandra Korolova, Alan Mislove, and Aaron Rieke. 2019.

Discrimination through Optimization: How Facebook’s Ad Delivery Can Lead to Biased Outcomes. Proc. ACM Hum.

Comput. Interact. 3, CSCW (2019), 199:1–199:30. https://doi.org/10.1145/3359301

[4] Moshe Babaioff, Yannai A. Gonczarowski, and Noam Nisan. 2017. The menu-size complexity of revenue approximation.

In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,

June 19-23, 2017. 869–877. https://doi.org/10.1145/3055399.3055426

[5] Moshe Babaioff, Nicole Immorlica, Brendan Lucier, and S. Matthew Weinberg. 2014. A Simple and Approximately

Optimal Mechanism for an Additive Buyer. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS

2014, Philadelphia, PA, USA, October 18-21, 2014. 21–30. https://doi.org/10.1109/FOCS.2014.11

[6] Hedyeh Beyhaghi and S. Matthew Weinberg. 2019. Optimal (and Benchmark-Optimal) Competition Complexity for

Additive Buyers over Independent Items. In Proceedings of the 51st ACM Symposium on Theory of Computing Conference

(STOC).

[7] Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. 2016. Man is to computer

programmer as woman is to homemaker? Debiasing word embeddings. In Advances in Neural Information Processing

Systems. 4349–4357.

[8] Joy Buolamwini and Timnit Gebru. 2018. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender

Classification. ACM Conference on Fairness, Accountability, Transparency (FAccT) (2018).

[9] Yang Cai, Nikhil Devanur, and S. Matthew Weinberg. 2016. A Duality Based Unified Approach to Bayesian Mechanism

Design. In Proceedings of the 48th ACM Conference on Theory of Computation(STOC).

[10] Yang Cai and Zhiyi Huang. 2013. Simple and Nearly Optimal Multi-Item Auctions. In the 24th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA).

[11] Yang Cai and Mingfei Zhao. 2017. Simple mechanisms for subadditive buyers via duality. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017. 170–183.

https://doi.org/10.1145/3055399.3055465

[12] L. Elisa Celis, Anay Mehrotra, and Nisheeth K. Vishnoi. 2019. Toward Controlling Discrimination in Online Ad

Auctions. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long

Beach, California, USA (Proceedings of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov

(Eds.), Vol. 97. PMLR, 4456–4465. http://proceedings.mlr.press/v97/mehrotra19a.html

[13] Shuchi Chawla, Jason D. Hartline, and Robert D. Kleinberg. 2007. Algorithmic Pricing via Virtual Valuations. In the 8th

ACM Conference on Electronic Commerce (EC).

https://www.fastcompany.com/3010223/google-translates-gender-problem-and-bing-translates-and-systrans
https://www.fastcompany.com/3010223/google-translates-gender-problem-and-bing-translates-and-systrans
https://www.usatoday.com/story/tech/2015/07/01/google-apologizes-after-photos-identify-black-people-as-gorillas/29567465/
https://www.usatoday.com/story/tech/2015/07/01/google-apologizes-after-photos-identify-black-people-as-gorillas/29567465/
https://doi.org/10.1145/3359301
https://doi.org/10.1145/3055399.3055426
https://doi.org/10.1109/FOCS.2014.11
https://doi.org/10.1145/3055399.3055465
http://proceedings.mlr.press/v97/mehrotra19a.html


Submission 150 11

[14] Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. 2010. Multi-Parameter Mechanism

Design and Sequential Posted Pricing. In the 42nd ACM Symposium on Theory of Computing (STOC).

[15] Shuchi Chawla and Meena Jagadeesan. 2020. Fairness in ad auctions through inverse proportionality. CoRR

abs/2003.13966 (2020). arXiv:2003.13966 https://arxiv.org/abs/2003.13966

[16] Shuchi Chawla and J. Benjamin Miller. 2016. Mechanism Design for Subadditive Agents via an Ex Ante Relaxation. In

Proceedings of the 2016 ACM Conference on Economics and Computation, EC ’16, Maastricht, The Netherlands, July 24-28,

2016. 579–596. https://doi.org/10.1145/2940716.2940756

[17] Xi Chen, Ilias Diakonikolas, Anthi Orfanou, Dimitris Paparas, Xiaorui Sun, and Mihalis Yannakakis. 2015. On the

Complexity of Optimal Lottery Pricing and Randomized Mechanisms. In IEEE 56th Annual Symposium on Foundations of

Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. 1464–1479. https://doi.org/10.1109/FOCS.2015.93

[18] Alexandra Chouldechova. 2017. Fair prediction with disparate impact: A study of bias in recidivism prediction

instruments. arXiv preprint arXiv:1703.00056 (2017).

[19] Edward H. Clarke. 1971. Multipart Pricing of Public Goods. Public Choice 11, 1 (1971), 17–33.

[20] Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos. 2014. The Complexity of Optimal Mechanism

Design. In the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA).

[21] Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos. 2017. Strong Duality for aMultiple-GoodMonopolist.

Econometrica 85, 3 (2017), 735–767.

[22] Constantinos Daskalakis, Christos H. Papadimitriou, and Christos Tzamos. 2016. Does Information Revelation

Improve Revenue?. In Proceedings of the 2016 ACM Conference on Economics and Computation, EC ’16, Maastricht,

The Netherlands, July 24-28, 2016, Vincent Conitzer, Dirk Bergemann, and Yiling Chen (Eds.). ACM, 233–250. https:

//doi.org/10.1145/2940716.2940789

[23] Constantinos Daskalakis and S. Matthew Weinberg. 2012. Symmetries and optimal multi-dimensional mechanism

design. In Proceedings of the 13th ACM Conference on Electronic Commerce, EC 2012, Valencia, Spain, June 4-8, 2012.

370–387. https://doi.org/10.1145/2229012.2229042

[24] Amit Datta, Michael Carl Tschantz, and Anupam Datta. 2015. Automated Experiments on Ad Privacy Settings. Proc.

Priv. Enhancing Technol. 2015, 1 (2015), 92–112. https://doi.org/10.1515/popets-2015-0007

[25] Shaddin Dughmi, Tim Roughgarden, and Mukund Sundararajan. 2009. Revenue submodularity. In Proceedings 10th

ACM Conference on Electronic Commerce (EC-2009), Stanford, California, USA, July 6–10, 2009, John Chuang, Lance

Fortnow, and Pearl Pu (Eds.). ACM, 243–252. https://doi.org/10.1145/1566374.1566409

[26] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. 2012. Fairness through awareness.

In Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, Shafi Goldwasser (Ed.).

ACM, 214–226. https://doi.org/10.1145/2090236.2090255

[27] Cynthia Dwork and Christina Ilvento. 2019. Fairness Under Composition. In 10th Innovations in Theoretical Computer

Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA (LIPIcs), Avrim Blum (Ed.), Vol. 124.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 33:1–33:20. https://doi.org/10.4230/LIPIcs.ITCS.2019.33

[28] Alon Eden, Michal Feldman, Ophir Friedler, Inbal Talgam-Cohen, and S. Matthew Weinberg. 2017. The Competition

Complexity of Auctions: A Bulow-Klemperer Result for Multi-Dimensional Bidders. In Proceedings of the 2017 ACM

Conference on Economics and Computation, EC ’17, Cambridge, MA, USA, June 26-30, 2017. 343. https://doi.org/10.1145/

3033274.3085115

[29] Alon Eden, Michal Feldman, Ophir Friedler, Inbal Talgam-Cohen, and S. Matthew Weinberg. 2017. A Simple and

Approximately Optimal Mechanism for a Buyer with Complements: Abstract. In Proceedings of the 2017 ACM Conference

on Economics and Computation, EC ’17, Cambridge, MA, USA, June 26-30, 2017. 323. https://doi.org/10.1145/3033274.

3085116

[30] Theodore Groves. 1973. Incentives in Teams. Econometrica 41, 4 (1973), 617–631.

[31] Sergiu Hart and Noam Nisan. 2012. Approximate Revenue Maximization with Multiple Items. In the 13th ACM

Conference on Electronic Commerce (EC).

[32] Sergiu Hart and Noam Nisan. 2017. Approximate revenue maximization with multiple items. J. Economic Theory 172

(2017), 313–347. https://doi.org/10.1016/j.jet.2017.09.001

[33] Sergiu Hart and Philip J. Reny. 2015. Maximizing Revenue with Multiple Goods: Nonmonotonicity and Other

Observations. Theoretical Economics 10, 3 (2015), 893–922.

[34] Jason D. Hartline and Tim Roughgarden. 2009. Simple versus optimal mechanisms. In ACM Conference on Electronic

Commerce. 225–234.

[35] Christina Ilvento, Meena Jagadeesan, and Shuchi Chawla. 2020. Multi-category fairness in sponsored search auctions.

In FAT* ’20: Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, January 27-30, 2020, Mireille

Hildebrandt, Carlos Castillo, Elisa Celis, Salvatore Ruggieri, Linnet Taylor, and Gabriela Zanfir-Fortuna (Eds.). ACM,

348–358. https://doi.org/10.1145/3351095.3372848

http://arxiv.org/abs/2003.13966
https://arxiv.org/abs/2003.13966
https://doi.org/10.1145/2940716.2940756
https://doi.org/10.1109/FOCS.2015.93
https://doi.org/10.1145/2940716.2940789
https://doi.org/10.1145/2940716.2940789
https://doi.org/10.1145/2229012.2229042
https://doi.org/10.1515/popets-2015-0007
https://doi.org/10.1145/1566374.1566409
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.4230/LIPIcs.ITCS.2019.33
https://doi.org/10.1145/3033274.3085115
https://doi.org/10.1145/3033274.3085115
https://doi.org/10.1145/3033274.3085116
https://doi.org/10.1145/3033274.3085116
https://doi.org/10.1016/j.jet.2017.09.001
https://doi.org/10.1145/3351095.3372848


Submission 150 12

[36] Matthew Kay, Cynthia Matuszek, and Sean A Munson. 2015. Unequal representation and gender stereotypes in image

search results for occupations. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing

Systems. ACM, 3819–3828.

[37] Pravesh Kothari, Divyarthi Mohan, Ariel Schvartzman, Sahil Singla, and S. Matthew Weinberg. 2019. Approximation

Schemes for a Buyer with Independent Items via Symmetries. In the 60th Annual IEEE Symposium on Foundations of

Computer Science (FOCS).

[38] Anja Lambrecht and Catherine Tucker. 2019. Algorithmic Bias? An Empirical Study of Apparent Gender-Based

Discrimination in the Display of STEM Career Ads. Manag. Sci. 65, 7 (2019), 2966–2981. https://doi.org/10.1287/mnsc.

2018.3093

[39] Sam Levin. 2016. A beauty contest was judged by AI and the robots didn’t like dark skin.

[40] Xinye Li and Andrew Chi-Chih Yao. 2013. On Revenue Maximization for Selling Multiple Independently Distributed

Items. Proceedings of the National Academy of Sciences 110, 28 (2013), 11232–11237.

[41] A. M. Manelli and D. R. Vincent. 2007. Multidimensional Mechanism Design: Revenue Maximization and the Multiple-

Good Monopoly. Journal of Economic Theory 137, 1 (2007), 153–185.

[42] Roger B. Myerson. 1981. Optimal Auction Design. Mathematics of Operations Research 6, 1 (1981), 58–73.

[43] Gregory Pavlov. 2011. Optimal Mechanism for Selling Two Goods. The B.E. Journal of Theoretical Economics 11, 3

(2011).

[44] Lizzie Plaugic. 2017. FaceApp’s creator apologizes for the app’s lightening ‘hot’ filter.

[45] Amir Ronen. 2001. On approximating optimal auctions. In Proceedings 3rd ACM Conference on Electronic Commerce

(EC-2001), Tampa, Florida, USA, October 14-17, 2001, Michael P. Wellman and Yoav Shoham (Eds.). ACM, 11–17.

https://doi.org/10.1145/501158.501160

[46] Aviad Rubinstein and S. Matthew Weinberg. 2015. Simple Mechanisms for a Subadditive Buyer and Applications to

Revenue Monotonicity. In Proceedings of the Sixteenth ACM Conference on Economics and Computation, EC ’15, Portland,

OR, USA, June 15-19, 2015. 377–394. https://doi.org/10.1145/2764468.2764510

[47] H. Ryu, H. Adam, and M. Mitchell. 2018. InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender

Diversity. In Proceedings of FAT/ML.

[48] John Thanassoulis. 2004. Haggling over substitutes. Journal of Economic Theory 117 (2004), 217–245.

[49] Antonio Torralba and Alexei A. Efros. 2011. Unbiased Look at Dataset Bias. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

[50] William Vickrey. 1961. Counterspeculations, Auctions, and Competitive Sealed Tenders. Journal of Finance 16, 1 (1961),

8–37.

[51] Angelina Wang, Arvind Narayanan, and Olga Russakovsky. 2020. ViBE: A Tool for Measuring and Mitigating Bias in

Image Datasets. CoRR abs/2004.07999 (2020). arXiv:2004.07999 https://arxiv.org/abs/2004.07999

[52] Andrew Chi-Chih Yao. 2017. Dominant-Strategy versus Bayesian Multi-item Auctions: Maximum Revenue De-

termination and Comparison. In Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17,

Cambridge, MA, USA, June 26-30, 2017, Constantinos Daskalakis, Moshe Babaioff, and Hervé Moulin (Eds.). ACM, 3–20.

https://doi.org/10.1145/3033274.3085120

[53] Andrew Chi-Chih Yao. 2015. An n-to-1 bidder reduction for multi-item auctions and its applications. In the Twenty-Sixth

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).

[54] Rich Zemel, YuWu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. 2013. Learning fair representations. In Proceedings

of the 30th International Conference on Machine Learning (ICML-13). 325–333.

https://doi.org/10.1287/mnsc.2018.3093
https://doi.org/10.1287/mnsc.2018.3093
https://doi.org/10.1145/501158.501160
https://doi.org/10.1145/2764468.2764510
http://arxiv.org/abs/2004.07999
https://arxiv.org/abs/2004.07999
https://doi.org/10.1145/3033274.3085120


Submission 150 13

A ADDITIONAL DISCUSSION

We revisit the discussion of Section 1 with a brief technical highlight and concrete examples.

Brief Technical Highlight. Almost all prior work on simple vs. optimal multi-dimensional

mechanism design consider selling separately as a simple mechanism, and are perfectly content to

argue that the maximum between selling separately and some other simple mechanism achieves a

constant-factor approximation [5, 6, 9, 11, 16, 28, 29, 46, 53]. These works proceed by proving elegant

upper bounds on the optimal achievable revenue, and breaking these bounds into terms which can

be approximated by simple mechanisms. In particular, there is usually a term that corresponds

to “revenue achieved when a bidder has an unusually high value for some item” (e.g.,“the tail”

in [4, 5, 16, 40, 46], SINGLE in [6, 9, 11, 28, 29]), and this term is easily approximated by the revenue

of selling separately (typically, this term is also the most straight-forward to approximate).

In our setting however, selling separately is not a symmetric mechanism, and in fact could be up

to a factor of Ω(#items) better than the optimal symmetric mechanism (See Example C.9). Therefore

we need to target an upper bound that in some cases is even tighter than the revenue achieved by

selling separately.

At a very high level, prior bounds leverage the fact that “the auctioneer cannot both extract

revenue ≈ 𝑣 when the buyer has a high value 𝑣 for item 𝑗 and revenue ≈ 2𝑣 when the buyer has

an even higher value 2𝑣 for item 𝑗 , because the buyer with value 2𝑣 can always lie and pretend

that their value is 𝑣 instead.” Our bound instead must leverage the fact that “the auctioneer cannot

both extract revenue ≈ 𝑣 when the buyer has a high value 𝑣 for some item 𝑗 and also revenue ≈ 2𝑣

when the buyer has an even higher value 2𝑣 for some other item ℓ .” This is because if the auctioneer

extracts revenue ≈ 𝑣 when the buyer has value 𝑣 for item 𝑗 , they must also extract revenue ≈ 𝑣

when the buyer has value 𝑣 for item ℓ (by item-symmetry), and then the buyer with value 2𝑣 for

item ℓ can always pretend that their value is instead 𝑣 . The main technical challenge is figuring

out a way to leverage this intuition into a concrete bound. Once we find the right approach, the

complete proof is fairly clean, and is able to leverage existing machinery in the simple vs. optimal

literature for multi-dimensional mechanism design.

A.1 Interim vs. Ex-post fairness

First, we provide some examples illustrating that interim fairness better captures systemic fairness

at a population level than ex-post fairness. We also demonstrate that unfairness can arise even in

the single-bidder setting.

Example A.1 (Ex-post unfair, but interim fair). Consider the following (highly stylized) example

with two items and three bidders. Item one represents the demographic of female users, and item

two represents the demographic of male users. Buyer One represents the population of advertisers

for STEM jobs, Buyer Two represents the population of advertisers for Maternity Clothes, and

Buyer Three represents the population of advertisers for Men’s Shoes.

Concretely, 𝐷11 and 𝐷12 are both point masses at 1. This means that every STEM jobs advertiser

has value 1 for displaying their ad, and they comply with anti-discrimination regulations by

submitting an identical value for both demographics.

𝐷21 is equal to 2 with probability 1/2, and 0 with probability 1/2. 𝐷22 is a point-mass at 0. This

means that half of Maternity Clothes advertisers have have a high value for displaying their ad to

women, and half have no value for displaying their ads.

𝐷31 is a point mass at 0. 𝐷32 is equal to 2 with probability 1/2, and 0 with probability 1/2.
This means that half have a high value for displaying their ads to men, and half of Men’s Shoes

advertisers have no value.
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The revenue-optimal (and welfare-optimal) auction awards each item to the highest bidder, and

charges them their full value (it is not hard to see that this is truthful. Conditioned on being truthful,

it is clear that it is optimal because it achieves expected revenue equal to the full expected welfare).

This auction is interim symmetric with respect to bidder 1, and therefore interim fair as well.

To see this, observe that 𝜋11 (1, 1) = 𝜋12 (1, 1) = 1/2. That is, the STEM jobs ad is displayed to each

demographic with probability 1/2. However, this auction is not ex-post fair (and therefore not

ex-post symmetric) with respect to bidder 1. To see this, observe that 𝑥11 ((1, 1), (2, 0), (0, 0)) = 0,

but 𝑥12 ((1, 1), (2, 0), (0, 0)) = 1. That is, when the Maternity Clothes advertiser has high value for

displaying their ad to women, but Men’s Shoes advertiser has no value for displaying their ad, men

see the STEM jobs ad with probability 1, but women see it with probability 0.

Example A.1 is reminiscent of worst-case examples from [27, 35]: there exist instances of bids

from other bidders that result in unfairness ex-post. However, Example A.1 is still fair at the

population level, and this property is best captured by interim fairness.

Of course, it is still possible for optimal auctions to be interim unfair (again with examples

reminiscent of [27, 35]). For example, if Example A.1 contained only bidders one and two (STEM

jobs and Maternity Clothes), but not bidder three, the optimal auction is still to award each item to

the highest bidder and charge their full value. But now the auction is interim unfair, as 𝜋11 (1, 1) = 1

while 𝜋12 (1, 1) = 1/2.
While the mathematics behind both examples is nearly identical, the precise definitions are

important. Interim fairness better captures when unfairness manifests at the population level,

rather than worst-case instances. We now note that when the auctioneer uses a revenue-optimal

auction, unfairness can arise even when there is just a single bidder.

Example A.2 (Interim unfair with a single bidder). Consider the following example with two

items and one bidder. Item one still represents the demographic of female users, and item two still

represents the demographic of male users. There is a single population of all advertisers, and there

are two types of advertisers in this population (each equally likely): STEM jobs, which have value 1

for both demographics, and Maternity clothes, which have value 3 for female users and 1 for male

users.

This results in an instance where 𝐷11 takes value 1 with probability 1/2 and value 3 with

probability 1/2. 𝐷12 takes value 1 with probability 1.

The revenue-optimal auction is to “sell separately” item one at price 1 and item two at price

3. That is, 𝑥11 (1, 3) = 𝑥12 (1, 3) = 1, 𝑝1 (1, 3) = 3, 𝑥11 (1, 1) = 1, 𝑥12 (1, 1) = 0, 𝑝 (1, 1) = 1.
9
Observe

that this is interim unfair. Because there is just a single bidder, 𝜋1𝑗 (®𝑣1) = 𝑥1𝑗 (®𝑣1), and therefore

𝜋11 (1, 1) ≠ 𝜋12 (1, 1).

Intuitively, what drives unfairness in Example A.2 is again the fact that the STEM jobs advertiser,

which submits an identical bid for all demographics, is competing with the Maternity Clothes

advertiser. In Example A.1 (or the interim unfair variant of Example A.1), this competition directly

causes unfair viewing of STEM jobs ads, because supply constraints result in the “female view” item

being sold to the Maternity Clothes advertiser instead. In Example A.2, this competition indirectly

causes unfair viewing of STEM jobs ads, because the ad platform generates increased revenue by

setting a higher price on the “female view” item.

Both types of competition are important. Prior work [12, 27, 35] focuses on competition caused

by limited supply. We instead focus on fairness implications caused indirectly by the impact of

9
To see why this is optimal, observe that this is essentially a single-item instance, because 𝐷11 is a point-mass. The optimal

price for 𝐷12 is 3.
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competition on pricing. We focus on the single-bidder setting to isolate this source of competition

(as there are no supply constraints).

A.2 Fairness vs. Symmetries

Our definition of fairness (modulo the distinction between ex-post and interim) is motivated by

individual fairness, and is (a special case of) the same one used in the works that introduced

this direction [27]. We use symmetries as a technical lens to guarantee this definition of fairness,

although it is worth briefly noting that symmetry may have standalone interest as a fairness concept.

Specifically, fairness alone guarantees that whenever an advertiser places the same bid for two

different demographics, those two demographics see the ad with the same probability. Symmetry

further guarantees that swapping the bids of an advertiser for any two demographics swaps the

probabilities that those demographics see the ad.

Beyond philosophical motivation, fairness properties are typically evaluated by their ability to

guarantee fair outcomes. That is, systems are evaluated by their ability to mitigate bias. In our

setting, the desirable outcome is that equally-qualified individuals from different demographics

see protected ads with the same probability. A fair auction guarantees this outcome as long as the

protected advertiser places the same bid on all relevant demographics. A symmetric auction also

guarantees this outcome under the same circumstances, but also under the weaker condition that the

protected advertiser’s bid vector is invariant under all permutations of the relevant demographics.

Therefore, while symmetry may be interesting as a standalone definition, it is not immediately

clear what symmetric auctions might guarantee in terms of fair outcomes beyond what fair auctions

already guarantee. As such, we view symmetries mainly as a technical lens to study fair auctions.

A.3 Ex-post vs. Interim Symmetries

Interim symmetric auctions have been previously studied within Bayesian mechanism design from

a pure optimization perspective (e.g. [23, 37]). Indeed, this is because revenue-optimal auctions

for symmetric distributions (including distributions for which the items are drawn i.i.d.) are

known to be interim symmetric [23]. That is, if 𝐷 is invariant under all item permutations, then

SymRev(𝐷) = Rev(𝐷).
Ex-post symmetries, on the other hand, have not been previously studied (to the best of our

knowledge). This makes sense, as even when the entire input is i.i.d., the revenue-optimal auction

need not be ex-post symmetric.
10
This also suggests that from the perspective of Bayesian mecha-

nism design, interim concepts may be better suited than ex-post concepts. Section A.1 argues this

intrinsically from the definitions themselves, as these definitions best capture population-level phe-

nomena. The above discussion (briefly) argues that from a technical perspective, interim definitions

are likely to be more tractable/relevant than ex-post definitions.

B OMITTED PROOFS FROM SECTION 3

In this section, we provide the proof of Theorem 3.1. In Appendix B.1 we show how to upper

bound SymRev(𝐷) with Rev(𝐷 ′) for a modified distribution 𝐷 ′. In Appendix B.2 we upper bound

Rev(𝐷 ′) with 24BRev(𝐷) + 20SSRev(𝐷).

B.1 Upper Bounding SymRev(𝐷) with a Modified Distribution

To prove Theorem 3.2, we will first provide an modified distribution 𝐷 ′, show that its revenue is

close to that of 𝐷 , and then design a flow for 𝐷 ′. We first define our modified distribution.

10
One such example is provided in [52], where there are two bidders and two items and the value of each bidder for each

item is i.i.d. from a distribution supported on {1, 2}.
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Definition B.1 (Modified Distribution). Let 𝐷 be an additive single-buyer distribution over 𝑚

independent items. Define the modified distribution 𝐷 ′ to be the following distribution over𝑚 + 1

items (we will use index 0 to refer to the extra item):

• Draw 𝑣 𝑗 independently from 𝐷 𝑗 for all 𝑗 .

• Let 𝑗∗ := arg max𝑗 {𝑣 𝑗 } (breaking ties lexicographically).
• Let 𝑣 ′

0
:= 𝑣 𝑗∗ .

• Let 𝑣 ′𝑗 := 𝑣 𝑗 , for all 𝑗 ≠ 𝑗∗.
• Draw 𝑣 ′

𝑗∗ from the distribution 𝐷 𝑗∗ , conditioned on 𝑣 ′
𝑗∗ < 𝑣 ′

0
(if 𝑣 ′

0
= 0, just set 𝑣 ′

𝑗∗ = 0).

Intuitively, 𝐷 ′ ensures that the maximum-value item is always in the same coordinate (0), and

this allows us to leverage a clean application of prior tools. We first need to argue that SymRev(𝐷)
is upper bounded by (an appropriate function of) Rev(𝐷 ′).

Proposition B.2. For any 𝜀 > 0, SymRev(𝐷) ≤ 1

1−𝜀 · Rev(𝐷
′) + 2

𝜀 (1−𝜀) BRev(𝐷).

The proof of Proposition B.2 proceeds in several small steps, with each step moving closer from

𝐷 to 𝐷 ′. Most steps in isolation should seem straight-forward to readers familiar with “nudge-

and-round” arguments, although Lemma B.8 and Corollary B.9 are specific to our setting. We first

consider the following:

Definition B.3. For a given distribution 𝐷 over𝑚 items, define 𝐷 (1) to be the distribution which

draws ®𝑣 ← 𝐷 , and then concatenates 𝑣0 := 0.

Lemma B.4. SymRev(𝐷) ≤ SymRev(𝐷 (1) ).11

Proof. Consider any symmetric mechanism𝑀 for 𝐷 , and view it by its menu (that is, the list of

( ®𝑥, 𝑝) it allows the buyer to purchase). Recall that because𝑀 is symmetric, that for all ( ®𝑥, 𝑝) on the

menu, (𝜎 ( ®𝑥), 𝑝) is also on the menu for all item permutations 𝜎 .

Consider now the menu𝑀 ′ which offers the option ((0, ®𝑥), 𝑝) for all ( ®𝑥, 𝑝) on the menu for𝑀 ,

and also contains (𝜎 ((0, ®𝑥)), 𝑝) for all item permutations 𝜎 (for all ( ®𝑥, 𝑝) on the menu for𝑀). This

menu is clearly symmetric by definition, and therefore𝑀 ′ is a symmetric mechanism.

We just need to figure out the revenue of 𝑀 ′ compared to 𝑀 . Consider any ®𝑣 , and let ( ®𝑥, 𝑝)
denote their favorite option from the menu for𝑀 . We claim that ((0, ®𝑥), 𝑝) is the favorite option for

(0, ®𝑣) from the menu for𝑀 ′. Once we prove this, this will establish that Rev𝑀 (𝐷) = Rev𝑀′ (𝐷 (1) ).
To see this, first observe that every option on the menu for𝑀 ′ awards (at least) one item with

probability 0. Because (0, ®𝑣) has value 0 with item 0, their (weakly) favorite option from the menu

for𝑀 ′ awards item 0 with probability 0. Conditioned on this, their utility for any option ((0, ®𝑦), 𝑞)
is exactly ®𝑣 · ®𝑦 − 𝑞, which is exactly their utility for the option ( ®𝑦, 𝑞) on the menu for𝑀 . Because

( ®𝑥, 𝑝) is their favorite such option in𝑀 , ((0, ®𝑥), 𝑝) remains their favorite option from𝑀 ′. □

We now take one more intermediate step. This step will require a “nudge-and-round” lemma

from prior work:

Lemma B.5 ([10, 46]). For a single bidder, let 𝐷 and 𝐷 ′ be coupled so that it is possible to jointly
draw (®𝑣, ®𝑣 ′) from (𝐷,𝐷 ′) so that E[∑𝑗 |𝑣 𝑗 − 𝑣 ′𝑗 |] ≤ 𝐶 . Then for all 𝜀 > 0, and any mechanism 𝑀 ,

there exists a mechanism𝑀 ′ such that:

Rev𝑀′ (𝐷 ′) ≥ (1 − 𝜀) · Rev𝑀 (𝐷) −
1

𝜀
·𝐶.

Moreover, if𝑀 is symmetric, then so is𝑀 ′.12

11
Observe that Rev(𝐷) ≤ Rev(𝐷 (1) ) is trivial: simply ignore item 0. Lemma B.4 requires confirming that indeed symmetric

mechanisms can also ignore item 0.

12
In fact,𝑀′ is identical to𝑀 , after discounting all prices by a factor of (1 − 𝜀) .
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Definition B.6. For a given distribution 𝐷 over𝑚 items, define 𝐷 (2) to be the distribution which

first draws ®𝑣 ← 𝐷 . Then, if 𝑗∗ := arg max𝑗 {𝑣 𝑗 }, draw 𝑣0 from the distribution 𝐷 𝑗∗ , conditioned on

𝑣0 < 𝑣 𝑗∗ . We will let 𝑉 ′ denote the random variable distributed according to the marginal of 𝑣0.

Lemma B.7. For any 𝜀 > 0, SymRev(𝐷 (2) ) ≥ (1 − 𝜀)SymRev(𝐷 (1) ) − 1

𝜀
· E[𝑉 ′].

Proof. To see this, simply couple 𝐷 (1) and 𝐷 (2) so that the values for all items except for item 0

are equal. Then, the expected ℓ1 distance between the two draws is exactly 𝑣0, which is distributed

according to𝑉 ′ for𝐷 (2) , and is a point mass at 0 for𝐷 (1) . Therefore, wemay take𝐶 in the hypothesis

of Lemma B.5 to be E[𝑉 ′], and let𝑀 be the optimal symmetric mechanism for 𝐷 (1) . The lemma

statement now follows, as Lemma B.5 proves the existence of a symmetric mechanism𝑀 ′ for 𝐷 (2)

with the desired revenue. □

There are two remaining steps. First, we simply observe that SymRev(𝐷 (2) ) = SymRev(𝐷 ′).

Observation 5. SymRev(𝐷 (2) ) = SymRev(𝐷 ′).

Proof. Observe that the distribution 𝐷 ′ can be obtained by first drawing a vector from 𝐷 (2) ,
and then swapping coordinates 0 and 𝑗∗. This means that 𝐷 ′ and 𝐷 (2) can be coupled so that with

probability one, the vector drawn from 𝐷 ′ is a permutation of the one drawn from 𝐷 (2) . This
immediately implies that all symmetric mechanisms achieve the same expected revenue from both

𝐷 ′ and 𝐷 (2) . The observation now follows. □

The final step is to reason about E[𝑉 ′]. After this, we wrap up the proof of Proposition B.2. We

begin with a slightly stronger lemma than necessary.

Lemma B.8. 2BRev(𝐷) ≥ E(®𝑣, ®𝑤)←𝐷×𝐷 [min{max𝑗 {𝑣 𝑗 },max𝑗 {𝑤 𝑗 }}] .

Proof. Observe that E(®𝑣, ®𝑤)←𝐷×𝐷 [min{max𝑗 {𝑣 𝑗 },max𝑗 {𝑤 𝑗 }}] is exactly the revenue of a second-
price auction for a single item and two bidders whose values are drawn independently distributed ac-

cording to max𝑗 {𝑣 𝑗 } (when ®𝑣 ← 𝐷). Refer to this distribution as 𝐷∗. Therefore, the optimal revenue

for two bidders from𝐷∗ is at least E(®𝑣, ®𝑤)←𝐷×𝐷 [min{max𝑗 {𝑣 𝑗 },max𝑗 {𝑤 𝑗 }}], and this means that the

optimal revenue for a single bidder from𝐷∗ is at least E(®𝑣, ®𝑤)←𝐷×𝐷 [min{max𝑗 {𝑣 𝑗 },max𝑗 {𝑤 𝑗 }}]/2.13
Finally, observe that the distribution for

∑
𝑗 𝑣 𝑗 stochastically dominates 𝐷∗. Therefore, for any

price 𝑝 (including the revenue-optimal price for𝐷∗), Pr[∑𝑗 𝑣 𝑗 ≥ 𝑝] ≥ Pr[max𝑗 {𝑣 𝑗 } ≥ 𝑝]. Therefore,
setting the revenue-optimal price for one bidder from 𝐷∗ as a price on the grand bundle of all items

witnesses that BRev(𝐷) ≥ Rev(𝐷∗), and the lemma follows. □

Interestingly, Lemma B.8 is tight. Consider the case of𝑚 = 1 item drawn from the equal revenue

distribution. Then BRev(𝐷) = 1, and the expected minimum of two draws from the equal revenue

distribution is 2. We can also use it to upper bound E[𝑉 ′].

Corollary B.9. E[𝑉 ′] ≤ 2BRev(𝐷).

Proof. Observe that𝑉 ′ is stochastically dominated by E(®𝑣, ®𝑤)←𝐷×𝐷 [min{max𝑗 {𝑣 𝑗 },max𝑗 {𝑤 𝑗 }}].
Once we establish this, the corollary follows.

Observe that both min{max𝑗 {𝑣 𝑗 },max𝑗 {𝑤 𝑗 }} and 𝑉 ′ can be described as random variables of

the form “first draw 𝑋 from distribution 𝐹 , then draw 𝑌 from distribution𝐺 , conditioned on 𝑌 < 𝑋 .”

Indeed, min{max𝑗 {𝑣 𝑗 },max𝑗 {𝑤 𝑗 }} has 𝐹 as the distribution of max{max𝑗 {𝑣 𝑗 },max𝑗 {𝑤 𝑗 }}, and 𝐺
13
This follows by “Revenue Submodularity” [25]. It is also easy to see in this case that any truthful mechanism for two

bidders from 𝐷∗ can be projected to a mechanism for a single bidder from 𝐷∗, and that this mechanism retains half the

original revenue.
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as the distribution of max𝑗 {𝑧 𝑗 }. 𝑉 ′ has 𝐹 as the distribution of max𝑗 {𝑣 𝑗 }, and 𝐺 as the distribution

𝐷 𝑗∗ .

It is easy to see that max{max𝑗 {𝑣 𝑗 },max𝑗 {𝑤 𝑗 }} stochastically dominates max𝑗 {𝑣 𝑗 } (the former

is the maximum of two draws from the latter). It is also easy to see that for any 𝑐 , the distribution

of max𝑗 {𝑧 𝑗 } conditioned on being < 𝑐 stochastically dominates 𝐷 𝑗∗ conditioned on being < 𝑐

(the former gets to draw values for all items conditioned on being < 𝑐 and take the largest,

rather than just from item 𝑗∗). Taking these two claims together, we see that the distribution of

min{max𝑗 {𝑣 𝑗 },max𝑗 {𝑤 𝑗 }} stochastically dominates 𝑉 ′. □

Proof of Proposition B.2. Simply chain the following inequalities together. The first line fol-

lows from Lemma B.4. The second line follows from Lemma B.7. The third follows from Observa-

tion 5. The final follows from Corollary B.9 (and the fact that SymRev ≤ Rev always).

SymRev(𝐷) ≤ SymRev(𝐷 (1) )

≤ 1

1 − 𝜀 · SymRev(𝐷
(2) ) + 1

𝜀 (1 − 𝜀)E[𝑉
′]

≤ 1

1 − 𝜀 · SymRev(𝐷
′) + 1

𝜀 (1 − 𝜀)E[𝑉
′]

≤ 1

1 − 𝜀 · Rev(𝐷
′) + 2

𝜀 (1 − 𝜀)BRev(𝐷).

□

B.2 Upper Bounding Rev(𝐷 ′).
The main task of this section is to upper bound Rev(𝐷 ′). We provide below a proof based on tools

used in [32]. For readers interested in a proof based on the duality framework of [9] (in the case

where 𝐷 ′
0
is regular), see Appendix C. The “Marginal Mechanism” lemma is the only one we’ll

use from prior work. Below, 𝐷𝑆 denotes the marginals of distribution 𝐷 onto items 𝑆 , and the

distribution 𝐷𝑆 |®𝑣𝑆 denotes the distribution of ®𝑣𝑆 , assuming that ®𝑣 is drawn from 𝐷 , and conditioned

on ®𝑣𝑆 .

Lemma B.10. [“Marginal Mechanism” [10, 32]] Let 𝑆, 𝑆 partition the items in [𝑚]. Then for all

(possibly correlated) distributions 𝐷 :

Rev(𝐷) ≤ E®𝑣←𝐷 [
∑
𝑗 ∈𝑆

𝑣 𝑗 ] + E®𝑣𝑆←𝐷𝑆
[Rev(𝐷−𝑆 |®𝑣𝑆 )] .

As an immediate corollary, we obtain the following bound on our modified distribution 𝐷 ′:

Corollary B.11. For any modified distribution 𝐷 ′:

Rev(𝐷 ′) ≤ E®𝑣←𝐷′ [
∑
𝑗≠0

𝑣 𝑗 ] + E®𝑣−0←𝐷′−0

[Rev(𝐷 ′
0
|®𝑣−0)] .

Our remaining task is to upper bound the two terms on the right-hand side of Corollary B.11. We

begin with the term E®𝑣←𝐷′ [
∑

𝑗≠0
𝑣 𝑗 ]. Our outline is similar to the bound of the “NON-FAVORITE”

term in [9], with technical modifications to avoid upper bounding any terms with SRev (which

suffices for their target bound, but not for us, as SRev is not symmetric). Upper bounding the term

E®𝑣−0←𝐷′−0

[Rev(𝐷 ′
0
|®𝑣−0)] is novel to our setting, and we complete this afterwards.
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Our first step is to break the term into three parts:

E®𝑣←𝐷′ [
∑
𝑗≠0

𝑣 𝑗 ] = E®𝑣←𝐷′ [
∑

𝑗∉{0, 𝑗∗ }
𝑣 𝑗 · 𝐼 (𝑣 𝑗 ≥ SSRev(𝐷))] (TAIL)

+ E®𝑣←𝐷′ [𝑣 𝑗∗ · 𝐼 (𝑣 𝑗∗ ≥ SSRev(𝐷))] (SPECIAL)

+ E®𝑣←𝐷′ [
∑
𝑖≠0

𝑣 𝑗 · 𝐼 (𝑣 𝑗 < SSRev(𝐷))] (CORE).

Indeed, the terms TAIL and CORE are quite similar to those in [9] (our cutoff of SSRev(𝐷) differs
from their choice of SRev(𝐷)), and the term SPECIAL is new for our approach.

Lemma B.12. TAIL ≤ SSRev(𝐷).

Proof. Observe that the random variable 𝑣 𝑗 · 𝐼 (𝑣 𝑗 ≥ SSRev(𝐷)) · 𝐼 ( 𝑗 ∉ {0, 𝑗∗}) can alternatively

be drawn by first drawing 𝑣 𝑗 ← 𝐷 𝑗 , and then independently drawing 𝑣−𝑗 from 𝐷−𝑗 . If 𝑣 𝑗 is the
largest among these values, then in fact 𝑗 is 𝑗∗. Otherwise, 𝑗 ∉ {0, 𝑗∗}, and we can just check

whether 𝑣 𝑗 ≥ SSRev(𝐷). Importantly, observe that each of these checks is independent. Therefore,

we can write:

TAIL = E®𝑣←𝐷′ [
∑

𝑗∉{0, 𝑗∗ }
𝑣 𝑗 · 𝐼 (𝑣 𝑗 ≥ BRev(𝐷))]

=
∑
𝑗>0

E𝑣𝑗←𝐷 𝑗
[𝑣 𝑗 · Pr[∃ 𝑗 ′ ≠ 𝑗, 𝑣 𝑗 ′ > 𝑣 𝑗 ] · 𝐼 (𝑣 𝑗 ≥ BRev(𝐷))]

≤
∑
𝑗>0

E𝑣𝑗←𝐷 𝑗
[SSRev(𝐷) · 𝐼 (𝑣 𝑗 ≥ SSRev(𝐷)]

≤ SSRev(𝐷) ·
∑
𝑗>0

Pr

𝑣𝑗←𝐷 𝑗

[𝑣 𝑗 ≥ SSRev(𝐷)]

≤ SSRev(𝐷).

Above, the first line is just the definition of TAIL. The second line observes that 𝑗 ∉ {0, 𝑗∗} exactly
when there is some other 𝑗 ′ with larger value. The third line observes that for any 𝑝 , we can set

price 𝑝 on all items. If any 𝑗 ′ ≠ 𝑗 has 𝑣 𝑗 ′ > 𝑝 , then that item sells. 𝑣 𝑗 is one such possible price 𝑝 ,

and all 𝑣 𝑗 ′ are drawn independently of it, so SSRev(𝐷) is at least as good as the revenue of selling

only items ≠ 𝑗 at the same price 𝑣 𝑗 . The fourth line rewrites the expected value of an indicator

variable as a probability. The final line again just observes that this is exactly the revenue of setting

price SSRev(𝐷) on each item. □

Next, we upper bound SPECIAL.

Lemma B.13. SPECIAL ≤ 2BRev(𝐷).

Proof. Observe that 𝑣 𝑗∗ ≥ 𝑣 𝑗∗ · 𝐼 (𝑣 𝑗∗ ≥ SSRev(𝐷)). Observe further that Corollary B.9 precisely

upper bounds E[𝑣 𝑗∗ ] (as 𝑉 ′ is exactly this random variable). The lemma statement now follows

immediately from these two facts. □

Finally, we upper bound CORE. Recall that [5, 9] bound similar terms by connecting the variance

of

∑
𝑗 𝑣 𝑗 to SRev. However, there is no (apparent) connection between the variance of

∑
𝑗 𝑣 𝑗 and

SSRev, so instead we must take a different approach and appeal only to the fact that each 𝑣 𝑗 is an

independent random variable guaranteed to be ≤ SSRev(𝐷).

Proposition B.14. max{9SSRev(𝐷), 4BRev(𝐷)} ≥ CORE.
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Proof. First, observe that

∑
𝑗≠0

𝑣 𝑗 · 𝐼 (𝑣 𝑗 < SSRev(𝐷)) (when ®𝑣 ← 𝐷 ′) is stochastically dominated

by

∑
𝑗 min{𝑤 𝑗 , SSRev(𝐷)} (when ®𝑤 ← 𝐷), which is stochastically dominated by

∑
𝑗 𝑤 𝑗 (when

®𝑤 ← 𝐷). This means both that whenever

∑
𝑗 min{𝑤 𝑗 , SSRev(𝐷)} ≥ 𝑝 , the buyer would purchase

the grand bundle at price 𝑝 , and also that CORE ≤ E ®𝑤←𝐷 [
∑

𝑗 min{𝑤 𝑗 , SSRev(𝐷)}]. We analyze

now this term, and refer to it as 𝐶 := E ®𝑤←𝐷 [
∑

𝑗 min{𝑤 𝑗 , SSRev(𝐷)}] for ease of notation.
Consider first the case that 9SSRev(𝐷) ≥ 𝐶 ≥ CORE. Then clearly the proposition holds.

Now consider the case that 9SSRev(𝐷) < 𝐶 . In this case, we have a sum of independent random

variables, all bounded in [0, SSRev(𝐷)], whose expectation exceeds 9SSRev(𝐷). We may then use

a Chernoff bound to conclude that:
14

Pr

®𝑤←𝐷
[
∑
𝑗

𝑤 𝑗 ≥ 𝐶/3] ≥ 1 − 𝑒−(2/3)2 · (𝐶/SSRev(𝐷))/2 ≥ 1 − 𝑒−2.

In particular, this means that we can set price 𝐶/3 on the grand bundle, and it will sell with

probability at least 1 − 𝑒−2
, witnessing that BRev(𝐷) ≥ (1 − 𝑒−2) · CORE/3 ≥ CORE/4. □

This completes our analysis of the first term, and we now turn our attention to analyzing

E®𝑣−0←𝐷′−0

[Rev(𝐷 ′
0
|®𝑣−0)], and this part of the analysis is novel to our setting. To reason about this,

we first need to understand the distribution 𝐷 ′
0
|®𝑣−0.

Lemma B.15. For all fixed ®𝑣−0, the distribution𝐷
′
0
|®𝑣−0 is stochastically dominated by the distribution

𝐷 ′
0
| (𝑣0 > max𝑗>0{𝑣 𝑗 }).

Proof. We provide a proof in the case that each𝐷 𝑗 is discrete. A proof when each𝐷 𝑗 is continuous

follows an identical outline, but with more tedious notation (essentially just replace probabilities

with densities everywhere).

For a given 𝑣 , let us first compute the probability of drawing 𝑣 (this is where it is convenient to

have discrete distributions, so that this is well-defined. Identical calculations would work with a

PDF instead, but require more tedious notation). We get:

Pr

𝑣0←𝐷′
0
| ®𝑣−0

[𝑣0 = 𝑣] = Pr ®𝑤←𝐷′ [𝑤0 = 𝑣 ∧ ®𝑤−0 = ®𝑣−0]
Pr ®𝑤←𝐷′ [ ®𝑤−0 = ®𝑣−0]

=
Pr𝑤0←𝐷′

0

[𝑤0 = 𝑣] ·∏𝑗≥1
Pr𝑤𝑗←𝐷 𝑗 |𝑤𝑗<𝑣 [𝑤 𝑗 = 𝑣 𝑗 ]

Pr ®𝑤←𝐷′ [ ®𝑤−0 = ®𝑣−0]
.

The first line is just the definition of conditional probability. The second line observes that one

way to draw from 𝐷 ′ is to first draw𝑤0, and then draw𝑤−0 (which draws each𝑤 𝑗 independently,

conditioned on being < 𝑤0).

Importantly, now observe that Pr𝑣0←𝐷′
0
| ®𝑣−0
[𝑣0 = 𝑣] can be written as Pr𝑤0←𝐷′

0

[𝑤0 = 𝑣] · 𝑔(𝑣, ®𝑣−0),
where 𝑔(𝑣, ®𝑣−0) is monotone decreasing in 𝑣 , for all ®𝑣−0. That is, as 𝑣 increases, the scaling factor for

the probability of seeing 𝑣 drawn from 𝐷 ′
0
|®𝑣−0 decreases. This intuitively makes sense, as for any

particular 𝑣 > 𝑣 ′, there are more ®𝑣−0 that are are consistent with 𝑣0 = 𝑣 than 𝑣0 = 𝑣 ′, so we should

be (at least weakly) more likely to have 𝑣0 = 𝑣 ′ than 𝑣0 = 𝑣 , conditioned on 𝑣−0.

Now, let’s do the same calculations for Pr𝑣0←𝐷′
0
| (𝑣0>max𝑗 {𝑣𝑗 }) [𝑣0 = 𝑣]. In this case, it’s easy to see

that for all 𝑣0 > max𝑗 {𝑣 𝑗 }, that Pr𝑣0←𝐷′
0
| (𝑣0>max𝑗 {𝑣𝑗 }) [𝑣0 = 𝑣] = Pr𝑤0←𝐷′

0

[𝑤0 = 𝑣]/Pr𝑤0←𝐷′
0

[𝑤0 >

max𝑗 {𝑣 𝑗 }]. Importantly, this is equal to Pr𝑤0←𝐷′
0

[𝑤0 = 𝑣] times a constant scaling factor.

Taken together, this means that the two distributions have the same support (they are both sup-

ported on all 𝑣 > max𝑗≥1{𝑣 𝑗 }), and also that the ratio Pr𝑣0←𝐷′
0
| ®𝑣−0
[𝑣0 = 𝑣]/Pr𝑣0←𝐷′

0
| (𝑣0>max𝑗 {𝑣𝑗 }) [𝑣0 =

𝑣] is monotonically decreasing. In particular, this implies that 1−𝐹𝐷′
0
| ®𝑣−0
(𝑣)) ≤ 1−𝐹𝐷′

0
| (𝑣0>max𝑗 {𝑣𝑗 }) (𝑣)

14
After normalizing so that all variables fall in [0, 1], this is the standard multiplicative Chernoff bound.
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(because the two distributions have the same support, and the total probability mass in each is one),

and therefore 𝐷 ′
0
|®𝑣−0 is stochastically dominated by 𝐷 ′

0
| (𝑣0 > max𝑗 {𝑣 𝑗 }). □

Now, we wish to upper bound the term E®𝑣−0←𝐷′−0

[Rev(𝐷 ′
0
|®𝑣−0)] using Lemma B.15.

Proposition B.16. E®𝑣−0←𝐷′−0

[Rev(𝐷 ′
0
|®𝑣−0)] ≤ 2BRev(𝐷).

Proof. First, we show that E®𝑣−0←𝐷′−0

[Rev(𝐷 ′
0
|®𝑣−0)] ≤ E®𝑣−0←𝐷′−0

[Rev(𝐷 ′
0
|𝑣0 > max𝑗≥1{𝑣 𝑗 })]

using Lemma B.15. This follows because 𝐷 ′
0
| (𝑣0 > max𝑗≥1{𝑣 𝑗 }) stochastically dominates 𝐷 ′

0
|®𝑣−0 for

all ®𝑣−0 (and this implies that Rev(𝐷 ′
0
|𝑣0 > max𝑗≥1{𝑣 𝑗 }) ≥ Rev(𝐷 ′

0
|®𝑣−0) pointwise).15

Now, consider the following procedure to draw ®𝑣−0 from 𝐷 ′−0
. First, draw 𝑤0 ← 𝐷 ′

0
, and then

draw ®𝑣−0 from 𝐷 ′−0
conditioned on𝑤0. Recall first that𝑤0 can be drawn by first drawing𝑤 𝑗 ← 𝐷 𝑗

independently, and then setting 𝑤0 := max𝑗 {𝑤 𝑗 }. Recall also that, conditioned on 𝑤0, ®𝑣−0 is

distributed according to a product distribution, where each 𝑣 𝑗 is drawn from 𝐷 𝑗 conditioned on

𝑣 𝑗 < 𝑤0.

But now, observe that max𝑗≥1{𝑣 𝑗 }, where each 𝑣 𝑗 is drawn independently from 𝐷 𝑗 conditioned

on 𝑣 𝑗 < 𝑤0, is exactly the distribution 𝑣0 drawn from 𝐷 ′
0
, but conditioned on 𝑣0 < 𝑤0 (because 𝑣0 is

exactly set to max𝑗 {𝑣 𝑗 }). Therefore, we have that in fact: E®𝑣−0←𝐷′−0

[Rev(𝐷 ′
0
|𝑣0 > max𝑗≥1{𝑣 𝑗 })] =

E𝑤0←𝐷′
0
,𝑤′

0
←𝐷′

0
|𝑤′

0
<𝑤0
[Rev(𝐷 ′

0
|𝑣0 > 𝑤 ′

0
)].

Finally, consider instead letting𝑤0 be the maximum of two independent draws from 𝐷 ′
0
, instead

of a single draw. This only makes 𝑤0 bigger (in a stochastically dominating manner), which

therefore increases𝑤 ′
0
(again, in a stochastically dominating manner), which therefore increases

Rev(𝐷 ′
0
|𝑣0 > 𝑤 ′

0
). Therefore, we can conclude the following chain of equalities:

E®𝑣−0←𝐷′−0

[Rev(𝐷 ′
0
|®𝑣−0)] ≤ E®𝑣−0←𝐷′−0

[Rev(𝐷 ′
0
| (𝑣0 > max

𝑗>0

{𝑣 𝑗 })]

= E𝑤0←𝐷′
0
,𝑤′

0
←𝐷′

0
|𝑤′

0
<𝑤0
[Rev(𝐷 ′

0
|𝑣0 > 𝑤 ′

0
)]

≤ E𝑤0←𝐷′
0
,𝑤′

0
←𝐷′

0

[Rev(𝐷 ′
0
|𝑣0 > min{𝑤0,𝑤

′
0
})] .

The first line follows from Lemma B.15. The second follows from the previous paragraphs discussing

another valid procedure to draw max𝑗>0{𝑣 𝑗 }. The third follows by the immediately preceding

paragraph.

Now, we just need to bound E𝑤0←𝐷′
0
,𝑤′

0
←𝐷′

0

[Rev(𝐷 ′
0
|𝑣0 > min{𝑤0,𝑤

′
0
})]. We claim, however,

that this is simply the expected revenue of some truthful auction (in fact, Ronen’s auction [45])

for two bidders drawn from 𝐷 ′
0
independently. Indeed, consider the auction that solicits a bid

𝑏1, 𝑏2 from the two bidders, and then sets the optimal reserve for 𝐷 ′
0
|𝑣0 > 𝑏𝑖 to bidder 3 − 𝑖 . This

auction is clearly truthful, and sells the item only to the highest bidder (if at all). In addition,

the revenue achieved from the highest bidder is exactly Rev(𝐷 ′
0
|𝑣0 > min{𝑏1, 𝑏2}). Therefore,

E𝑤0←𝐷′
0
,𝑤′

0
←𝐷′

0

[Rev(𝐷 ′
0
|𝑣0 > min{𝑤0,𝑤

′
0
})] is the expected revenue of a truthful auction for two

bidders drawn from 𝐷 ′
0
, and is therefore at most twice Rev(𝐷 ′

0
). Finally, observe that Rev(𝐷 ′

0
) ≤

BRev(𝐷) (this follows as ∑𝑗 𝑣 𝑗 stochastically dominates max𝑗 {𝑣 𝑗 } when ®𝑣 ← 𝐷 . The former is the

value of a bidder drawn from 𝐷 for the grand bundle, the latter is the value of a bidder drawn from

𝐷 ′
0
). So we may further conclude that:

E𝑤0←𝐷′
0
,𝑤′

0
←𝐷′

0

[Rev(𝐷 ′
0
|𝑣0 > min{𝑤0,𝑤

′
0
})] ≤ 2BRev(𝐷),

which completes the proof. □

And now, we can wrap up the proof of Theorem 3.2.

15
This follows from revenue monotonicity. To quickly see this, consider setting the revenue-optimal price for 𝐷′

0
| ®𝑣−0 on

distribution 𝐷′
0
| (𝑣0 > max𝑗≥1 {𝑣𝑗 }) . The item sells with (weakly) greater probability, so the revenue is larger.
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Proof of Theorem 3.2. We get the following chain of inequalities, by Proposition B.2 (line one),

Corollary B.11 (line two), and Lemma B.12 and Lemma B.13 and Proposition B.14 and Proposi-

tion B.16 (line three)

SymRev(𝐷) ≤ 1

1 − 𝜀 · Rev(𝐷
′) + 2

𝜀 (1 − 𝜀) · BRev(𝐷)

≤ 1

1 − 𝜀 ·
(
TAIL + SPECIAL + CORE + E®𝑣−0←𝐷′−0

[Rev(𝐷 ′
0
|®𝑣−0)]

)
+ 2

𝜀 (1 − 𝜀) · BRev(𝐷)

≤ 1

1 − 𝜀 · (SSRev(𝐷) + 2BRev(𝐷) +max{9SSRev(𝐷), 4BRev(𝐷)})

+ 2

1 − 𝜀 · BRev(𝐷) +
2

𝜀 (1 − 𝜀) · BRev(𝐷)

Setting 𝜀 = 1/2 we get:

SymRev(𝐷) ≤ 20SSRev(𝐷) + 24BRev(𝐷).
□

C ALTERNATIVE PROOF VIA DUALITY

In Section 3, we proved our main result, namely that BRev is a constant factor approximation to

SymRev. In this section, we provide an alternative proof based on the [9] duality framework (for

the case when the distribution of the bidder’s maximum value for the items is regular). We then

also overview a naive attempt at applying their framework (using their “canonical flow”), which

helps provide intuition for our analysis.

Theorem C.1. Let 𝐷 be any additive single-bidder distribution. Let 𝐷 ′ be their modified distribution

that ensures that the maximum-value item is always in the same coordinate (0) as per Definition B.1.

If 𝐷 ′
0
is regular,

SymRev(𝐷) ≤ max{18SSRev(𝐷), 4BRev(𝐷)} + 2SSRev(𝐷) + 10BRev(𝐷)

Finite-Support vs. Continuous Distributions. Our proof of Theorem C.1 in this section makes

use of the [9] framework, which is designed for finite-support distributions. However, results in

their framework also apply to continuous distributions (see [9, Section 2]). In our analysis, we will

often compare two values drawn independently, and it will be convenient to break ties arbitrarily,

but consistently. To be extra formal, whenever a single value 𝑣 is drawn from a distribution labeled

with a parameter 𝑗 , we will formally draw a tuple (𝑣, 𝑗). Whenever we compare two values, we say

that (𝑣, 𝑗) < (𝑣 ′, 𝑗 ′) if 𝑣 < 𝑣 ′, or 𝑣 = 𝑣 ′ and 𝑗 < 𝑗 ′. Importantly, note that this parameter is attached

at the time 𝑣 is drawn from 𝐷 𝑗 . This could be achieved alternatively by picking a sufficiently small

𝜀 → 0 and adding 𝑗𝜀 to any value drawn from a distribution with parameter 𝑗 . Importantly, observe

that this means that any two values drawn from different distributions are never equal.

C.1 Brief Overview of [9]

We first provide the minimum preliminaries necessary to apply the [9] framework. The main

concept in their framework is that of a flow, and a corresponding virtual valuation function. We

specialize all definitions/theorems from their work to our setting (and refer the reader to [9] for

the general statements).

Definition C.2 (Flow). For a single-bidder distribution 𝐷 , supported on some set 𝑇 ⊆ R𝑚≥0
of

possible types, a flow 𝜆(·, ·) defines a variable 𝜆(®𝑣, ®𝑣 ′) ≥ 0 for all 𝑡, 𝑡 ′ ∈ 𝑇 .
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A flow is useful if for all ®𝑣 ∈ 𝑇 : 𝑓 (®𝑣) +∑®𝑣′ 𝜆(®𝑣 ′, ®𝑣) ≥ ∑
®𝑣′ 𝜆(®𝑣, ®𝑣 ′).

To help parse this definition, one can interpret 𝜆(®𝑣, ®𝑣 ′) as “the flow going from 𝑡 to 𝑡 ′.” A flow is

then useful if the flow into ®𝑣 (including additional flow 𝑓 (®𝑣) from some “super source”) is at least

the flow out of ®𝑣 , for all ®𝑣 .

Definition C.3 (Virtual Valuation Function). For a useful flow 𝜆, define the virtual valuation

function Φ𝜆 (·) associated with 𝜆 to satisfy the following for all 𝑗 :

Φ𝜆
𝑗 (®𝑣) := 𝑣 𝑗 −

∑
®𝑣′ (𝑣 ′𝑗 − 𝑣 𝑗 )𝜆(®𝑣 ′, ®𝑣)

𝑓 (®𝑣) .

The main result of [9] is a framework for upper bounding terms like Rev(𝐷), SymRev(𝐷), etc. via
useful flows.

Theorem C.4 ([9]). Let 𝜆 be a useful flow. Then for all truthful mechanisms𝑀 :

Rev𝑀 (𝐷) ≤ E®𝑣←𝐷


∑
𝑗 ∈[𝑚]

𝜋𝑀
𝑗 (®𝑣) · Φ𝜆

𝑗 (®𝑣)
 .

Typically, applications of this theorem proceed by finding a useful flow, and then upper bounding

E®𝑣←𝐷

[∑
𝑗 ∈[𝑚] 𝜋

𝑀
𝑗 (®𝑣) · Φ𝜆

𝑗
(®𝑣)

]
for any not necessarily truthful mechanism𝑀 . That is, a good choice

of 𝜆 absolves the analysis from directly reasoning about incentives. In our setting, we will hope to

leverage that𝑀 is symmetric.

Finally, a key concept that we leverage is the Myerson virtual value theory for single-item

auctions. Below, for a discrete single-variable distribution 𝐷 , 𝑠𝐷 (𝑣) denotes the successor of 𝑣 in
the support of 𝐷 : the minimum value 𝑣 ′ in the support of 𝐷 such that 𝑣 ′ > 𝑣 . If no such 𝑣 ′ exists,
define 𝑠𝐷 (𝑣) := 𝑣 + 1.

Definition C.5 (Myersonian virtual value [42]). For a single-dimensional distribution 𝐷 , we denote

by 𝜑𝐷 (𝑣) := 𝑣 − (1−𝐹
𝐷 (𝑣)) ·(𝑠𝐷 (𝑣)−𝑣)

𝑓 𝐷 (𝑣) .

Theorem C.6 ([42]). For any truthful 𝑛-bidder single-item mechanism 𝑀 and any single-item

distribution 𝐷 , its expected revenue equals its expected Myersonian virtual welfare. That is:

Rev𝑀 (𝐷) = E®𝑣←𝐷


∑
𝑖∈[𝑛]

𝑥𝑖 (®𝑣) · 𝜑𝐷𝑖 (𝑣𝑖 )
 .

C.2 A Failed Attempt: the CDW Canonical Flow

In order to get a sense of the technical challenges, we begin by overviewing a natural first attempt. [9]

gives a canonical flow for a single bidder with independent items, that induces a particular virtual

valuation function. For simplicity of notation below, we let 𝑅 𝑗 denote the set of𝑚-dimensional

vectors for which 𝑣 𝑗 > 𝑣 𝑗 ′ for all 𝑗
′ ≠ 𝑗 (tie-breaking as defined in Section 2).

Theorem C.7 ([9]). When 𝐷 is an additive single-bidder distribution over any number of indepen-

dent items, there exists a useful flow 𝜆 such that Φ𝜆
𝑗
(®𝑣) = 𝑣 𝑗 · I(®𝑣 ∉ 𝑅 𝑗 ) + 𝜑𝐷 𝑗 (𝑣 𝑗 ) · I(®𝑣 ∈ 𝑅 𝑗 ).

In particular, this implies the following upper bound on SymRev(𝐷):
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Corollary C.8. When 𝐷 is an additive single-bidder distribution over any number of independent

items:

SymRev(𝐷) ≤ max

𝑀, 𝑀 is symmetric

E®𝑣←𝐷


∑
𝑗 ∈[𝑚]

I(®𝑣 ∈ 𝑅 𝑗 ) · 𝜑𝐷 𝑗 (𝑣 𝑗 ) · 𝑥 𝑗 (®𝑣)

 (SymSingle)

+ max

𝑀, 𝑀 is symmetric

E®𝑣←𝐷


∑
𝑗 ∈[𝑚]

I(®𝑣 ∉ 𝑅 𝑗 ) · 𝑣 𝑗 · 𝑥 𝑗 (®𝑣)

 (SymNon-dominant)

Importantly, note above that we are not restricting 𝑀 to be truthful, just that it has a sym-

metric allocation rule. The [9] proof that 6 max{SRev(𝐷), BRev(𝐷)} ≥ Rev(𝐷) indeed proceeds

through this flow. They instead observe that Rev(𝐷) ≤ Single + Non-dominant (Single and

Non-dominant are defined analogously to SymSingle and SymNon-dominant above, but without

restricting𝑀 to be symmetric). They establish that Single ≤ SRev(𝐷) by appealing to Myersonian

virtual value theory, and also that Non-dominant ≤ 5 max{SRev(𝐷), BRev(𝐷)}.
In our setting, it is not too hard to establish that SymNon-dominant = 𝑂 (max{SSRev(𝐷), BRev(𝐷)}),

using ideas similar to those in [9]. The barrier to a successful analysis turns out to be SymSingle.

Consider the following example:

Example C.9. Let 𝐷𝑖 sample 2
𝑖
with probability 2

−𝑖
, and 0 with probability 1−2

−𝑖
. [31] establishes

that for this distribution BRev(𝐷) ≤ 4. On the other hand, a symmetric allocation rule achieves

SymSingle = Ω(𝑚).
To see this, consider the rule that awards item 𝑗 if and only if 𝑣 𝑗 > 0. This rule is clearly symmetric.

Also, for all 𝑗 , with probability at least 2
−𝑗−1

: ®𝑣 ∈ 𝑅 𝑗 and 𝑣 𝑗 = 2
𝑗
. 𝜑𝐷 𝑗 (2𝑗 ) = 2

𝑗
, and therefore we

get that SymSingle ≥ ∑𝑚
𝑗=1

2
−𝑗−1 · 2𝑗 =𝑚/2.

Example C.9 does not necessarily mean that the CDW canonical flow is doomed, but it does mean

that in order to possibly leverage it for analysis, we would need to directly invoke truthfulness of

𝑀 (which in some sense defeats the purpose of the CDW framework).

Intuitively, the problem is that SymSingle is too big. The CDW canonical flow can’t possibly

shrink Φ𝜆
𝑗
(®𝑣) to be smaller than 𝜑𝐷 𝑗 (𝑣 𝑗 ), but this is already too big. Our new flow directly leverages

the fact that𝑀 must be symmetric in order to yield smaller virtual valuation functions.

C.3 A New Flow, and Proof of Theorem C.1

To prove Theorem C.1, we’ll consider the same modified distribution 𝐷 ′ from Definition B.1. The

main task of this section is to upper bound Rev(𝐷 ′), and this is where we design a new flow. It is

still inspired by the CDW canonical flow, modified to accommodate that 0 is always the “dominant

item,” and that 𝐷 ′ is not a product distribution. Our flow will apply to any distribution “like 𝐷 ′,”
which we formally define below.

Definition C.10 (Dominant Item). Item 𝑗 is a dominant item for a distribution 𝐷 over R𝑘 if:

• With probability 1, 𝑣 𝑗 > 𝑣ℓ for all ℓ ≠ 𝑗 (breaking ties as defined in Section 2).

• For all 𝑣 𝑗 > 𝑣 ′𝑗 , let ®𝑣−𝑗 denote a draw from the distribution 𝐷−𝑗 conditioned on 𝑣 𝑗 , and let ®𝑣 ′−𝑗
denote a draw from the distribution 𝐷−𝑗 conditioned on 𝑣 ′𝑗 . Then ®𝑣−𝑗 and ®𝑣 ′−𝑗 can be coupled

so that with probability one: 𝑣ℓ ≥ 𝑣 ′ℓ for all ℓ ≠ 𝑗 .

Intuitively, item 𝑗 is dominant when it is always the dominant item, and other item values are

positively correlated (in a particular way) with 𝑣 𝑗 . We first observe that item 0 is always dominant

for 𝐷 ′.
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Lemma C.11. Item 0 is dominant for any modified distribution.

Proof of Lemma C.11. The proof of Lemma C.11 follows from two steps. First, we give another

class of distributions that all have dominant items, and then show that every modified distribution

is in this class.

Definition C.12 (Conditionally Independent). A distribution 𝐷 over R𝑘 is conditionally independent

with respect to item 𝑗 if:

• With probability 1, 𝑣 𝑗 > 𝑣ℓ for all ℓ ≠ 𝑗 (breaking ties as discussed in Section 2).

• For all 𝑣 𝑗 , the distribution of ®𝑣−𝑗 conditioned on 𝑣 𝑗 is a product distribution.

• For all 𝑣 𝑗 > 𝑣 ′𝑗 , and all ℓ ≠ 𝑗 , the distribution of 𝑣ℓ conditioned on 𝑣 𝑗 stochastically dominates

the distribution of 𝑣ℓ conditioned on 𝑣 ′𝑗 .

Lemma C.13. If 𝐷 is conditionally independent with respect to item 𝑗 , then item 𝑗 is dominant for

𝐷 .

Proof. Because the distribution of 𝑣ℓ conditioned on 𝑣 𝑗 stochastically dominates the distribution

of 𝑣ℓ conditioned on 𝑣 ′𝑗 , they can be coupled so that 𝑣ℓ ≥ 𝑣 ′ℓ with probability one. Because all items

are independent, conditioned on 𝑣 𝑗 , simply take the product of these couplings to form a coupling

of ®𝑣−𝑗 and ®𝑣 ′−𝑗 . □

Now, we simply observe that all modified distributions are conditionally independent with respect

to item 0. To see this, observe first that indeed item 0 is always the dominant item. Next, observe

that conditioned on 𝑣0, all items 𝑣 𝑗 are drawn from 𝐷 𝑗 conditioned on 𝑣 𝑗 < 𝑣0 independently. This

proves bullet two. Finally, observe that if 𝑣0 > 𝑣 ′
0
, then the distribution 𝐷 𝑗 conditioned on 𝑣 𝑗 < 𝑣0

stochastically dominates the distribution 𝐷 𝑗 conditioned on 𝑣 𝑗 < 𝑣 ′
0
, satisfying bullet three. □

Now, we design a flow that applies to any distribution with a dominant item. We present the

flow in two steps. We’ll use the following notation:

• 𝑉𝑗 denotes the possible values the bidder might have for item 𝑗 (observe that this is the

support of 𝐷 𝑗 — we phrase it this way to emphasize that 𝐷 is not necessarily a product

distribution), and use the notation Pred
𝑉 (𝑣) to denote the maximum element in 𝑉 that is

< 𝑣 . If no such element exists, let Pred
𝑉 (𝑣) := ⊥.

• 𝐹 𝑗 still denotes the CDF for 𝐷 𝑗 (which is still the marginal distribution for 𝑣 𝑗 , even though 𝐷

is not necessarily a product distribution), and 𝑓𝑗 (𝑣) still denotes Pr𝑣𝑗←𝐷 𝑗
[𝑣 𝑗 = 𝑣].

• When 𝐷 has a dominant item 𝑗 , let 𝑔𝑣𝑗 (®𝑣−𝑗 ) be the coupling promised between 𝑣 𝑗 and

Pred
𝑉𝑗 (𝑣 𝑗 ).16 That is:

– When ®𝑣−𝑗 is drawn from 𝐷−𝑗 , conditioned on 𝑣 𝑗 , 𝑔
𝑣𝑗 (®𝑣−𝑗 ) is a proper sample from 𝐷−𝑗 ,

conditioned on Pred
𝑉𝑗 (𝑣 𝑗 ).

– For all ℓ ≠ 𝑗 , ®𝑣−𝑗 , 𝑣ℓ ≥ (𝑔𝑣𝑗 (®𝑣−𝑗 ))ℓ .

Definition C.14 (Symmetric Canonical Flow). Let 𝑗 be a dominant item for distribution 𝐷 . Let 𝜆∗

denote the flow such that for all ®𝑣 :
• If Pred

𝑉𝑗 (𝑣 𝑗 ) = ⊥, 𝜆∗ (®𝑣, ®𝑣 ′) = 0 for all ®𝑣 ′.
• Otherwise, 𝜆∗ (®𝑣, ((Pred𝑉𝑗 (𝑣 𝑗 );𝑔𝑣𝑗 (®𝑣−𝑗 ))) = 𝑓 (®𝑣) · (1−𝐹 𝑗 (Pred

𝑉𝑗 (𝑣𝑗 )))
𝑓𝑗 (𝑣𝑗 ) ,

17
and 𝜆∗ (®𝑣, ®𝑣 ′) = 0 for all

other ®𝑣 ′.

16
Because distributions have finite support, this coupling may be randomized/fractional.

17
If 𝑔𝑣𝑗 (®𝑣−𝑗 ) is randomized/fractional, the flow is sent proportionally.
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Intuitively, flow goes from types with strictly higher 𝑣 𝑗 to types with strictly lower 𝑣 𝑗 , and from

weakly higher 𝑣ℓ to weakly lower 𝑣ℓ for all ℓ ≠ 𝑗 . These are the two key properties used in the

analysis. First, let’s confirm that 𝜆∗ is indeed a useful flow.

Proposition C.15. When 𝑗 is a dominant item for 𝐷 , 𝜆∗ is a useful flow.

Proof. We’ve already explicitly defined how much flow leaves ®𝑣 , for all ®𝑣 , so we just need to

compute how much flow enters.

To compute this, refer to level 𝑣 as the set of all ®𝑣 such that 𝑣 𝑗 = 𝑣 . For simplicity of notation for

the rest of this proof, for a fixed 𝑣 𝑗 let 𝑣
′
𝑗 be such that Pred

𝑉𝑗 (𝑣 ′𝑗 ) = 𝑣 𝑗 . Observe that for all ®𝑣 the

same level, that the term
1−𝐹 𝑗 (Pred𝑉𝑗 (𝑣𝑗 ))

𝑓𝑗 (𝑣𝑗 ) is the same. This means that the total flow into ®𝑣 is just
the total mass of types that send flow into ®𝑣 , scaled by

1−𝐹 𝑗 (𝑣𝑗 )
𝑓𝑗 (𝑣′𝑗 )

.

In order for ®𝑣 ′ to send flow into ®𝑣 , it must be that 𝑣 𝑗 = Pred
𝑉𝑗 (𝑣 ′𝑗 ), and also that 𝑔

𝑣′𝑗 (®𝑣 ′−𝑗 ) = ®𝑣−𝑗 .
Recall that 𝑔

𝑣′𝑗 (·) is a coupling between 𝐷−𝑗 conditioned on 𝑣 ′𝑗 and 𝐷−𝑗 conditioned on 𝑣 𝑗 . Observe

also that the probability that ®𝑣−𝑗 is drawn from 𝐷−𝑗 conditioned on 𝑣 𝑗 is exactly
𝑓 (®𝑣)
𝑓𝑗 (𝑣𝑗 ) . Therefore,

it must be the case that the total mass of types that send flow into ®𝑣 is also a
𝑓 (®𝑣)
𝑓𝑗 (𝑣𝑗 ) fraction of the

𝑓𝑗 (𝑣 ′𝑗 ) mass of nodes at level 𝑣 ′𝑗 . Therefore, we conclude that the total mass of types sending flow

into ®𝑣 is 𝑓 (®𝑣) ·𝑓𝑗 (𝑣′𝑗 )
𝑓𝑗 (𝑣𝑗 ) , and therefore the total flow into ®𝑣 is 𝑓 (®𝑣) ·𝑓𝑗 (𝑣′𝑗 )

𝑓𝑗 (𝑣𝑗 ) · 1−𝐹 𝑗 (𝑣𝑗 )
𝑓𝑗 (𝑣′𝑗 )

= 𝑓 (®𝑣) · 1−𝐹 𝑗 (®𝑣)
𝑓𝑗 (®𝑣) .

Finally, we observe simply that the total flow in, plus 𝑓 (®𝑣), is equal to the total flow out:

𝑓 (®𝑣) + 𝑓 (®𝑣) ·
1 − 𝐹 𝑗 (𝑣 𝑗 )
𝑓𝑗 (𝑣 𝑗 )

= 𝑓 (®𝑣) ·
1 − 𝐹 𝑗 (𝑣 𝑗 ) + 𝑓𝑗 (𝑣 𝑗 )

𝑓𝑗 (𝑣 𝑗 )
= 𝑓 (®𝑣) ·

1 − 𝐹 𝑗 (Pred𝑉𝑗 (𝑣 𝑗 ))
𝑓𝑗 (𝑣 𝑗 )

.

□

Next, we compute the associated virtual valuations for 𝜆∗.

Proposition C.16. Let 𝑗 be a dominant item for 𝐷 . Then for all ®𝑣 , and all ℓ ≠ 𝑗 :

• Φ𝜆∗
𝑗
(®𝑣) = 𝜑𝐷 𝑗 (𝑣 𝑗 ).

• Φ𝜆∗
ℓ
(®𝑣) ≤ 𝑣ℓ .

Proof. To see the first bullet, observe that for all ®𝑣 ′, if 𝜆∗ (®𝑣 ′, ®𝑣) > 0, then 𝑣 ′𝑗 = 𝑠𝐷 𝑗 (𝑣 𝑗 ). Because
the total flow into ®𝑣 is 𝑓 (®𝑣) · 1−𝐹 𝑗 (𝑣𝑗 )

𝑓𝑗 (𝑣𝑗 ) , this means that we have:

Φ𝜆∗
𝑗 (®𝑣) = 𝑣 𝑗 −

𝑓 (®𝑣) · (1 − 𝐹 𝑗 (𝑣 𝑗 )) · (𝑠𝐷 𝑗 (𝑣 𝑗 ) − 𝑣 𝑗 )
𝑓𝑗 (𝑣 𝑗 ) · 𝑓 (®𝑣)

=
(1 − 𝐹 𝑗 (𝑣 𝑗 )) · (𝑠𝐷 𝑗 (𝑣 𝑗 ) − 𝑣 𝑗 )

𝑓𝑗 (𝑣 𝑗 )
= 𝜑𝐷 𝑗 (𝑣 𝑗 ).

To see the second bullet, simply observe that for all ®𝑣 ′ and all ℓ ≠ 𝑗 : if 𝜆∗ (®𝑣 ′, ®𝑣) > 0, then 𝑣 ′ℓ ≥ 𝑣ℓ

(by definition of dominant item). This means that 𝑣 ′ℓ − 𝑣ℓ ≥ 0, and therefore Φ𝜆∗
ℓ
(®𝑣) ≤ 𝑣ℓ . □

This completes the analysis of our symmetric canonical flow. We observe that this canonical flow

induces virtual values such that: (1) the virtual value of each bidder for all of their non-dominant

items is at most their value, while (2) the virtual value for their dominant item zero is exactly

theMyersonian virtual value of the value of the dominant item.We can now rewrite the following as:
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E®𝑣←𝐷 [𝑝 (®𝑣)] ≤ E®𝑣←𝐷 [𝜋 (®𝑣) · Φ𝜆 (®𝑣)]

≤ E®𝑣←𝐷 [
∑
𝑗≥0

𝜋 𝑗 (®𝑣) · (𝑣 𝑗 · I[ 𝑗 ≠ 0] + 𝜑𝐷′
0

(𝑣0) · I[ 𝑗 = 0])]

≤ E®𝑣←𝐷 [
∑
𝑗≥1

𝜋 𝑗 (®𝑣) · 𝑣 𝑗 ] + E®𝑣←𝐷 [𝜋0 (®𝑣) · 𝜑𝐷′
0

(𝑣0)]

C.4 An improved bound for Regular distributions

For each type of the bidder, we have defined a flow. We have shown that this flow induces a virtual

valuation function such that the bidder’s virtual value for all non-dominant items is at most their

value for those items, and their virtual value for their dominant item is the Myersonian virtual

value of the highest value item. For the non-dominant items, the social welfare is a trivial upper

bound for revenue. To get a better bound with our flow, we take the dominant item with value 𝑣0

that contributes the most to the welfare, and turn its virtual value into its Myersonian virtual value.

Recall that for any additive single-bidder distribution 𝐷 , their modified distribution 𝐷 ′ ensures that
the maximum-value item is always in the same coordinate (0) as per Definition B.1.

Observation 6. E®𝑣←𝐷 [𝜋0 (®𝑣) · 𝜑𝐷′
0

(𝑣0)] ≤ E®𝑣←𝐷 [max{𝜑𝐷′
0

(𝑣0), 0}]

This holds since max{𝜑𝐷′
0

(𝑣0), 0} stochastically dominates 𝜑𝐷′
0

(𝑣0). Let the allocation probability

be 1 when 𝜑 is positive, and 0 when it’s negative. The observation follows.

Observation 7. When 𝐷 ′
0
is regular, selling only the favorite item gets expected revenue of

E®𝑣←𝐷 [max{𝜑𝐷′
0

(𝑣0), 0}].

Proof. Myerson’s theorem (expected revenue equals expected virtual surplus) states that maxi-

mizing revenue in expectation is equivalent to maximizing virtual surplus in expectation. When

𝐷 ′
0
is regular, consider the auction that sets a price of 𝑝 := 𝜑−1

𝐷′
0

(0), and awards the item only to

the bidder when their value for the item (drawn from 𝐷 ′
0
) exceeds this. Then the expected virtual

surplus of this auction is exactly E®𝑣←𝐷 [max{𝜑𝐷′
0

(𝑣0), 0}].
In our setting, consider the auction which sets a price of 𝑝 , and allows the bidder to pick any

single item to purchase at price 𝑝 . The buyer with values ®𝑣 will purchase an item if and only if

𝑣0 ≥ 𝑝 , and 𝑣0 is drawn from 𝐷 ′
0
. Therefore, selling only the favorite item gets expected revenue

E®𝑣←𝐷 [max{𝜑𝐷′
0

(𝑣0), 0}].
□

Lemma C.17. When 𝐷 ′
0
is regular, E®𝑣←𝐷 [max{𝜑𝐷′

0

(𝑣0), 0}] ≤ BRev(𝐷) .

Proof. By Observation 7, we know that E®𝑣←𝐷 [max{𝜑𝐷′
0

(𝑣0), 0}] can be achieved by setting

some price 𝑝 and letting the buyer purchase a single item at price 𝑝 . Consider instead setting

the same price 𝑝 but letting the buyer purchase the grand bundle of all items. Then the expected

revenue of this mechanism can only be larger, as

∑
𝑗 𝑣 𝑗 stochastically dominates max𝑗 {𝑣 𝑗 }.

□

This completes our analysis of the dominant item. For the non-dominant items, we need to

further decompose into two terms we call CORE and TAIL. Define 𝑟 = SSRev(𝐷).
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E®𝑣←𝐷 [
∑
𝑗≠0

𝜋 𝑗 (®𝑣) · 𝑣 𝑗 ] ≤ E®𝑣←𝐷 [
∑
𝑗≠0

𝑣 𝑗 ]

= E®𝑣←𝐷 [
∑
𝑗≠0

𝑣 𝑗 · I(𝑣 𝑗 ≥ SSRev(𝐷))] (TAIL)

+ E®𝑣←𝐷 [
∑
𝑗≠0

𝑣 𝑗 · I(𝑣 𝑗 < SSRev(𝐷))] (CORE).

The term TAIL above captures contributions to the bound coming from non-dominant items

whose value is at least SSRev(𝐷).

Lemma C.18. TAIL ≤ SSRev(𝐷).

Proof.

TAIL = E®𝑣←𝐷′ [
∑
𝑗≠0

𝑣 𝑗 · I(𝑣 𝑗 ≥ BRev(𝐷))]

≤
∑
𝑗>0

E𝑣𝑗←𝐷 𝑗
[SSRev(𝐷) · I(𝑣 𝑗 ≥ SSRev(𝐷)]

≤ SSRev(𝐷) ·
∑
𝑗>0

Pr

𝑣𝑗←𝐷 𝑗

[𝑣 𝑗 ≥ SSRev(𝐷)]

≤ max

𝑞
{𝑞 ·

∑
𝑗>0

Pr

𝑣𝑗←𝐷 𝑗

[𝑣 𝑗 ≥ 𝑞]}

= SSRev(𝐷).
□

Above, the first line is just the definition of TAIL. The second line observes that for any 𝑝 , we

can set price 𝑝 on all items. Any item with value at least 𝑝 sells. In particular, for 𝑝 = 𝑣 𝑗 , we find

that SSRev(𝐷) is at least as good as the revenue of selling only item ≠ 𝑗 at the same price 𝑣 𝑗 . The

third line rewrites the expected value of an indicator variable as a probability. The fourth line again

just observes that this is exactly the revenue of setting price SSRev(𝐷) on each item. The last line

follows from the definition of SSRev(𝐷). This completes our analysis of the term TAIL.

The term CORE captures contributions to the bound coming from non-dominant items whose

value is at most SSRev(𝐷). The idea is that CORE is the expected sum of independent random

variables, each supported on [0, SSRev(𝐷)]. So maybe CORE ≤ 12SSRev(𝐷), which makes this

bound trivial. Or, maybe CORE > 12SSRev(𝐷), in which case this should concentrate. In the latter

case, we should expect to have CORE ≤ 3BRev(𝐷), which also works out.

Definition C.19 (Chernoff bound). Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be random variables such that 0 ≤ 𝑋𝑖 ≤ 1 for

all 𝑖 . Let 𝑋 =
∑

𝑖 𝑋𝑖 and let 𝜇 = 𝐸 (𝑋 ). Then, for all 0 < 𝛿 < 1:

𝑃𝑟 [𝑋 ≤ (1 − 𝛿)𝜇) ≤ 𝑒−
𝛿2𝜇

2

Observation 8. Pr®𝑣←𝐷 [
∑

𝑗 𝑣 𝑗 > (1 − 𝛿)CORE] ≥ 𝑒−
𝛿2

6 when CORE ≥ 12SSRev(𝐷)

Proof. We observe that CORE is the expected sum of independent random variables sup-

ported on [0, SSRev(𝐷)]. We define 𝜇 = CORE

SSRev(𝐷) = 𝐸 [∑𝑗
𝑌𝑗

SSRev(𝐷) ] = 𝐸 [∑𝑗 𝑋 𝑗 ]. This gives

𝐸 [𝑋 ] = 𝜇 = 𝐶𝑂𝑅𝐸
SSRev(𝐷) and 𝐸 [𝑌 ] = 𝐸 [∑𝑗 𝑣 𝑗 ] = 𝐶𝑂𝑅𝐸 = 𝜇 · SSRev(𝐷). In the case where
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CORE ≤ 𝑘SSRev(𝐷), for some constant 𝑘 , our bound is trivially true. For the other case where

CORE > 𝑘SSRev(𝐷), we get 𝜇 ≥ 𝑘 and Chernoff bounds give: Pr[𝑋 ≤ (1 − 𝛿)𝜇) ≤ 𝑒−
𝛿2𝜇

2

Pr[𝑋 ≤ (1 − 𝛿)𝜇] = Pr[𝑌 ≤ SSRev(𝐷) · (1 − 𝛿)𝜇]
= Pr[𝑌 ≤ (1 − 𝛿)CORE]

= Pr

®𝑣←𝐷
[
∑
𝑗

𝑣 𝑗 ≤ (1 − 𝛿)CORE]

We now plug in the value 𝑘 = 12 and we get Pr[∑𝑗 𝑣 𝑗 ≤ (1 − 𝛿)CORE] ≤ 𝑒−
𝛿2𝜇

2 ≤ 𝑒−
𝛿2𝑘

2 = 𝑒−
𝛿2

6

which is the probability that the grand bundle sells at price (1−𝛿)CORE. Now we’re ready to prove

the lemma below. □

Lemma C.20. CORE ≤ max{12SSRev(𝐷), 2.568BRev(𝐷)}

Proof. Consider the mechanism M that sets price 𝑝 = (1 − 𝛿)CORE on the grand bundle. Then:

BRev = max

𝑞
{𝑞 · Pr

®𝑣←𝐷
[
∑
𝑗

𝑣 𝑗 ≥ 𝑞]}

≥ (1 − 𝛿)CORE · Pr

®𝑣←𝐷
[
∑
𝑗

𝑣 𝑗 > (1 − 𝛿)CORE]

≥ ((1 − 𝛿)CORE) · (1 − 𝑒− 𝛿2𝑘
2 )

≥ CORE

𝑎
, where a is some constant that we solve for below.

We now maximize the factor (1 − 𝛿) · (1 − 𝑒− 𝛿2𝑘
2 ) over all possible values of 𝛿 and 𝑘 < 12. This

gives 𝛿 ≈ 0.4805. We plug these values (𝑘 = 12 and 𝛿 = 0.48) back into the expression above to get

(1− 0.48) (1− 𝑒− 0.48
2

2
𝑘 ) ≥ 0.3894. We now solve for the constant 𝑎 ≤ 1

0.3894
. And so 𝑎 ≈ 2.568, which

gives CORE ≤ 2.568BRev(𝐷). In particular, this means that we can set price 0.62CORE on the grand

bundle, and it will sell with probability at least 0.75, witnessing that BRev(𝐷) ≥ CORE/2.568. □

Lemma C.21. E®𝑣←𝐷 [
∑

𝑗≥1
𝜋 𝑗 (®𝑣) · 𝑣 𝑗 ] ≤ max{12SSRev(𝐷), 2.568BRev(𝐷)} + SSRev(𝐷)

Proof. We use the upper bounds above on (CORE) fromLemmaC.20 and (TAIL) fromLemmaC.18

to get:

E®𝑣←𝐷 [
∑
𝑗≥1

𝜋 𝑗 (®𝑣) · 𝑣 𝑗 ] = E®𝑣←𝐷 [
∑
𝑗≠0

𝜋 𝑗 (®𝑣) · 𝑣 𝑗 ]

≤ E®𝑣←𝐷 [
∑
𝑗≠0

𝑣 𝑗 ]

≤ (CORE) + (TAIL)
≤ max{12SSRev(𝐷), 2.568BRev(𝐷)} + SSRev(𝐷)

□

Recall that we showed in Corollary B.9 that E[𝑉 ′] ≤ 2BRev(𝐷), where 𝑉 ′ denotes the random
variable distributed according to the marginal of 𝑣0. We are now ready to combine these inequalities

to get a bound, and prove the following theorem.



Submission 150 30

Lemma C.22. For a single additive bidder, the optimal symmetric revenue for the modified distribu-

tion 𝐷 ′ is upper bounded by max{12SSRev(𝐷), 2.568BRev(𝐷)} + BRev(𝐷) + SSRev(𝐷).

Proof. We combine Lemma C.21 and Lemma C.17, and we find that the optimal symmetric

revenue Rev(𝐷 ′) of the modified distribution 𝐷 ′ is upper bounded by 𝐸®𝑣←𝐷 [
∑

𝑗≥1
𝜋 𝑗 (®𝑣) · 𝑣 𝑗 ] +

E®𝑣←𝐷 [𝜑𝐷′
0

(𝑣0)] which is upper bounded by (BRev(𝐷)) + (max{12SSRev(𝐷), 2.568BRev(𝐷)} +
SSRev(𝐷)) = max{12SSRev, 2.568BRev} + BRev(𝐷) + SSRev(𝐷). □

And now, we can wrap up the proof of Theorem C.1.

Proof of Theorem C.1. Similar to the proof of Theorem 3.2 and making use of Proposition B.2,

we combine lemma C.22 and Corollary B.9, and we upper bound the optimal symmetric revenue of

the original distribution 𝐷 below, using 𝜀 = 0.319. Simply chain the following inequalities together.

The first line follows from Observation 5. The second line follows from Corollary B.9 (and the fact

that SymRev ≤ Rev always). The third line follows from Lemma C.22. The fourth line follows from

plugging in 𝜀 = 0.319.

SymRev(𝐷) ≤ 1

1 − 𝜀 · SymRev(𝐷
′) + 1

𝜀 (1 − 𝜀)E[𝑉
′]

≤ 1

1 − 𝜀 · Rev(𝐷
′) + 1

𝜀 (1 − 𝜀) · 2BRev(𝐷)

≤ 1

1 − 𝜀 · (max{12SSRev, 2.568BRev(𝐷)} + BRev(𝐷) + SSRev(𝐷)) + 1

𝜀 (1 − 𝜀) · 2BRev(𝐷)

≤ max{18SSRev(𝐷), 4BRev(𝐷)} + 2SSRev + 10BRev(𝐷)

□

We quickly discuss the main barrier in extending this approach to a proof of Theorem 3.2. In

order to analyze the term E®𝑣←𝐷 [max{𝜑𝐷′
0

(𝑣0), 0}] when 𝐷 ′
0
is irregular, we would need to iron

the distribution. This would adjust the flow, and be completely fine for this part of the analysis.

However, this would also require us to add cycles of flow between types, which could therefore

increase the virtual values for non-favorite items beyond their values. Therefore, we would no longer

be able to upper bound E®𝑣←𝐷 [
∑

𝑗≥1
𝜋 𝑗 (®𝑣) · 𝑣 𝑗 ].

D WHYWE NEED AN EXTRA ITEM

In this section, we explain why our approach adds an extra item by showing that merely permuting

the pre-existing𝑚 item values is not enough. We define the following permuted distribution 𝐷 ′,
show that its revenue is close to that of 𝐷 , and then design a flow for 𝐷 ′. We first define our

permuted distribution.

Definition D.1 (Permuted Distribution). Let 𝐷 be an additive single-buyer distribution over𝑚

independent items. Define the permuted distribution 𝐷 ′ to be the following distribution over𝑚

items.

• Draw 𝑣 𝑗 independently from 𝐷 𝑗 for all 𝑗 .

• Let 𝑗∗ := arg max𝑗 {𝑣 𝑗 } (breaking ties lexicographically).
• Let 𝑣 ′

1
:= 𝑣 𝑗∗ .

• Let 𝑣 ′
𝑗∗ := 𝑣1.

• Let 𝑣 ′𝑗 := 𝑣 𝑗 , for all 𝑗 ≠ 1, 𝑗∗.
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Intuitively, 𝐷 ′ ensures that the maximum-value item is always in the same coordinate (1), and

this allows us to leverage a clean application of prior tools. We first need to argue that SymRev(𝐷)
is upper bounded by (an appropriate function of) Rev(𝐷 ′).

Observation 9. SymRev(𝐷) = SymRev(𝐷 ′) ≤ Rev(𝐷 ′)

Proof. Consider any symmetric mechanism𝑀 for 𝐷 , and view it by its menu (that is, the list of

( ®𝑥, 𝑝) it allows the buyer to purchase). Recall that because𝑀 is symmetric, that for all ( ®𝑥, 𝑝) on the

menu, (𝜎 ( ®𝑥), 𝑝) is also on the menu for all item permutations 𝜎 .

In particular, the permutation 𝜎 ′ that permutes the 1 and 𝑗∗ indices is also on the menu. And

so for any ®𝑣 , let ( ®𝑥, 𝑝) denote their favorite option from the menu for 𝑀 . This option achieves

revenue ®𝑣 · ®𝑥 − 𝑝 . Then (𝜎 ′( ®𝑥), 𝑝) is the favorite option for ®𝑣 ′ and achieves the same revenue

®𝑣 ′ · 𝜎 ′( ®𝑥) − 𝑝 = 𝜎 ′−1 ( ®𝑣 ′) · ®𝑥 − 𝑝 = ®𝑣 · ®𝑥 − 𝑝 . The equality follows. The inequality follows from the

fact that for any distribution 𝐷 , SymRev(𝐷) ≤ Rev(𝐷) always.
□

We now try to upper bound Rev(𝐷 ′). We provide below a proof based on tools used in [32].

Below, 𝐷𝑆 denotes the marginals of distribution 𝐷 onto items 𝑆 , and the distribution 𝐷𝑆 |®𝑣𝑆 denotes

the distribution of ®𝑣𝑆 , assuming that ®𝑣 is drawn from 𝐷 , and conditioned on ®𝑣𝑆 . Recall Lemma B.10

which states that for any 𝑆, 𝑆 partition the items in [𝑚], and any (possibly correlated) distributions

𝐷 , we have:

Rev(𝐷) ≤ E®𝑣←𝐷 [
∑
𝑗 ∈𝑆

𝑣 𝑗 ] + E®𝑣𝑆←𝐷𝑆
[Rev(𝐷−𝑆 |®𝑣𝑆 )] .

Similarly to Corollary B.11, we obtain the bound below on our permuted distribution 𝐷 ′.

Corollary D.2.

Rev(𝐷 ′) ≤ E®𝑣←𝐷′ [
∑
𝑗≠1

𝑣 𝑗 ] + E®𝑣−1←𝐷′−1

[Rev(𝐷 ′
1
|®𝑣−1)] .

Now we upper bound the two terms on the right-hand side of Corollary D.2. For the first term,

the sum of values of the non-favorite items can be bounded in the same way as before, except

now we don’t also have to worry about the extra item. For the second term, we try to bound the

conditional revenue from the favorite item in a similar way to that of Section B.2. We focus on

analyzing E®𝑣−1←𝐷′−1

[Rev(𝐷 ′
1
|®𝑣−1)], and we will show that this term blows up for this permuted

distribution.

PropositionD.3. There exists an instance of𝐷 for whichE®𝑣−1←𝐷′−1

[Rev(𝐷 ′
1
|®𝑣−1)] ≥ Ω(𝑚)BRev(𝐷).

Example D.4. Consider the example for which each item 𝑖 is drawn from 𝐷𝑖 which samples 2
𝑖

w.p. 2
−𝑖
, and 2

−𝑖
with probability 1− 2

−𝑖
. When we condition on the non-favorite items, we actually

know exactly what the value of the favorite item is, and we can get the full welfare as revenue. So

the conditional revenue from the favorite item is too large compared to our distribution.

In particular, consider any vector ®𝑣−1 ← 𝐷 ′−1
. Then unless all 𝑣𝑖s have values 2

−𝑖
(which happens

with probability at most 1/2), we know that 𝑣 ′
1
= 2

𝑗∗
. And so, we know that 𝑣 ′

1
= 2

𝑗∗
with probability

at least 1/2. Let mechanism 𝑀 charge price 2
𝑗∗
on this item. Then, for each possible value of 𝑗∗,

when 𝑣 𝑗∗ = 2
𝑗∗
is the highest value, 𝑀 generates a revenue of at least 2

𝑗∗ · 1/2. We compute the

expected revenue of this mechanism, and we find that:
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E𝑀,®𝑣−1←𝐷′−1

[Rev(𝐷 ′
1
|®𝑣−1)] ≥

1

2

∑
𝑗∗≠1

2
𝑗∗ · 2−𝑗∗ = 𝑚 − 1

2

Recall that [31] showed that BRev(𝐷) achieves constant revenue for this particular distribution.
We conclude that for this example, E®𝑣−1←𝐷′−1

[Rev(𝐷 ′
1
|®𝑣−1)] is Ω(𝑚)BRev(𝐷), which is too large a

bound.

Intuitively, we know that adding the extra item doesn’t actually lower the revenue by that much,

but it lowers the bound we get from our approach significantly: adding an extra item drawn from

the same distribution as the favorite item, allows us to hide what the favorite value is, and therefore

lowers the revenue bound.

E SSREV IS A LOG-REVENUE APPROXIMATION OF BREV

In this section we continue our comparison of BRev to SSRev. We prove our aforementioned

Theorem 3.6 that states that SSRev is a log factor approximation to BRev. Recall that in our setting,

BRev corresponds to the optimal revenue achieved by a mechanism which ignores demographic

data entirely, while SSRev corresponds to the optimal revenue achieved by a mechanism which

sets the same price to display an ad to each demographic, and allows each advertiser to choose

which demographic views to purchase.

Using a similar approach to Appendix F in [5], we prove Theorem 3.6, namely that for any

distribution 𝐷 for a single buyer and𝑚 items (possibly correlated), BRev(𝐷) ≤ 5 log(𝑚)SSRev(𝐷).

Definition E.1. We say that an𝑚-dimensional distribution 𝐷 is a point-mass in sum distribution

if there exists a 𝑝 such that when ®𝑣 is sampled from 𝐷 ,
∑

𝑗 𝑣 𝑗 = 𝑝 with probability 1.

Definition E.2. An𝑚-dimensional distribution 𝐷 is symmetric if all marginals 𝐷 𝑗 are the same.

Lemma E.3. Any𝑚-dimensional distribution D has point-mass in sum𝑚-dimensional distribution

𝐷 ′ s.t. BRev(𝐷′)
SSRev(𝐷′) ≥

BRev(𝐷)
SSRev(𝐷)

Proof. Let’s pick any𝐷 with PDF 𝐹 , and let the optimal BRev price be 𝑝𝐵 . Let Pr[∑𝑗 𝑣 𝑗 > 𝑝𝐵] = 𝑞.

Then BRev(𝐷) = 𝑝𝐵 · 𝑞. We define 𝐷 ′′ with PDF 𝐹 ′′ to be the distribution that is 𝐷 transformed

into a point-mass in sum distribution without decreasing
BRev(𝐷)
SSRev(𝐷) as follows: if

∑
𝑗 𝑣 𝑗 > 𝑝𝐵 , make

it so

∑
𝑗 𝑣 𝑗 = 𝑝𝐵 , else set all 𝑣 𝑗 = 0. In particular, consider any 𝑝 , then any item that is less than

𝑝 under 𝐷 is also less than 𝑝 under 𝐷 ′′. In particular, the consumer is still willing to pay 𝑝𝐵 w.p.

𝑞 which means that BRev(𝐷 ′′) is at least BRev(𝐷). Additionally, 𝐹 ′′(𝑥) ≤ 𝐹 (𝑥) for all 𝑥 , and so

values are lowered in a stochastically dominating way which means that SSRev(𝐷 ′′) is at most

SSRev(𝐷). We now combine these two inequalities to get:

BRev(𝐷 ′′)
SSRev(𝐷 ′′) ≥

BRev(𝐷)
SSRev(𝐷)

Next, we define 𝐷 ′ to be the distribution that is 𝐷 ′′ conditioned on

∑
𝑗 𝑣 𝑗 = 𝑝𝐵 . 𝐷

′′
samples

from 𝐷 ′ w.p. 𝑞, else sets all values to 0. 𝐷 ′ is a point-mass in sum distribution. We note that

BRev(𝐷 ′′) = 𝑞 · 𝑝𝐵 which is a 𝑞 fraction of BRev(𝐷 ′). On the other hand, whatever price is set for

each item sells w.p. exactly 𝑞 times the probability it sells when the consumer is drawn from 𝐷 ′,
and so SSRev(𝐷 ′′) is also a 𝑞 fraction of SSRev(𝐷 ′). We now combine these inequalities to get:

BRev(𝐷 ′)
SSRev(𝐷 ′) =

BRev(𝐷 ′′)
SSRev(𝐷 ′′) ≥

BRev(𝐷)
SSRev(𝐷)

□
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Lemma E.4. Any𝑚-dimensional distribution 𝐷 , has a symmetric𝑚-dimensional distribution 𝐷 ′ s.t.
BRev(𝐷′)
SSRev(𝐷′) ≥

BRev(𝐷)
SSRev(𝐷) .

Proof. Define distribution𝐷 ′ to be the following transformation of distribution𝐷 : sample ®𝑣 ∼ 𝐷 ,

then randomly permute its components to form ®𝑣 ′. In particular, we have BRev(𝐷) = BRev(𝐷 ′) and
SSRev(𝐷 ′) = SSRev(𝐷). We let 𝐷 𝑗 denote the 𝑗𝑡ℎ marginal of 𝐷 and 𝐷 ′

𝑘
denote the 𝑘𝑡ℎ marginal

of 𝐷 ′. We let 𝑣 𝑗 denote a sample from 𝐷 𝑗 , and 𝑣 ′
𝑘
a sample from 𝐷 ′

𝑘
, and so 𝐷 ′

𝑘
samples from

each 𝐷 𝑗 w.p.
1

𝑚
. Observe that SSRev(𝐷 ′) = SRev(𝐷 ′) = ∑

𝑘 max𝑝 {𝑝 · Pr[𝑣 ′
𝑘
≥ 𝑝]}. Additionally,

each 𝐷 ′
𝑘
samples each 𝐷 𝑗 w.p.

1

𝑚
, so we achieve Pr[𝑣 ′

𝑘
≥ 𝑝] = ∑

𝑗
1

𝑚
Pr[𝑣 𝑗 > 𝑝]. We then get

SSRev(𝐷 ′) = SRev(𝐷 ′) = ∑
𝑘 max𝑝 {𝑝

∑
𝑗

1

𝑚
Pr[𝑣 𝑗 > 𝑝] = max𝑝 {𝑝

∑
𝑗 Pr[𝑣 𝑗 > 𝑝]} = SSRev(𝐷).

We now combine these inequalities to get:

BRev(𝐷 ′)
SSRev(𝐷 ′) ≥

BRev(𝐷)
SSRev(𝐷)

□

LemmaE.5. Let𝐷 be any symmetric point-mass in sum distribution. Then BRev(𝐷) ≤ 5 log(𝑚)SSRev(𝐷)

Proof. Without loss of generality, scale 𝐷 down to SSRev(𝐷) = SRev(𝐷) = 𝑚, and let 𝑝 =

Val(𝐷). We now want to see how large Val(𝐷) can be subject to these constraints. By symmetric

point-mass constraint, each 𝐷 𝑗 is supported on [0, 𝑝]. And since SRev(𝐷) =𝑚 and 𝐷 is symmetric,

each 𝐷 𝑗 has expected revenue 1. This gives:

Val(𝐷 𝑗 ) =
∫ 𝑝

0

Pr[𝑣 𝑗 > 𝑥]𝑑𝑥 ≤
∫

1

0

1𝑑𝑥 +
∫ 𝑝

1

1

𝑥
𝑑𝑥 = 1 + log(𝑝)

We know that Val(𝐷) = 𝑝 , and we know that Val(𝐷) = ∑
𝑗 Val(𝐷 𝑗 ) ≤ 𝑚(1 + log(𝑝)). Plugging

those values back in gives 𝑝 ≤ 𝑚 +𝑚 log(𝑝) which simplifies to 𝑝 ≤ 5𝑚 log(𝑚). We can now

observe that BRev(𝐷) ≤ 5 log(𝑚)SSRev(𝐷) □

In our last step, we recall that for any distribution 𝐷 , SSRev(𝐷) ≥ 1

𝑚
SRev(𝐷), so if SRev(𝐷) ≥

𝛼 (𝑚)BRev(𝐷), then SSRev(𝐷) ≥ 𝛼 (𝑚)
𝑚

BRev(𝐷). We now have the lemma below.

Lemma E.6 (SSRev is a 𝑓 (𝛼) approximation of BRev). Let SRev = 𝛼 (𝑚)BRev where 𝛼 (𝑚) can
take values between 1/Θ(log(𝑚)) and Θ(𝑚). And let SSRev ≥ 𝑓 (𝛼 (𝑚))BRev. Then 𝑓 (𝛼) is always
the better of 1/Θ(log(𝑚)) and Θ(𝛼 (𝑚)/𝑚).

We observe that unless 𝛼 (𝑚) is really large (i.e. >> 𝑚1−𝜖 >> 𝑚/log(𝑚)), it’s not possible
to achieve better than a log(𝑚) approximation. We will also show examples where the bound

SSRev ≤ 𝑓 (𝛼)BRev is tight even when SRev achieves better revenue than BRev, which shows that

you can’t get a good approximation. In other words, even when SRev is better than BRev, SSRev

can still do much worse than BRev.

F TIGHT BOUNDS BETWEEN BRev AND SSRev

In this section, we first provide two examples of 𝐷 illustrating that both bounds between BRev(𝐷)
and SSRev(𝐷) are tight. Then, we merge these two examples into a canonical example of 𝐷 to offer

revenue guarantees of SSRev(𝐷) with respect to BRev(𝐷) using revenue guarantees of SSRev(𝐷)
with respect to SRev(𝐷).

Example F.1 (BRev optimal example). Consider the following example where we define 𝐷𝑘
to be

the single buyer distribution with 𝑘 values, where each 𝑣 𝑗 is drawn i.i.d. from an Equal-Revenue

curve for all 𝑗 . The Equal-Revenue distribution has CDF 𝐹 (𝑥) = 0 for 𝑥 ≤ 1, and 𝐹 (𝑥) = 1 − 1/𝑥
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for 𝑥 ≥ 1. That is, Pr[𝑣 𝑗 ≥ 𝑥] = 1/𝑥 for all 𝑥 ≥ 1 and all 𝑗 . Here, the expected revenue obtained

on each item by posting any price 𝑝 ≥ 1 is always one. And so, selling each item 𝑗 separately at

a price of 𝑝 𝑗 ≥ 1 gets revenue one per item, for a total revenue of 𝑘 for all items. In other words

SRev(𝐷𝑘 ) = 𝑘 . Since any price achieves the same revenue, we observe that setting the same price

𝑝 ≥ 1 on each item also achieves revenue 𝑘 . In other words SSRev(𝐷𝑘 ) = 𝑘 . On the other hand,

bundling together achieves revenue Θ(𝑘 log(𝑘)) as shown in [32]. We can conclude that SSRev

being a log approximation of BRev is tight.

Example F.2 (SSRev optimal example). Consider the following example, similar to Example C.9

in the Appendix, where we define 𝐷𝑙
to be the single buyer distribution with 𝑙 values, where each

𝑣 𝑗 is 2
𝑗
with probability 2

−𝑗
and 0 with probability 1 − 2

−𝑗
independently. Then the optimal way to

sell each item separately is to set a price 2
𝑗
on item 𝑗 , which gives an expected revenue of one for

each item, for a total revenue of 𝑙 for all items. In other words SRev(𝐷𝑙 ) = 𝑙 . If we sell each item

at the same price 𝑝 ∈ (2𝑗 , 2𝑗+1], then the buyer will only purchase non-zero valued items indexed

above 𝑗 . This happens with probability at most

∑
𝑖 2

𝑖 < 2
𝑗
. And so the revenue is 𝑝 · 2𝑗

which is at

most 2
𝑗+1 · 2𝑗 = 2. Then any price 𝑝 generates revenue at most 2. In other words SSRev(𝐷𝑙 ) ≤ 2.

Similarly, if we bundle the items together, then the buyer will only purchase if they have a non-zero

value for some item > 𝑗 , and so bundling together generates revenue at most 2. In other words

BRev(𝐷𝑙 ) ≤ 2. We can conclude that BRev being a constant approximation of SSRev is tight.

Example F.3 (SSRev canonical example). Finally, consider the following example where we define

𝐷𝑚
to be the single buyer distribution with𝑚 values, 𝑙 of which are such that each 𝑣 𝑗 is either

2
𝑗
with probability 2

−𝑗
or 0 with probability 1 − 2

−𝑗
independently (we call this set 𝑆𝑙 ), and 𝑘 of

which are drawn i.i.d. from an Equal-Revenue curve (we call this set 𝑆𝑘 ). Then the optimal way

to sell each item separately is to set a price 2
𝑗
on item 𝑗 in 𝑆𝑙 , which achieves expected revenue

𝑙 , and to set any price 𝑝 ≥ 1 on each item in 𝑆𝑘 , which achieves expected revenue 𝑘 . In other

words, SRev(𝐷𝑚) = 𝑙 + 𝑘 =𝑚. On the other hand, bundling together achieves expected revenue

Θ(𝑘 log(𝑘)) from the items in 𝑆𝑘 and constant expected revenue from the items in 𝑆𝑙 . In other

words, BRev(𝐷𝑚) achieves revenue Θ(𝑘 log(𝑘)). Finally, setting any same price 𝑝 on each item

achieves revenue 𝑘 from the items in 𝑆𝑘 and at most revenue 2 from the items in 𝑆𝑙 . In other words

SSRev(𝐷𝑚) ≤ 𝑘 + 2.

We observe that in this example, SSRev(𝐷𝑚) is a 𝑘/𝑚 approximation of SRev(𝐷𝑚) and a log(𝑘)
approximation of BRev(𝐷𝑚). We now find an expression for 𝑘 in terms of𝑚.

Let SRev(𝐷𝑚) = 𝛼 (𝑚)BRev(𝐷𝑚), where 𝛼 (𝑚) can take values between 1/Θ(log(𝑚)) and Θ(𝑚).
And let SSRev(𝐷𝑚) ≥ 𝑓 (𝛼)BRev(𝐷𝑚), where 𝑓 (𝛼) is a function of 𝛼 (𝑚). We now find 𝑘 in terms of

𝑚 to find tight bounds for 𝑓 (𝛼) and show that it’s always the better of 1/Θ(log(𝑚)) andΘ(𝛼 (𝑚)/𝑚).

Consider distribution 𝐷𝑚
defined above in Example F.3 where 𝛼 (𝑚) = SRev(𝐷𝑚)/BRev(𝐷𝑚) =

𝑚/𝑘 log(𝑘). We rearrange the equality to get 𝑘 log(𝑘) = 𝑚/𝛼 (𝑚), which gives 𝑘 ∼ 𝑚/𝛼 (𝑚)
log(𝑚/𝛼 (𝑚)) .

Similarly, we know that 𝑓 (𝛼) ≤ SSRev(𝐷𝑚)/BRev(𝐷𝑚) = 𝑘/𝑘 log(𝑘) = 1/log(𝑘). Plugging in the

𝑘 approximation from above, we get 𝑓 (𝛼) = 1/log( 𝑚/𝛼 (𝑚)
log(𝑚/𝛼 (𝑚)) ).

Next, recall that 𝛼 (𝑚) can take values between 1/Θ(log(𝑚)) and Θ(𝑚). When 𝛼 (𝑚) is on the

order of 𝑜 (𝑚), we achieve 𝑓 (𝛼) ∼ 1/log( 𝑚/𝛼 (𝑚)
log(𝑚/𝛼 (𝑚)) ) which is on the order of 1/Θ(log(𝑚/𝛼 (𝑚))).

On the other hand, for values of 𝛼 (𝑚) closer to Θ(𝑚), we get 𝑓 (𝛼) on the order of Θ(𝛼/𝑚).
Finally, we double check this with the previous examples above, namely when 𝑘 = 𝑚, which

gives 𝐷𝑚 = 𝐷𝑘
as in Example F.1, and 𝛼 (𝑚) = 1/log(𝑚) and 𝑓 (𝛼) ∼ 1/Θ(log(𝑚)). This shows

that when BRev(𝐷𝑚) is a log(𝑚) factor of SSRev(𝐷𝑚) then SSRev(𝐷𝑚) and SRev(𝐷𝑚) achieve
similar revenues. Similarly, when 𝑘 = 0, we have 𝐷𝑚 = 𝐷𝑙

as in Example F.2, and 𝛼 (𝑚) =𝑚 and
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𝑓 (𝛼) ∼ Θ(1). This shows that when BRev(𝐷𝑚) is a 1/𝑚 factor of SRev(𝐷𝑚), then SSRev(𝐷𝑚) and
BRev(𝐷𝑚) achieve similar revenues.

An interesting observation is that for any𝑚-dimensional distribution𝐷 , SSRev(𝐷) can achieve at
least 1/𝑚 revenue of SRev(𝐷) by just setting the price on each item to be the price of the item that

brings the most revenue to SRev(𝐷). And since SRev(𝐷) achieves an 𝛼 (𝑚) fraction of BRev(𝐷),
then SSRev(𝐷) achieves at least an 𝛼 (𝑚)/𝑚 fraction of BRev(𝐷). Additionally, we previously

showed in Theorem 3.6 that SSRev(𝐷) is a log approximation of BRev(𝐷), and so we can conclude

that SSRev(𝐷) always achieves the better of log(𝑚) and 𝛼 (𝑚)/𝑚 factor of BRev(𝐷).

We refer to Appendix G below for other interesting examples, one of which highlights the

differences between a fair non-symmetric mechanism and a fair symmetric mechanism.

G FAIR BUT NON-SYMMETRIC MECHANISM

In this section, we present an example of a fair but non-symmetric mechanism and compare its

revenue to that of a symmetric mechanism.

Consider the following example with two items and one bidder. Define 𝐷1, the distribution of

the value of item one to be equal to 4 with probability 1/2, and 1 with probability 𝜀, and 0 with

probability 1/2 − 𝜀. Define 𝐷2, the distribution of the value of item two to be equal to 4 with

probability 𝜀, and 1 with probability 1 − 2𝜀, and 0 with probability 𝜀. Let ®𝑣 = (𝑣1, 𝑣2) be the buyer
values, and (𝜋1, 𝜋2, 𝑝) be the tuple where 𝜋1 and 𝜋2 are the respective allocation probabilities of

items one and two, and 𝑝 the price paid by the bidder for those allocations. Consider the follow-

ingmechanism𝑀 that takes in a vector of values (𝑣1, 𝑣2) and outputs allocations and price (𝜋1, 𝜋2, 𝑝):

𝑀 (4, 4) = (1, 1, 3.5)
𝑀 (1, 1) = (0.5, 0.5, 1)
𝑀 (0, 0) = (0, 0, 0)

𝑀 (4, 1) = (1, 1, 3.5)
𝑀 (1, 4) = (0, 1, 3)

𝑀 (4, 0) = (1, 0, 3)
𝑀 (0, 4) = (0, 1, 3)

𝑀 (1, 0) = (0, 0, 0)
𝑀 (0, 1) = (0, 1, 1)

We observe that mechanism𝑀 is fair but not symmetric. The idea here is that if the buyer has

highly asymmetric values for two items, then the buyer can’t set different prices where the low

value item is sold at a low price and the high value items is sold at a higher price, since symmetry

would not allow this. Fairness, however, does allow it.

Now we consider the following mechanism𝑀 ′:

𝑀 ′(4, 4) = (1, 1, 5)
𝑀 ′(1, 1) = (0, 1, 1)
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𝑀 ′(0, 0) = (0, 0, 0)

𝑀 ′(4, 1) = (1, 1, 5)
𝑀 ′(1, 4) = (0, 1, 3)

𝑀 ′(4, 0) = (1, 0, 4)
𝑀 ′(0, 4) = (0, 1, 3)

𝑀 ′(1, 0) = (0, 0, 0)
𝑀 ′(0, 1) = (0, 1, 1)

We observe that mechanism 𝑀 ′ is not symmetric nor fair. But it achieves more revenue. In

particular, for the case of value vector (1, 1), the auctioneer would ideally not give item one but

gives item two and charge price 𝑝 = 1. This gives allocation-price vector (0, 1, 1) which is not a fair

allocation. This unfairness can be fixed by changing it to uniformly at random with probability 1/2
of getting each item. Additionally, symmetry adds even more constraints. In particular, for the case

of values (1, 4) and (4, 1), the auctioneer can’t charge different prices (e.g. 1 vs. 7/2).
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