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Abstract

Reserve systems have been designed and implemented for numerous real-world

resource allocation problems. Often, de-reservation policies accompany reserve sys-

tems to prevent waste in instances of low demand for exclusive reserve categories.

De-reservation policies must be executed carefully so that allocation mechanisms have

desired properties. We evaluate the de-reservation policy that has been implemented

in admissions to technical universities in India and reveal its shortcomings. We in-

troduce two families of choice procedures—backward and forward transfers choice

rules—and deferred acceptance (DA) mechanisms with respect to these choice rules

to retrieve these shortcomings. We introduce a framework to compare choice rules on

the basis of merit and show that forward transfers choice rules select more meritorious

sets than backward transfers choice rules. We further compare the DA mechanisms un-

der backward and forward transfers choice rules on the basis of merit and individuals’

welfare.
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1 Introduction

Reserve systems have been designed and implemented to allocate scarce resources in the
presence of diversity and affirmative action considerations in a variety of real-world prob-
lems. Notable examples include:

• allocation of publicly funded school seats and government-sponsored job positions
in India (Baswana et al. 2018 and 2019; Aygün and Turhan 2017, 2020, and 2021;
Thakur 2018; Sönmez and Yenmez 2020 and 2021),

• college admission in Brazil with multidimensional privileges (Aygün and Bó 2020),

• school choice in Boston and Chile (Dur et al. 2018; Correa et al. 2019),

• immigration visas in the US (Pathak et al. 2020),

• allocation of vaccines, ventilators, and other medical resources (Pathak et al. 2020;
Aziz and Brandl 2021), and

• Mechinot gap-year programs in Israel (Gonczarowski et al. 2020).

In reserve systems, certain fractions of available objects/positions are set aside for differ-
ent reserve categories. Each reserve category has its own priority order over individuals.
Institutions process reserve categories sequentially1 to fill their positions, according to a
pre-specified order referred to as a processing sequence. Reserve categories allocate their
units to the individuals, who have not yet been allotted a unit on the basis of their priori-
ties. Priorities may vary from one reserve category to another to accommodate affirmative
action constraints or to promote diversity, among other objectives.

In almost all real-world applications, most reserve categories are exclusive in the sense
that only applicants with certain types or characteristics are considered. That is, if positions
in a reserve category can only be allocated to individuals with a certain characteristic, then
all other individuals who do not possess this characteristic are deemed unqualified and are
unacceptable according to the priority ordering of this reserve category.2 It is highly com-
mon for the number of available positions to outnumber the number of applicants of such

1Delacretaz (2020) formulates a model where categories allocate their unit/positions simultaneously.
2In vaccine allocation during COVID-19, for example, frontline healthcare workers and people who live

in care homes are considered as exclusive reserve categories. In Brazilian college admission, low-income
minority students from public high schools are an example of an exclusive reserve category. In government-
sponsored job allocation in India, candidates from Scheduled Castes are an example of an exclusive reserve
category.
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exclusive reserve categories. Therefore, objects may be unassigned or positions may be
unfilled in such exclusive reserve categories.3 To alleviate this issue, de-reservation poli-
cies have been introduced along with accompanying reservation policies. De-reservation
is simply a process of providing the unallocated objects/positions for the use of others. It
can be interpreted as transferring units or positions from low-demand reserve categories to
high-demand ones.

The lack of de-reservation policies may cause confusion, and even have legal con-
sequences. Examples have been seen during the COVID-19 vaccine allocation in many
countries. Almost all countries implement a reserve system to allocate vaccines, starting
with vaccinating frontline healthcare workers followed by elderly in care homes. Most
countries did not specify de-reservation policies for when they have leftover doses. In Aus-
tria, for example, the government did not provide guidelines for handling leftover doses
before vaccine distribution started. Local authorities allocated leftover vaccines according
to their own judgments and have been accused of jumping the queue, some have faced legal
challenges.4

De-reservation policies are necessary in many real-world allocation problems. More-
over, the implementation of de-reservation policies is consequential. When de-reservation
policy is not designed and/or implemented carefully, allocation procedures as a whole
might have serious shortcomings, no matter how well-designed the reserve system is. Re-
serve policies have been well-studied in the literature, while de-reservation policies that are
attached to reserve systems have not. This paper aims to fill this crucial gap. As we will
show, the design and implementation of de-reservation policies affects whether the reserve
systems and affirmative action programs can yield the full benefit.

The organization of the paper is as follows: In Section 2, we model the admissions
market of technical universities in India and formulate the currently implemented sequen-
tial mechanism—multi-run deferred acceptance—to handle de-reservations. In the same
section, we disclose its shortcomings. In Section 3, we introduce two families of choice
rules—backward and forward transfers choice rules—to untangle de-reservations and the
deferred acceptance mechanism with respect to these choice rules. We show that our pro-
posals can successfully overcome the shortcomings of the multi-run deferred acceptance
and satisfactorily clear the market. In Section 4, we compare backward and forward trans-

3This has been happening in the allocation of publicly funded school seats in India.
4The news article can be accessed at https://www.theguardian.com/world/2021/jan/21/austrian-mayors-

who-got-leftover-covid-vaccines-accused-of-queue-jumping (last accessed on 01/23/2021).
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fers choice rules with respect to a comparison criteria on the basis of merit, and with respect
to individuals’ welfare. In the same section, we extend these comparisons to the outcomes
of the DA with respect to these choice rules. Section 5 discusses the related literature and
Section 6 concludes.

2 Framework

2.1 Admission Market of Technical Universities in India

The admission process at technical universities in India functions through a centralized
marketplace that matches approximately 1.3 million students to 34,000 university seats.
The process was recently reformed and the new procedure has been adopted beginning in
2015. The reform was the product of collaboration between policymakers and researchers
from computer science and operations research, and was summarized in Baswana et al.
(2018). The authors report the design and implementation of the new procedure, which is
based on the celebrated deferred acceptance algorithm of Gale and Shapley (1962).

Admissions to publicly funded universities in India are subject to an affirmative action
program that has been implemented via a reservation policy for decades. According to
the reservation policy, each institution sets aside 15 percent of its slots for applicants from
Scheduled Castes (SC), 7.5 percent for applicants from Scheduled Tribes (ST), and 27
percent for applicants from Other Backward Classes (OBC). Applicants who do not belong
to any of these categories are referred to as members of the General Category (GC). The
remaining slots are called open-category slots and are available to everyone, including
applicants from SC, ST, and OBC. In each institution, for slots that are reserved for SC,
ST, and OBC, only applicants who declare they belong to these respective categories are
considered. In each institution, open-category positions are filled first, followed by the
exclusive reserve categories. The processing order of seat categories for different applicant
types is as follows:

• Applicants who declare their SC memberships are first considered for open-category
positions, and then for reserved SC positions,

• Applicants who declare their ST memberships are first considered for open-category
positions, and then for reserved ST positions,
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• Applicants who declare their OBC memberships are first considered for open-category
positions, and then for reserved OBC positions,

• Applicants who do not declare membership to SC, ST, or OBC are only considered
for open-category positions.

By law, vacant SC/ST positions cannot be de-reserved. By and large, many SC/ST posi-
tions remain vacant and are wasted each year. On the other hand, unfilled OBC positions
must be de-reserved. If there are not sufficient OBC applicants, the unfilled OBC posi-
tions are converted into open-category positions. To model the reserve system and the
de-reservation policy and how they are implemented, we will first formulate the technical
university admissions market.

There is a finite set of institutions ( programs) S = {𝑠1, ..., 𝑠𝑚} and a finite set of indi-
viduals I = {𝑖1, ..., 𝑖𝑛}. We denote the number of available positions at institution 𝑠 ∈ S
by 𝑞𝑠. For each institution 𝑠, the vector

(
𝑞𝑆𝐶𝑠 , 𝑞

𝑆𝑇
𝑠 , 𝑞

𝑂𝐵𝐶
𝑠

)
denotes the number of positions

reserved for SC, ST, and OBC categories. We let R = {𝑆𝐶, 𝑆𝑇,𝑂𝐵𝐶} to denote the set of
reserve categories, and let C = {𝑂𝑃,𝑆𝐶, 𝑆𝑇,𝑂𝐵𝐶} to denote the set of all categories5. The
number of open-category seats at institution 𝑠 is 𝑞𝑂𝑃𝑠 = 𝑞𝑠 − 𝑞𝑆𝐶𝑠 − 𝑞𝑆𝑇𝑠 − 𝑞𝑂𝐵𝐶𝑠 . We write
𝑞𝑠 =

(
𝑞𝑂𝑃𝑠 , 𝑞𝑆𝐶𝑠 , 𝑞

𝑆𝑇
𝑠 , 𝑞

𝑂𝐵𝐶
𝑠

)
to describe the initial distribution of positions over reserve cate-

gories at institution 𝑠. Let q = (𝑞𝑠)𝑠∈S denote a profile of vectors for the initial distribution
of positions over categories (OP, SC, ST,OBC) at institutions. That is, q is a vector of
distribution vectors.

The function t : I → C denotes the category membership of individuals. For every
individual 𝑖 ∈ I, t(𝑖) ∈ C denotes the category individual 𝑖 belongs to. In India, it is optional
to report SC, ST, or OBC membership. Reserved category members who do not report
their membership are considered GC applicants and are eligible only for open-category
positions. Members of reserve category 𝑟 ∈ R are eligible for both open-category positions
and reserved category 𝑟 positions. We denote a profile of reserved category membership
by T = (t(𝑖))𝑖∈I . Let T be the set of all possible reserved category membership profiles.

The function 𝜅 : I ×S → R+ denotes individuals’ merit scores at institutions. Appli-
cants might have different merit scores for different institutions. We let 𝜅(𝑖, 𝑠) denote the

5In Baswana et al. (2018), there are special reservations for People with Disabilities (PwD) within each
of these categories. Namely, SC-PwD, ST-PwD, OBC-PwD, and GC-PwD. For the sake of simplicity, we
did not model these. Our model can be straightforwardly extended to a model that also captures these special
categories. All of our results are independent of this simplification and hold in a model that covers special
reservations.
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merit score of individual 𝑖 at institution 𝑠. We assume that no two individuals have the
same score at a given institution6. That is, for all 𝑖, 𝑗 ∈ I and 𝑠 ∈ S such that 𝑖 ≠ 𝑗 , we have
𝜅(𝑖, 𝑠) ≠ 𝜅( 𝑗 , 𝑠). Merit scores induce strict meritorious ranking of individuals at institution
𝑠, denoted �𝑠, which is a linear order over I∪{∅}. 𝑖 �𝑠 𝑗 means that applicant 𝑖 has a higher
priority (higher merit score) than applicant 𝑗 at institution 𝑠. That is, 𝜅(𝑖, 𝑠) > 𝜅( 𝑗 , 𝑠). We
write 𝑖 �𝑠 ∅ to say that applicant 𝑖 is acceptable for institution 𝑠. Similarly, we write ∅ �𝑠 𝑖
to say that applicant 𝑖 is unacceptable for institution 𝑠. The profile of institutions’ merit lists
is denoted by �= (�𝑠1 , ...,�𝑠𝑚). For each institution 𝑠 ∈ S, the merit ordering for applicants
of type 𝑡 ∈ R, denoted by �𝑡𝑠, is obtained from �𝑠 in a straightforward manner as follows:

• for 𝑖, 𝑗 ∈ I such that 𝑡 (𝑖) = 𝑡, 𝑡 ( 𝑗) ≠ 𝑡, 𝑖 �𝑠 ∅, and 𝑗 �𝑠 ∅, we have 𝑖 �𝑡𝑠 ∅ �𝑡𝑠 𝑗 ,7

• for any other 𝑖, 𝑗 ∈ I, 𝑖 �𝑡𝑠 𝑗 if and only if 𝑖 �𝑠 𝑗 .

Each reserve category 𝑡 ∈ R is exclusive. That is, all applicants who do not belong to
category 𝑡 become unacceptable. Among the applicants who belong to category 𝑡, the
ranking �𝑠 is preserved.

Each individual 𝑖 ∈ I has a strict preference relation 𝑃𝑖 over S∪ {∅}, where ∅ denotes
the outside option, i.e., remaining unmatched. We write 𝑠𝑃𝑖∅ to mean that institution 𝑠 is
acceptable for individual 𝑖. Similarly, ∅𝑃𝑖𝑠 means institution 𝑠 is unacceptable for indi-
vidual 𝑖. We denote the profile of true individual preferences by 𝑃 = (𝑃𝑖)𝑖∈I . We denote
by 𝑅𝑖 the weak preference relation associated with the strict preference relation 𝑃𝑖, and by
𝑅 = (𝑅𝑖)𝑖∈I as the profile weak preferences.

For each institution 𝑠 ∈ S, its selection criterion is summarized by a choice function 𝐶𝑠.
A choice function 𝐶𝑠 simply selects a subset from any given set of individuals. That is, for
any given 𝐼 ⊆ I, the chosen set 𝐶𝑠 (𝐼) is a subset of 𝐼, i.e., 𝐶𝑠 (𝐼) ⊆ 𝐼. We now introduce a
choice function with reserves 𝐶𝑅𝑒𝑠𝑠 that will be key for the rest of our analysis.

Choice Rule with Reserves 𝐶𝑅𝑒𝑠𝑠

Given an initial distribution of positions 𝑞𝑠 =
(
𝑞𝑂𝑃𝑠 , 𝑞𝑆𝐶𝑠 , 𝑞

𝑆𝑇
𝑠 , 𝑞

𝑂𝐵𝐶
𝑠

)
, a set of applicants

𝐴 ⊆ I, and a profile reserve category membership T = (t(𝑖))𝑖∈𝐴 for the members of 𝐴, the
set of chosen applicants 𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠), is computed as follows:

6In India, when two or more applicants have the same score, ties are broken with some exogenously given
objective criteria.

7∅ �𝑠
𝑡 𝑗 means applicant 𝑗 is unacceptable for category 𝑡 at institution 𝑠.
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Stage 1. Only open-category seats are considered. Individuals are chosen one at a time
following �𝑠 up to the capacity 𝑞𝑂𝑃𝑠 . Let us call the set of chosen applicants 𝐶𝑂𝑃𝑠

(
𝐴,𝑞𝑂𝑃𝑠

)
.

Stage 2. Among the remaining applicants 𝐴
′
= 𝐴 \𝐶𝑂𝑃𝑠

(
𝐴,𝑞𝑂𝑃𝑠

)
, for each reserve cate-

gory 𝑡 ∈ R, applicants are chosen one at a time following �𝑡𝑠 up to the capacity 𝑞𝑡𝑠. Let us
call the set of chosen applicants for reserve category 𝑡 𝐶𝑡𝑠

(
𝐴

′
, 𝑞𝑡𝑠

)
.

Then, 𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠) is defined as the union of the set of applicants chosen in stages 1 and
2. That is,

𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠) = 𝐶𝑂𝑃𝑠
(
𝐴,𝑞𝑂𝑃𝑠

)
∪

⋃
𝑡∈R
𝐶𝑡𝑠

(
𝐴

′
, 𝑞𝑡𝑠

)
.

This is a commonly used sequential choice procedure in practice. Note that the chosen set
is a function of the vector of initial distribution of positions over categories 𝑞𝑠.

A choice rule determines who is chosen from any given set of individuals when there
is a single institution. In centralized marketplaces, there are multiple institutions, each of
which has its own selection criteria embodied in its choice rule.

Matching and Stability

A matching specifies, for every institution, the set of individuals who are assigned to that
institution. Mathematically, a matching 𝜇 is a function 𝜇 : I∪S →I∪S∪ {∅} such that

1. for any individual 𝑖 ∈ I, 𝜇(𝑖) ∈ S ∪ {∅},

2. for any institution 𝑠 ∈ S, 𝜇(𝑠) ⊆ I such that | 𝜇(𝑠) |≤ 𝑞𝑠,

3. for any individual 𝑖 ∈ I and institution 𝑠 ∈ S, 𝜇(𝑖) = 𝑠 if and only if 𝑖 ∈ 𝜇(𝑠).

That is, an individual is either matched with an institution, or the outside option ∅ and an
institution 𝑠 is matched with a set of individuals that has at most 𝑞𝑠 individuals. Moreover,
an individual 𝑖 is assigned to institution 𝑠 if and only if 𝑖 is in the set of individuals matched
with 𝑠.

Stability has appeared as one of the most important desiderata in the matching markets.
We now give the stability definition with respect to a profile of institutional choice rules
C = (𝐶𝑠)𝑠∈S .

Definition 1. A matching 𝜇 is stable with respect to the profile of applicants’ preferences
𝑃 = (𝑃𝑖)𝑖∈I and a profile choice rules of institutions C = (𝐶𝑠)𝑠∈S if,
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(𝑖) for every individual 𝑖 ∈ I, 𝜇(𝑖)𝑅𝑖∅,
(𝑖𝑖) for every institution 𝑠 ∈ S, 𝐶𝑠 (𝜇(𝑠)) = 𝜇(𝑠), and
(𝑖𝑖𝑖) there is no (𝑖, 𝑠) such that 𝑠𝑃𝑖𝜇(𝑖) and 𝑖 ∈ 𝐶𝑠 (𝜇(𝑠) ∪ {𝑖}).

If the first requirement (individual rationality for individuals) fails, then there is an
individual who is assigned to an unacceptable institution. In our context, the second condi-
tion (individual rationality for institutions) requires that the institutions’ selection criteria
summarized in their choice rules are respected. If the third condition (unblockedness) fails,
then there is an alternative matching that an individual and an institution strictly prefers.

Stability depends on how institutions’ selection procedures are defined. In India, for ex-
ample, institutions’ selection criteria embody legal requirements, such as satisfying reser-
vation and de-reservation policies and respecting merit scores subject to affirmative action.
If each individual applies to only one institution, stability requires that the rules and regula-
tions encoded in institutions’ choice rules determine which individuals are selected. Stabil-
ity proves to be a natural desideratum for an allocation: an individual will only be matched
to a less desirable institution if, by following the selection criteria of those institutions, she
would not be accepted given the individuals who have been matched to these institutions.
Unstable allocations, therefore, might lead to lawsuits from dissatisfied applicants.

Mechanisms

A mechanism is a systematic way to map preference and reserve category membership
profiles of individuals to matchings, given institutions’ choice procedures. Technically, a
mechanism 𝜑 is a function 𝜑 : P ×T → M, where P denotes the set of all preference
profiles of individuals, T denotes the set of all reserve category membership profiles, and
M denotes the set of all matchings, given a profile of institutional choice rules C = (𝐶𝑠)𝑠∈S .

A mechanism 𝜑 is stable if 𝜑(𝑃,T) is a stable matching for all pairs (𝑃,T) ∈ P ×T .
One of the main desiderata that also has been key for the success of matching mecha-

nisms in practice is strategy-proofness, according to which submitting the true preferences
is a weakly dominant strategy for each individual.

Definition 2. A mechanism 𝜑 is strategy-proof if for every preference profile 𝑃 and for
every reserve category membership profile T, and for each individual 𝑖 ∈ I, there is no 𝑃𝑖,
such that 𝜑((𝑃𝑖, 𝑃−𝑖),T)𝑃𝑖𝜑(𝑃,T).

Affirmative action policies are designed to increase admission chances of members of
reserved categories in the sense that the assignment of a reserve category member when
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she claims her membership is at least as good as the assignment she would receive without
reporting her membership. That is, reporting their membership to reserve categories should
not hurt them. Otherwise, the rationale behind the affirmative action policy is violated. This
idea was first formulated by Aygün and Bó (2020) in the context of college admission in
Brazil with multi-dimensional privileges.

We now formulate this notion for our setting.

Definition 3. A mechanism 𝜑 is incentive compatible for reserve category membership
revelation if, for every preference profile 𝑃 ∈ P, there is no individual 𝑖 ∈ I—who is
a member of reserve category 𝑟 ∈ R—receives a better assignment by not reporting her
membership to 𝑟 given reserve category membership of other individuals T−𝑖 =

(
t 𝑗
)
𝑗∈I\{𝑖}.

That is,
𝜑𝑖

(
𝑃;

(
T−𝑖, t

′
𝑖

))
𝑃𝑖𝜑𝑖 (𝑃; (T−𝑖, t𝑖)) ,

where t′
𝑖
= 𝐺𝐶 and t𝑖 = 𝑟.

2.2 Formulation of the Current De-reservation Procedure

Before formulating the currently implemented de-reservation policy, we describe the DA
algorithm with respect to choice rules with reserves, which will prove useful for describing
the sequential version of DA that is implemented to handle de-reservation policy.

DA Algorithm under Choice Rules with Reserves

Suppose that 𝑃 =

(
𝑃𝑖

)
𝑖∈I

is the vector of the reported preference relations and T = (t𝑖)𝑖∈I
is a a vector of reported reserve category membership of individuals. Given institutions’
priority rankings �= (�𝑠)𝑠∈S and the profile q = (𝑞𝑠)𝑠∈S—therefore, given the choice func-
tion with reserves of each institution 𝑠 ∈ S, 𝐶𝑅𝑒𝑠𝑠 (·;𝑞𝑠)—the outcome of the DA algorithm
with respect to the choice rules with reserves defined above is found as follows:

Step 1. Each individual in I applies to his top choice institution. Let A1
𝑠 be the set

of individuals who apply to institution 𝑠, for each 𝑠 ∈ S. Each institution 𝑠 holds onto
applicants in 𝐶𝑠

(
A1
𝑠 , 𝑞𝑠

)
and rejects the rest.

Step n≥ 2. Each individual who was rejected in the previous step applies to the best
institution that has not rejected him. Let A𝑛

𝑠 be the union of the set of individuals who
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were tentatively held by institution 𝑠 at the end of Step 𝑛−1 and the set of new proposers
of 𝑠 in Step 𝑛. Each institution 𝑠 ∈ S tentatively holds individuals in 𝐶𝑠

(
A𝑛
𝑠 , 𝑞𝑠

)
and rejects

the rest.
The deferred acceptance algorithm terminates when there are no rejections. The out-

come of the algorithm is the tentative assignments at that point. We denote the outcome by
Φ(𝑃,q) to emphasize the dependence of the outcome on the vector of institutional reserve
structures given by the profile q. We denote Φ𝑖

(
𝑃,q

)
be the assignment of individual 𝑖.

Baswana et al. (2018) report the new design for the joint seat allocation process for
the technical universities in India that has been implemented since 2015.8 Our focus is the
sequential procedure introduced to deal with de-reservations, which is explained in detail
in Chapter 6 of the technical report Baswana et al. (2019)9.

According to this sequential process, the DA is first run with the initial capacities of
reserve categories at each program. If there are unfilled seats that can be de-reserved in the
resulting matching, then the capacities are updated by transferring the unfilled seats to the
“parent” categories10. Then, the DA is re-run on all individuals with updated capacities of
reserve categories at each institution. If there are no vacant seats that can be de-reserved in
the resulting matching, then the process is terminated. This process is called multi-run DA.

We now formulate this procedure via the multiple iteration of the DA algorithm under
choice rules with reserves.

Multi-run DA Algorithm

Let q = q1 be the profile of initial distribution vector of positions over categories at insti-
tutions. Given a vector of reported preference relations of applicants 𝑃 =

(
𝑃𝑖

)
𝑖∈I

, a vector
of reported reserve category membership T = (t𝑖)𝑖∈I , and a profile of institutions’ choice
rules with reserves

(
𝐶𝑅𝑒𝑠𝑠

)
𝑠∈S , the multi-run deferred acceptance algorithm runs as follows:

8Their design is a joint seat allocation process for IITs and non-IITs. The proposed mechanism is not a
direct mechanism. Both IITs and non-IITs run their own DA algorithm for multiple rounds, in which applicant
preferences are updated according to which program they accept. At the end of each round, candidates who
accept a seat are provided three options: Float, Slide, or Freeze. Float means the applicant wants to be
upgraded as high as possible on her preference list. Slide means the applicant wants to remain in the same
institute but wants the most desirable program available. Freeze means the applicant wants to remain at the
assigned program for the rest of the procedure. See Baswana et al. (2019) for algorithmic details. The authors
also take other constraints into account, such as non-nested quotas, that we do not model for simplicity, as
we mainly focus on the de-reservation policy.

9The report can be accessed at https://arxiv.org/pdf/1904.06698.pdf (last accessed on 02/24/2021).
10Open-category, for example, is a parent category for OBC.
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Iteration 1. Run the DA with initial distributions of positions over categories q1. That
is, for each institution 𝑠 ∈ S, use 𝐶𝑅𝑒𝑠𝑠

(
·, 𝑞1

𝑠

)
to select applicants during the DA steps. Let

𝑟1
𝑠 be the number of vacant OBC seats. Update the number of open-category and OBC

positions by transferring 𝑟1
𝑠 many positions from OBC to open-category. Let q2 be the

profile of updated distributions of positions over categories.

Iteration n (n≥2). Run the DA with the updated distributions of reserved categories q𝑛.
That is, for each institution 𝑠 ∈ S, use 𝐶𝑅𝑒𝑠𝑠

(
·, 𝑞𝑛𝑠

)
to select applicants during the DA steps.

Let 𝑟𝑛𝑠 be the number of vacant OBC seats. Update the number of open-category and OBC
positions by transferring 𝑟𝑛𝑠 many positions from OBC to open-category. Let q𝑛+1 be the
profile of updated distributions of positions over categories.

The algorithm terminates when there is no vacant position that can be de-reserved at
any institution.

We denote the outcome of the multi-run DA by Φ

(
𝑃,q𝐿

)
, where 𝐿 is the number of

iterations needed, and q𝐿 denotes the profile of updated distribution of positions at institu-
tions in the last iteration. The outcome of individual 𝑖 ∈ I is denoted by Φ𝑖

(
𝑃,q𝐿

)
.

To explain how distributions over reserve categories is updated during the multi-run DA
algorithm, we now provide a simple example with a single institution.

Example 1. Suppose there are ten individuals with following category memberships and
exam scores:

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑀𝑒𝑟𝑖𝑡 𝑆𝑐𝑜𝑟𝑒

𝑖1 𝐺𝐶 100
𝑖2 𝐺𝐶 99
𝑖3 𝐺𝐶 98
𝑖4 𝐺𝐶 97
𝑖5 𝐺𝐶 96
𝑖6 𝑂𝐵𝐶 95
𝑖7 𝑆𝐶 94
𝑖8 𝑆𝑇 93
𝑖9 𝐺𝐶 92
𝑖10 𝐺𝐶 91

Consider institution 𝑠 with ten positions. Suppose the initial distribution of positions over
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categories is
(𝑂𝑃,𝑆𝐶, 𝑆𝑇,𝑂𝐵𝐶) = (5,1,1,3) .

In the first iteration, the first five positions, i.e., open-category positions, are assigned
to individuals 𝑖1, 𝑖2, 𝑖3, 𝑖4, and 𝑖5. Individual 𝑖6 is assigned to one of the three reserved
positions for OBC. Two reserved OBC positions remain unfilled. The reserved position for
SC is assigned to 𝑖7. Similarly, the reserved position for ST is assigned to 𝑖8. In total, eight
individuals are assigned positions. Since two OBC positions remained vacant, the initial
seat allocation is updated as (7,1,1,1).

In the second iteration, open-category positions are assigned to {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6, 𝑖7}.
Individual 𝑖8 is assigned to reserved ST position. Since 𝑖9 and 𝑖10 are GC individuals, the
reserved SC and OBC seats remain vacant. The vacant OBC seat is transferred to open-
category. Hence, the new distribution over reserve categories becomes (8,1,1,0).

In the third iteration, open-category positions are assigned to {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6, 𝑖7, 𝑖8}.
Since 𝑖9 and 𝑖10 are GC individuals, the reserved SC and ST seats remain unfilled. There-
fore, even though there are individuals who are unassigned, two positions are wasted.

In this example, two of the three positions transferred from OBC to open-category are
taken by SC and ST individuals. Since unfilled SC/ST positions cannot be transferred, this
causes vacancies in reserve categories SC and ST. Therefore, the full benefit of de-reserving
vacant OBC seats into open-category cannot be achieved. This example emphasizes the
distributional consequences of the order at which categories are processed and the way
de-reservations are implemented.

More importantly, when the DA is re-run to adjust the capacities of categories to handle
de-reservations, it may incentivize individuals to misreport their preferences.

Proposition 1. The multi-run DA mechanism is manipulable via preference misreporting.

Proof. Suppose that there are two institutions 𝑎 and 𝑏, each of which has two seats. Both
schools reserve one seat for OBC candidates and consider the other seat as open-category.
There are four applicants: 𝑖1, 𝑖2, 𝑖3, and 𝑖4. Suppose t𝑖1 = t𝑖2 =𝐺𝐶 and t𝑖3 = t𝑖4 =𝑂𝐵𝐶. The
merit scores of applicants are ranked from highest to lowest as 𝑖1 − 𝑖2 − 𝑖3 − 𝑖4. The true
preferences of applicants are given below:

𝑖1 𝑖2 𝑖3 𝑖4

𝑎 𝑎 𝑏 𝑏

𝑏 𝑏 𝑎 𝑎

∅ ∅ ∅ ∅
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We first compute the outcome of the Multi-Run DA under the true preferences. In the first
iteration of the deferred acceptance, applicants 𝑖1 and 𝑖2 are considered in institution 𝑎,
while applicants 𝑖3 and 𝑖4 are considered in institution 𝑏. Since 𝑖1 and 𝑖2 are GC candidates,
they are considered only for an open-category seat in institution 𝑎. 𝑖1 is tentatively held
for the open-category seat while 𝑖2 is rejected. In institution 𝑏, applicant 𝑖3 is tentatively
held by the open-category seat and applicant 𝑖4 is tentatively held by the OBC seat. Now,
𝑖2 applies to 𝑏. Institution 𝑏 holds 𝑖2 for the open-category seat and 𝑖3 for the OBC seat.
Applicant 𝑖4 is rejected from 𝑏 in return. Next, 𝑖4 applies 𝑎 and is held by the OBC seat.

The outcome is

(
𝑎 𝑏

{𝑖1, 𝑖4} {𝑖2, 𝑖3}

)
. The first iteration of the deferred acceptance is the

final iteration and no de-reservation occurs. Note that 𝑖2 is assigned her second choice
institution.

Now, consider the following preferences, where 𝑖2 misreports by stating 𝑎 as the only
acceptable alternative (i.e., she truncates).

𝑖1 𝑖2 𝑖3 𝑖4

𝑎 𝑎 𝑏 𝑏

𝑏 ∅ 𝑎 𝑎

∅ ∅ ∅

In the first iteration of the deferred acceptance, applicants 𝑖1 and 𝑖2 are considered in in-
stitution 𝑎, while applicants 𝑖3 and 𝑖4 are considered in institution 𝑏. Since 𝑖1 and 𝑖2 are
GC candidates, they are considered only for an open-category seat in institution 𝑎. 𝑖1 is
tentatively held for the open-category seat while 𝑖2 is rejected. Since 𝑖2 has no other institu-

tion to apply to, the deferred acceptance outcome of the first iteration is

(
𝑎 𝑏

{𝑖1} {𝑖3, 𝑖4}

)
.

Since there is a vacant OBC slot in institution 𝑎, it is de-reserved and the capacity of the
open-category is set to 2 and deferred acceptance is re-run on all candidates. In the sec-
ond iteration, both 𝑖1 and 𝑖2 are held by the open-category seats of 𝑎. Applicants 𝑖3 and
𝑖4 are held by 𝑏 in open-category and OBC seats, respectively. Hence, the outcome of the

second iteration is

(
𝑎 𝑏

{𝑖1, 𝑖2} {𝑖3, 𝑖4}

)
, where each applicant is assigned their top choices.

Therefore, by misreporting, applicant 𝑖2 receives a strictly better outcome. �

Moreover, the multi-run DA mechanism provides an advantage to individuals who can
strategize by not revealing their reserve category membership.

13



Proposition 2. The multi-run DA mechanism is manipulable via not reporting reserve cat-

egory membership.

Proof. Consider the same market in the proof of Proposition 1. The multi-run DA outcome

is

(
𝑎 𝑏

{𝑖1, 𝑖4} {𝑖2, 𝑖3}

)
when both 𝑖3 and 𝑖4 truthfully report their OBC membership under

the given true preference profile. Now suppose that individual 𝑖4 does not report her OBC
membership, and, therefore, she is considered only for open-category positions.

In the first iteration of DA, individuals 𝑖1 and 𝑖2 apply to institution 𝑎, while applicants
𝑖3 and 𝑖4 apply to institution 𝑏 in the first step. Since 𝑖1 and 𝑖2 are GC candidates, they
are considered only for an open-category seat in institution 𝑎. 𝑖1 is tentatively held for the
open-category seat while 𝑖2 is rejected. In institution 𝑏, both 𝑖3 and 𝑖4 are first considered
for the open-category position. Since 𝑖3 has a higher score, 𝑖4 gets rejected. Note that since
𝑖4 did not claim her OBC membership, she gets rejected from institution 𝑏. In the second
step of the DA, 𝑖2 applies to 𝑏 and 𝑖4 applies to 𝑎. At institution 𝑏, individual 𝑖2 receives the
open-category position by replacing 𝑖3 and 𝑖3 receives the reserved OBC slot. At institution
𝑎, 𝑖1 keeps her open-category position and 𝑖4 is rejected. Therefore, the first DA iteration

results in the outcome

(
𝑎 𝑏

{𝑖1} {𝑖2, 𝑖3}

)
. Since the OBC position in institution 𝑎 remains

unfilled, it is set as an open-category position for the second iteration of DA.
We now run the second DA iteration on all individuals. 𝑖1 and 𝑖2 apply to 𝑎, and they

are both assigned to open-category positions since 𝑎 has two open-category positions now.
𝑖3 and 𝑖4 apply to institution 𝑏. 𝑖3 is assigned to the open-category position and 𝑖4 gets
rejected since she can be considered only for open-category positions and has a lower
score than 𝑖3. In the second step of the second iteration of DA, 𝑖4 applies to her second
choice, i.e., institution 𝑏. However, she gets rejected because her score is lower than both

𝑖1 and 𝑖2. Therefore, the second iteration DA outcome is

(
𝑎 𝑏

{𝑖1, 𝑖2} {𝑖3}

)
. Since the OBC

seat remains vacant in 𝑏, it is set to an open-category position so that 𝑏 now has two open-
category positions.

In the third iteration of DA, both 𝑎 and 𝑏 have two open-category positions. 𝑖1 and 𝑖2
apply to these and they are both assigned to open-category positions. 𝑖3 and 𝑖4 apply to 𝑏
and they are both assigned to open-category positions. Therefore, the outcome of the third

DA iteration is

(
𝑎 𝑏

{𝑖1, 𝑖2} {𝑖3, 𝑖4}

)
.

Note that when 𝑖4 truthfully reveals her OBC category membership she was assigned
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to institution 𝑎, which is her second choice. However, when she does not reveal her OBC
category membership she is assigned to her top choice, institution 𝑏. �

The purpose of the reservation policy is to protect the members of SC, ST, and OBC
communities when they claim their privilege. This example, however, shows that it is pos-
sible for a reserved category member to get assigned to a better institution by not claiming
her affirmative action privilege. This is in sharp contrast with the spirit of affirmative ac-
tion. The main cause of this is the way de-reservation policy is implemented. Re-running
the deferred acceptance algorithm to de-reserve unfilled slots from categories—which are
allowed to be de-reserved to their “parent” categories—may create unnecessary rejection
chains that in turn affect the distribution of positions over categories. This unnecessary
change may incentivize individuals to misreport their caste membership to get a better as-
signment. We can, therefore, conclude that the de-reservation scheme in the multi-run DA
mechanism may work against the core principle of the affirmative action policy.

Through Example 1 and Propositions 1 and 2, we reveal the unintended consequences
of this particular de-reservation process. In the next section, we propose two different de-
reservation schemes that will fix these shortcomings. Though we use the technical school
admissions in India as our primary application, our proposals can be invoked in other re-
source allocation problems via reserve systems.

3 Backward and Forward Transfers Choice Rules

In this section, we formulate two classes of choice rules to implement both reserve and
de-reservation policies. The deferred acceptance mechanism with respect to these choice
rules will be

• strategy-proof, and

• incentive compatible for reserve category membership revelation.

Before introducing these choice rules, we first define the incentive compatibility for reserve
category membership revelation for choice rules.

Definition 4. A choice rule 𝐶 is incentive compatible for reserve category membership
revelation if, for any given set of individuals 𝐴 ⊆ I and any member of reserve category
𝑟 ∈ R individual 𝑖 ∈ 𝐴, if 𝑖 ∉ 𝐶 (𝐴) when 𝑖 reports her membership to category 𝑟, then
𝑖 ∉ 𝐶 (𝐴) when 𝑖 does not report her membership to 𝑟.
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To put it differently, if individual 𝑖 announces that t𝑖 =𝐺𝐶 and she is chosen from the set
of individuals, then she must be chosen from the same set when she announces t𝑖 = 𝑟 ∈ R.

3.1 Backward Transfers Choice Rules

Given a set of applicants 𝐴 ⊆ I, a vector of reported reserve category membership T = (ti)i∈I ,
and a vector of initial distribution of positions over reserve categories 𝑞𝑠 = 𝑞1

𝑠 =
(
𝑞1
𝑠

)
, the

backward transfers choice rule 𝐶𝐵𝑇𝑠 selects applicants in multiple iterations as follows:

Iteration 1. Run the choice rule with reserves 𝐶𝑅𝑒𝑠𝑠 with 𝑞1
𝑠 . That is, institution 𝑠 selects

applicants in 𝐶𝑅𝑒𝑠𝑠

(
𝐴,𝑞1

𝑠

)
. Let 𝜏1 be the number of vacant OBC seats. Update the number

of open-category and OBC positions by transferring 𝜏1 many positions from OBC to open-
category. Let 𝑞2

𝑠 =
(
𝑞2
𝑠

)
𝑠∈S be the vector of updated distributions of positions over reserve

categories.

Iteration n (n≥2). Run the choice rule with reserves 𝐶𝑅𝑒𝑠𝑠 with the updated distribution
of positions over reserve categories 𝑞𝑛 =

(
𝑞𝑛𝑠

)
𝑠∈S . That is, institution 𝑠 selects applicants

𝐶𝑅𝑒𝑠𝑠

(
𝐴,𝑞𝑛𝑠

)
. Let 𝜏𝑛 be the number of vacant OBC seats. Update the number of open-

category and OBC positions by transferring 𝜏𝑛 many positions from OBC to open-category.
Let 𝑞𝑛+1

𝑠 =
(
𝑞𝑛+1
𝑠

)
𝑠∈S be the vector of updated distributions of positions over reserve cate-

gories.
The choice process terminates when there is no vacant OBC seat at any institution. The

set of applicants who are selected in the last iteration—call it 𝑁—are the applicants who
are selected by the backward transfers choice rule. That is,

𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) = 𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑁 ).

Proposition 3. Backward transfers choice rules are incentive compatible for reserve cate-

gory membership revelation.

Proof. See Appendix. �

We now present the DA algorithm with respect to backward transfers choice rules.
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DA Algorithm under Backward Transfers Choice Rules

Let 𝑃 =

(
𝑃𝑖

)
𝑖∈I

be the vector of reported preference relations and T= (t𝑖)𝑖∈I be the reported
profile of reserve category membership of individuals. Given the backward transfers choice
function of each institution 𝑠 ∈ S, 𝐶𝐵𝑇𝑠 —the outcome of the DA algorithm with respect to
the backward transfers choice rules defined above is computed as follows:

Step 1. Each individual in I applies to his top choice institution. Let A1
𝑠 be the set of

individuals who applies to institution 𝑠, for each 𝑠 ∈ S. Each institution 𝑠 ∈ S holds onto
applicants in 𝐶𝐵𝑇𝑠

(
A1
𝑠 , 𝑞𝑠

)
and rejects the rest.

Step n≥ 2. Each individual who was rejected in the previous step applies to the best
institution that has not rejected him. Let A𝑛

𝑠 be the union of the set of individuals who
were tentatively held by institution 𝑠 at the end of Step 𝑛−1 and the set of new proposers
of 𝑠 in Step 𝑛. Each institution 𝑠 ∈ S tentatively holds individuals in 𝐶𝐵𝑇𝑠

(
A𝑛
𝑠 , 𝑞𝑠

)
and

rejects the rest.
The multi-run DA mechanism handles de-reservation by re-running the DA mecha-

nism on all applicants to update the distribution of positions over categories by transferring
unfilled OBC positions to the open-category, which is filled first according to the prece-
dence sequence. In the DA mechanism with respect to backward transfers choice rules, de-
reservations are handled by re-running the institutions’ choice rules until there is no more
vacancy to be de-reserved. Our first result shows that the DA mechanism with respect to
these choice rules eliminates the possibility of manipulation via preference misreporting.

Theorem 1. The DA mechanism with respect to backward transfer choice rules is strategy-

proof.

Proof. See Appendix. �

We prove Theorem 1 by showing that backward transfers choice rules satisfy classical
substitutability and size monotonicity conditions. Substitutability requires that no two ap-
plicants 𝑖 and 𝑗 are complementary in the sense that the availability of 𝑗 makes applicant
𝑖 more desirable. Mathematically, a choice rule 𝐶 is substitutable if for all 𝑖, 𝑗 ∈ I, and
𝐴 ⊆ I \ {𝑖, 𝑗},

𝑖 ∉ 𝐶 (𝐴∪ {𝑖}) =⇒ 𝑖 ∉ 𝐶 (𝐴∪ {𝑖, 𝑗}) .
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Size monotonicity requires that the number of chosen individuals weakly increases if
the set of applicants expands. That is, a choice rule 𝐶 is size monotonic if

𝐴 ⊂ 𝐴′ ⊆ I =⇒| 𝐶 (𝐴) | ≤ | 𝐶 (𝐴′) | .

Similar to the multi-run DA algorithm, under the DA algorithm with backward transfers
vacant slots are transferred from the OBC category to the open-category that precedes the
OBC category in the processing sequence. However, the two mechanisms are very differ-
ent. According to the multi-run DA algorithm, the DA procedure is re-run with updated
capacities of reserve categories on all individuals. According to the DA with respect to
backward transfers choice rules, the procedure is run only once. De-reservations are han-
dled by re-iterating the choice procedures of institutions in the course of the DA algorithm.

Unlike the multi-run DA mechanism, the DA mechanism with respect to backward
transfers choice rules gives applicants incentive to report their reserve category membership
truthfully.

Theorem 2. The DA mechanism with respect to backward transfers choice rules is incen-

tive compatible for reserve category membership revelation.

Proof. See Appendix. �

There is a great benefit to re-running the choice rules rather than the DA algorithm to
de-reserve vacant OBC positions. Consider the market in the proof of Proposition 1 with

two institutions and four individuals. The Multi-run DA outcome was

(
𝑎 𝑏

{𝑖1, 𝑖4} {𝑖2, 𝑖3}

)
,

where individuals 𝑖1 and 𝑖3 receive their top choices, while individuals 𝑖2 and 𝑖4 are as-
signed to their second choices under the true preferences. The outcome of the DA under

backward transfers choice rules for the same market is

(
𝑎 𝑏

{𝑖1, 𝑖2} {𝑖3, 𝑖4}

)
, where all indi-

vidual are assigned to their top choices. By re-iterating the choice rule rather than the DA
algorithm, some unnecessary rejections chains are prevented. Our next result states that
this observation can be generalized.

Theorem 3. The DA mechanism with respect to backward transfers choice rules (weakly)

Pareto dominates the multi-run DA mechanism at every problem 𝑃.

Proof. See Appendix. �
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Our proof for Theorem 3 is elegant. For the sake of brevity, we provide a sketch. We
show that the outcome of the multi-run DA at a given preference profile 𝑃 = (𝑃𝑖)𝑖∈I is stable
with respect to the backward transfers choice rules of institutions

(
𝐶𝐵𝑇𝑠

)
𝑠∈S at the same

preference profile 𝑃 given the profile of individuals’ reserve category membership profile.
Since backward transfers choice rules satisfy substitutes and size monotonicity properties,
the DA outcome is individual-optimal. Given that multi-run DA and the DA with respect
to backward transfers choice rules are different mechanisms, individual-optimality of the
DA with respect to backward transfers choice rules implies that it Pareto dominates the
multi-run DA.

Re-iterating the choice rule with reserves within the steps of a single-run DA rather
than re-iterating the DA algorithm to update the distribution of positions not only gives ap-
plicants incentives to state their preferences truthfully, but also achieves a better outcomes
for individuals at every problem. Therefore, using the DA with backward transfer choice
rules is clearly a better choice between the two approaches.

We also have the following important corollary from the well-known Rural Hospital
Theorem.

Corollary 1. At every preference profile 𝑃 = (𝑃𝑖)𝑖∈I , the number of individuals who are

matched under the multi-run DA is the same as the number of individuals who are matched

under the DA with respect to backward transfers choice rules.

3.2 Forward Transfers Choice Rules

We now introduce forward transfers choice rules, according to which vacant positions
are transferred from OBC to open-category by filling these extra open-category positions
at the very end of the processing sequence. That is, the processing sequence becomes
𝑂𝑝𝑒𝑛→ (𝑆𝐶 − 𝑆𝑇 −𝑂𝐵𝐶) → 𝑂𝑝𝑒𝑛. Forward transfer choice rules add a third stage to
the choice rules with reserves. In the third stage, the surplus OBC positions are allo-
cated as open-category positions. That is, given an initial distribution of positions 𝑞𝑠 =(
𝑞𝑂𝑃𝑠 , 𝑞𝑆𝐶𝑠 , 𝑞

𝑆𝑇
𝑠 , 𝑞

𝑂𝐵𝐶
𝑠

)
, a set of applicants 𝐴 ⊆ I, and a vector of reported reserve category

membership T = (t(i))i∈I , the set of chosen applicants𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠), is computed as follows:

Stage 1. Only open-category seats are considered. Applicants are chosen one at a time
following �𝑠 up to the capacity 𝑞𝑂𝑃𝑠 .
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Stage 2. For each reserve category 𝑡 ∈ R, applicants are chosen one at a time following
�𝑡𝑠 up to the capacity 𝑞𝑡𝑠. Let 𝜆 be the number of vacant OBC positions.

Stage 3. Applicants are chosen one at a time following �𝑠 up to the capacity 𝜆.
We now give an example to show how the forward transfers choice rule is run.

Example 2. Let us reconsider the institution with ten positions in Example 1, where the
initial distribution of positions over reserve categories is (5,1,1,3). We will find the set
of chosen individuals with respect to the forward transfers choice rule 𝐶𝐹𝑇𝑠 as follows:
The first five positions, i.e., open-category positions are assigned to {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5}. The
reserved SC and ST positions are assigned to 𝑖7 and 𝑖8, respectively. One of the reserved
OBC positions is assigned to 𝑖6. Two reserved OBC positions remain vacant. These two
positions are made open-category positions and individuals 𝑖9 and 𝑖10 are assigned to them.
All individuals are chosen under the choice rule 𝐶𝐹𝑇𝑠 while individuals 𝑖9 and 𝑖10 were not
chosen under 𝐶𝐵𝑇𝑠 .

Examples 1 and 2 reveal the crucial difference between the backward and forward trans-
fers choice rules, which we discuss in detail in Section 4.

Proposition 4. Forward transfers choice rules are incentive compatible for reserve cate-

gory membership revelation.

Proof. See Appendix. �

We now present the DA algorithm with respect to forward transfers choice rules.

DA Algorithm under Forward Transfers Choice Rules

Let 𝑃 =

(
𝑃𝑖

)
𝑖∈I

be a vector of reported preference relations and T = (t(i))i∈I be a vector of
reported reserve category membership of individuals. Given the forward transfers choice
function of each institution 𝑠 ∈ S, 𝐶𝐹𝑇𝑠 —the outcome of the DA algorithm with respect to
the forward transfers choice rules defined above is computed as follows:

Step 1. Each individual in I applies to his top choice institution. Let A1
𝑠 be the set

of individuals who applies to institution 𝑠, for each 𝑠 ∈ S. Each institution 𝑠 holds onto
applicants in 𝐶𝐹𝑇𝑠

(
A1
𝑠 , 𝑞𝑠

)
and rejects the rest.
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Step n≥ 2. Each individual who was rejected in the previous step applies to the best
institution that has not rejected him. Let A𝑛

𝑠 be the union of the set of individuals who
were tentatively held by institution 𝑠 at the end of Step 𝑛−1 and the set of new proposers
of 𝑠 in Step 𝑛. Each institution 𝑠 ∈ S tentatively holds individuals in 𝐶𝐹𝑇𝑠

(
A𝑛
𝑠 , 𝑞𝑠

)
and

rejects the rest.
The DA mechanism with respect to forward transfers choice rules gives applicants in-

centives to submit their true rankings over institutions.

Theorem 4. The DA mechanism with respect to forward transfer choice rules are strategy-

proof.

Proof. See Appendix. �

Moreover, the DA mechanism with respect to forward transfers choice rules guarantees
that reporting reserve category membership truthfully can never hurt.

Theorem 5. The DA mechanism with respect to forward transfer choice rules is incentive

compatible for reserve category membership revelation.

Proof. See Appendix. �

4 Comparing Backward and Forward Transfers Choice
Rules

To motivate our comparison, we start with the following example.

Example 3. Suppose there are eight individuals with the following reserved categories and
exam scores:

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑀𝑒𝑟𝑖𝑡 𝑆𝑐𝑜𝑟𝑒

𝑖1 𝐺𝐶 100
𝑖2 𝐺𝐶 99
𝑖3 𝐺𝐶 98
𝑖4 𝑆𝐶 97
𝑖5 𝐺𝐶 96
𝑖6 𝑂𝐵𝐶 95
𝑖7 𝑆𝑇 94
𝑖8 𝑆𝐶 93
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Consider an institution 𝑠 with seven positions, and the following initial distribution of po-
sitions over categories (𝑂𝑃,𝑆𝐶, 𝑆𝑇,𝑂𝐵𝐶) = (3,1,1,2).

We first compute 𝐶𝐹𝑇𝑠 (𝐼, 𝑞𝑠). In the open-category 𝑖1,𝑖2, and 𝑖3 are selected, i.e., the
three highest scoring candidates. For the reserved SC seat 𝑖4 is selected. For the reserved
ST seat 𝑖7 is selected. For the reserved OBC seats, only 𝑖6 is chosen and one OBC seat
remains unfilled. Therefore, this vacant seat is made an open-category seat to be filled at
the end. Among the unassigned individuals 𝑖5 has the highest score, and she is selected for
the extra open-category seat. Thus, we have

𝐶𝐹𝑇𝑠 (𝐼, 𝑞𝑠) = {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6, 𝑖7}

Note that the only individual who was not chosen is 𝑖8, who has the lowest score.
We now compute 𝐶𝐵𝑇𝑠 (𝐼, 𝑞𝑠). In the first iteration, we compute 𝐶𝑅𝑒𝑠𝑠 (𝐼, 𝑞𝑠), 𝑖1, 𝑖2, and

𝑖3 are selected in the open-category, 𝑖4 is selected in the reserved SC category, 𝑖7 is selected
in the reserved ST category, and the only OBC individual 𝑖6 is chosen in the reserved OBC
category. One reserved OBC seat remains vacant. Therefore, it is made an open-category
position by altering the vector of slot distribution across reserve categories. The new vector
is 𝑞2

𝑠 = (4,1,1,1).
In the second iteration, we compute𝐶𝑅𝑒𝑠𝑠

(
𝐼, 𝑞𝑠2

)
as follows: 𝑖1, 𝑖2 , 𝑖3, and 𝑖4 are selected

in the open-category, 𝑖8 is selected in the reserved SC category, 𝑖7 is selected in the reserved
ST category, and 𝑖6 is chosen in the reserved OBC category. Since there is no vacancy in
the OBC category, we terminate the procedure. Thus, the set of chosen individuals is

𝐶𝐵𝑇𝑠 (𝐼, 𝑞𝑠) = {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖6, 𝑖7, 𝑖8}

Note that 𝐶𝐹𝑇𝑠 (𝐼, 𝑞𝑠) \𝐶𝐵𝑇𝑠 (𝐼, 𝑞𝑠) = {𝑖5} and 𝐶𝐵𝑇𝑠 (𝐼, 𝑞𝑠) \𝐶𝐹𝑇𝑠 (𝐼, 𝑞𝑠) = {𝑖8}. So, 𝑖5 is
replaced with 𝑖8 under 𝐶𝐵𝑇𝑠 (𝐼, 𝑞𝑠). The reason for this replacement is that the backward
transferred OBC slot is taken by an SC individual 𝑖4. In turn, the lowest scoring individual
who belongs to SC is now chosen for the reserved SC category.

In this example, 𝐶𝐹𝑇𝑠 (𝐼, 𝑞𝑠) selects a better set of individuals than 𝐶𝐵𝑇𝑠 (𝐼, 𝑞𝑠) with
respect to merit. In this section, we generalize this example and compare the outcomes of
forward and backward transfers choice rules with the same initial distribution of positions
over categories on the basis of merit.

Definition 5. A set of individuals 𝐼 is a better set of individuals on the basis of merit than

22



a set of individuals 𝐽 with | 𝐼 |≥| 𝐽 | at institution 𝑠 if there exists an injection 𝑔 : 𝐽 −→ 𝐼

such that

1. for all 𝑗 ∈ 𝐽, 𝜅(𝑔( 𝑗), 𝑠) ≥ 𝜅( 𝑗 , 𝑠), and,

2. there exists 𝑗 ∈ 𝐽 such that 𝜅(𝑔( 𝑗), 𝑠) > 𝜅( 𝑗 , 𝑠).

We now introduce a criterion to compare two choice rules on the basis of merit.

Definition 6. A choice rule 𝐶 merit-based dominates another choice rule 𝐶
′

if, for all sets
of individuals 𝐼 ⊆ I, either 𝐶 (𝐼) ⊇ 𝐶 ′ (𝐼) or 𝐶 (𝐼) is a better set on the basis of merit than
𝐶

′ (𝐼).

Note that, according to Definition 6, if a choice rule 𝐶 always chooses a super set of
what choice rule 𝐶

′
chooses from the same given set of individuals, then 𝐶 is considered

more meritorious. This can be interpreted as “more is better” and is consistent with the
main motivation of the recent admissions reform in India. Policymakers’ primary goal was
to reduce the number of wasted positions. Our next result compares backward and forward
choice rules according to our merit-based domination criterion.

Theorem 6. Forward transfer choice rule 𝐶𝐹𝑇𝑠 (·, 𝑞𝑠) merit-based dominates the backward

transfer choice rule 𝐶𝐵𝑇 (·, 𝑞𝑠).

Proof. See Appendix. �

Theorem 6 suggests that, if there is only one institution, using forward transfers choice
rules is better than using the backward transfers choice rules because the former assigns
not only a (weakly) higher number but also a more meritorious set of individuals. This
comparison does not hold for the outcomes of the DA mechanisms with respect to backward
and forward transfers choice rules, respectively. We illustrate this point below with an
example.

Example 4. Consider two institutions S = {𝑎, 𝑏}. Institution 𝑎 has four positions with the
initial distribution vector over categories (1,1,1,1). Institution 𝑏 has one position that is an
open-category position. There are five individuals I = {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5} with the following
test score ordering at both institutions:

𝜅(𝑖1, 𝑠) > 𝜅(𝑖2, 𝑠) > 𝜅(𝑖3, 𝑠) > 𝜅(𝑖4, 𝑠) > 𝜅(𝑖5, 𝑠),
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for both 𝑠 = 𝑎 and 𝑠 = 𝑏. The individuals’ reserve category membership reports are as
follows: t(𝑖1) = 𝐺𝐶, t(𝑖2) = 𝑆𝐶, t(𝑖3) = 𝑆𝑇 , t(𝑖4) = 𝑆𝑇 , and t(𝑖5) = 𝑆𝑇 . The individuals’
preferences are given below:

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

𝑎 𝑎 𝑎 𝑎 𝑎

𝑏 𝑏 𝑏 𝑏 ∅
∅ ∅ ∅ ∅

We first compute the outcome of the DA under backward transfers choice rules. In
the first iteration of DA, all individuals apply to institution 𝑎 in the first step. 𝑖1 is chosen
from open-category, 𝑖2 is chosen from SC, 𝑖3 is chosen from ST, and 𝑖4 and 𝑖5 are rejected
because the only available position is the reserved OBC position. Individual 𝑖4 applies to
institution 𝑏 in the second step, and is chosen for the open-category position. Individual
𝑖5 remains unassigned. Since the reserved OBC position in 𝑎 remains vacant, it is set as
an open-category position and we move to the second iteration. The updated distribution
vector of institution 𝑎 becomes (2,1,1,0).

In the second iteration of DA, all individuals apply to institution 𝑎 in the first step.
Individuals 𝑖1 and 𝑖2 are assigned to open-category positions. 𝑖5 is assigned to a SC position,
and 𝑖3 is assigned to a ST position. 𝑖4 gets rejected and applies to institution 𝑏 in the second
step and is chosen for the open-category position. Therefore, the outcome of the DA under

backward transfers choice rules is

(
𝑎 𝑏

{𝑖1, 𝑖2, 𝑖3, 𝑖5} {𝑖4}

)
.

We now compute the outcome of the DA algorithm under forward transfers choice
rules. In the first step, all candidates apply to 𝑎. 𝑖1 is chosen from open-category, 𝑖2 is
chosen from SC, and 𝑖3 is chosen from ST. Since there is no OBC candidate, the reserved
OBC seat remains unfilled and is set as an open-category position. Among the remaining
individuals, 𝑖4 is assigned to this position and 𝑖5 gets rejected from 𝑎. Since there is no
other acceptable institution for 𝑖5, the DA algorithm terminates with the following outcome:(

𝑎 𝑏

{𝑖1, 𝑖2, 𝑖3, 𝑖4} ∅

)
.

Consider institution 𝑏. The number of individuals assigned to 𝑏 in the DA algorithm
under forward transfers choice rules, which is zero, is strictly less than the number of in-
dividuals assigned to it by the DA algorithm under backward transfers choice rules. More-
over, the set that 𝑏 is assigned to, {𝑖4}, merit-based dominates the set 𝑏 is assigned to under
the forward transfers choice rule, i.e., ∅.
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Our next result shows that there is no Pareto comparison between the outcomes of DA
algorithms with respect to backward and forward choice rules, respectively.

Proposition 5. The DA mechanism with forward transfer choice rules and the DA mecha-

nism with backward transfer choice rules are Pareto incomparable.

Proof. Consider an institution 𝑠 with four positions, where the initial distribution over re-
serve categories is given by(

𝑞𝑂𝑃𝑠 , 𝑞𝑆𝐶𝑠 , 𝑞
𝑆𝑇
𝑠 , 𝑞

𝑂𝐵𝐶
𝑠

)
= (1,1,1,1) .

Suppose there are five individuals 𝐼 = {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5} to be considered. Individuals 𝑖1 and 𝑖3
are members of GC, individuals 𝑖2 and 𝑖5 are members of SC, and individual 𝑖4 is a member
of ST. The merit scores of individuals are given by

𝜅(𝑖1, 𝑠) > 𝜅(𝑖2, 𝑠) > 𝜅(𝑖3, 𝑠) > 𝜅(𝑖4, 𝑠) > 𝜅(𝑖5, 𝑠).

In the first iteration of the backwards transfers choice rule, 𝑖1 is assigned to an open-
category position, 𝑖2 is assigned to a reserved SC position, and 𝑖4 is assigned to a reserved
ST position. The reserved OBC position remains vacant, and is set as an open-category seat
for the second iteration. For the second iteration, the distribution over reserve categories
becomes (2,1,1,0). Therefore, in the second iteration, 𝑖1 and 𝑖2 are assigned to open-
category seats, 𝑖4 is assigned to the reserved ST seat, and 𝑖5 is assigned to the reserved SC
seat. Therefore, the backward transfers choice rule selects the set {𝑖1, 𝑖2, 𝑖4, 𝑖5}.

The forward capacity transfers choice rules assigns 𝑖1 to an open-category position, 𝑖2
to the reserved SC position, and 𝑖4 to the reserved ST position. The reserved OBC position
remains vacant, and therefore is set to an open-category seat. This new open-category
position is assigned to 𝑖3 since she has the highest merit score among all individuals who
were not yet assigned. Thus, the forward transfers choice rule selects the set {𝑖1, 𝑖2, 𝑖3, 𝑖4}.

Individual 𝑖5 receives a better outcome under the DA with respect to the backward trans-
fers choice rule, while individual 𝑖3 receives a better outcome under the DA with respect to
the forward transfers choice rule. Therefore, they are Pareto incomparable. �
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5 Relation to the Literature

This paper contributes to the literature on resource allocation problems in India with affir-
mative action constraints that have been recently studied by Aygün and Turhan (2017, 2020,
and 2021), Baswana et al. (2018 and 2019), and Sönmez and Yenmez (2020 and 2021).
We have already discussed the differences between this work and that of Baswana et al.
(2018, 2019). Sönmez and Yenmez (2020, 2021) assume away de-reservations altogether,
while de-reservation policies are the main focus of this paper. Aygün and Turhan (2020
and 2021) use forward transfers choice rules. This paper compares different de-reservation
schemes, including the forward transfers choice rules. To the best of our knowledge, our
paper is the first to compare and analyze different de-reservation policies in detail.

This paper contributes to the literature on lexicographic choice rules in the context
of allocating multiple identical objects under a capacity constraint. Lexicographic choice
rules are also studied by Kominers and Sönmez (2016), Chambers and Yenmez (2017,
2018), Westkamp (2013), Aygün and Turhan (2020, 2021), Echenique and Yenmez (2015),
Doğan (2017), and Doğan and Yıldız (2020), among others.

Our paper also contributes to the literature on controlled school choice and diversity
considerations in matching markets that are also studied by, among others, Abdulkadiroğlu
and Sönmez (2003), Biro et al. (2010), Ehlers (2010), Hafalir et al. (2013), Ehlers
et al. (2014), Westkamp (2013), Echenique and Yenmez (2015), Kamada and Kojima
(2015), Aygün and Bó (2021), Fragiadakis and Troyan (2017), Nguyen and Vohra (2019),
Echenique et al. (2020), and Aziz et al. (2021).

Finally, our paper contributes to the market design literature, where economists study
policy relevant real-world allocation problems in different contexts. Some examples of
such allocation problems include refugee resettlement (Andersson 2017, Delacrétaz et al.
2020, and Jones and Teytelboym 2017), assignment of arrival slots (Schummer and Vohra
2013, and Schummer and Abizada 2017), course allocation (Sönmez and Ünver 2010, Bud-
ish 2011, and Budish and Cantillon 2012), and organ allocation and exchange (Roth et al.
2014, Ergin et al. 2017 and 2020), among many others.

6 Conclusion

This paper discusses unintended consequences of de-reservation policy implemented for
admissions to technical universities in India to point out that how de-reservation policies
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are implemented is consequential. We introduce new de-reservation policies by embed-
ding them into institutions’ choice rules—backward and forward capacity transfers choice
rules— to alleviate these consequences. We propose the DA mechanism with respect to
these choice rules and show that it is strategy-proof and incentive compatible for reserve
category membership revelation. We compare backward and forward transfers choice rules
and show that the latter not only assigns a (weakly) higher number of individuals, but also
a better set of individuals on the basis of merit. We believe that these choice rules can be
implemented in many real-world allocation problems in which de-reservation is necessary.
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[22] Doğan, B. 2016. Responsive affirmative action in school choice. Journal of Economic

Theory 165, 69–105.
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7 APPENDIX

Proof of Proposition 3. Suppose that individual 𝑖, who belongs to reserve category 𝑟 ∈
R, is not chosen by𝐶𝐵𝑇𝑠 (·, 𝑞𝑠) when she reports her membership to category 𝑟, that is t𝑖 = 𝑟.
We need to show that she is not chosen when she reports t′

𝑖
=𝐺𝐶. When 𝑖 reports t𝑖 = 𝑟 and

not chosen, that means 𝑖 gets rejected for open-category positions in every iteration of 𝐶𝐵𝑇𝑠 .
When 𝑖 reports t′

𝑖
= 𝐺𝐶, she gets rejected for open category positions in every iteration

because, she cannot change the set of applicants who apply for open-category positions
and the number of unfilled OBC seats that are transferred to open-category at the end of
each iteration.

Before proving Theorem 1, we first state and prove a lemma that will be useful. This
lemma also helps to understand the dynamics of the backward transfers choice rules.

Lemma 1. Given a set of applicants 𝐴 ⊆ I and a vector of initial distribution of positions

over categories 𝑞𝑠 of institution 𝑠 ∈ S, 𝑁 is the last iteration of the backward transfers

choice rule 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) if, and only if, either one of the following holds:

(1) |
(
𝐶𝑂𝑃𝑠 (𝐴, (𝑞𝑁𝑠 )𝑂𝑃) \𝐶𝑂𝑃𝑠 (𝐴, (𝑞1

𝑠 )𝑂𝑃)
)
\ 𝐴𝑂𝐵𝐶 |= 𝜏1, where 𝜏1 is the number of un-

filled OBC positions at the end of iteration 1, and 𝐴𝑂𝐵𝐶 = {𝑖 ∈ 𝐴 | t(𝑖) =𝑂𝐵𝐶}.
(2)

(
𝑞𝑁𝑠

)𝑂𝑃
=

(
𝑞1
𝑠

)𝑂𝑃 + (
𝑞1
𝑠

)𝑂𝐵𝐶 .

Condition (1) says that the number of non-OBC individuals who are chosen for open-
category positions in the 𝑁 𝑡ℎ iteration, but are not chosen for open-category positions in
the first iteration of the multi-run DA, is exactly equal to 𝜏1, which is the number of vacant
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OBC positions at the end of the first iteration of the multi-run DA. Condition (2) says that
all OBC positions are made open-category positions at the beginning of iteration 𝑁 . That
is, all OBC positions that are made open-category positions at iteration 𝑁 −1 are taken by
OBC candidates. Hence, the remaining reserved OBC positions are now vacant, and made
open category positions at the beginning of iteration 𝑁 .

Proof of Lemma 1. (⇐) If we have
(
𝑞𝑁𝑠

)𝑂𝑃
=

(
𝑞1
𝑠

)𝑂𝑃 + (
𝑞1
𝑠

)𝑂𝐵𝐶 , then it means 𝜏𝑛 = 0
by construction. That is, the number of vacant OBC seats at iteration 𝑁 is 0. Hence, by
definition, 𝑁 is the final iteration.

Now suppose that |
(
𝐶𝑂𝑃𝑠 (𝐴, (𝑞𝑁𝑠 )𝑂𝑃) \𝐶𝑂𝑃𝑠 (𝐴, (𝑞1

𝑠 )𝑂𝑃)
)
\ 𝐴𝑂𝐵𝐶 |= 𝜏1. First, note that

the following equality holds in iteration 1:(
𝑞1
𝑠

)𝑂𝑃
+

(
𝑞1
𝑠

)𝑂𝐵𝐶
= 𝜏1+ | 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞1
𝑠

)𝑂𝑃)
| .

Since the total number of OBC and open-category positions in every iteration remains
unchanged, we have the following equality holding at iteration 𝑁:(

𝑞1
𝑠

)𝑂𝑃
+

(
𝑞1
𝑠

)𝑂𝐵𝐶
=

(
𝑞𝑁𝑠

)𝑂𝑃
+

(
𝑞𝑁𝑠

)𝑂𝐵𝐶
= 𝜏𝑁+ | 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
| .

Since |
(
𝐶𝑂𝑃𝑠 (𝐴, (𝑞𝑁𝑠 )𝑂𝑃) \𝐶𝑂𝑃𝑠 (𝐴, (𝑞1

𝑠 )𝑂𝑃)
)
\ 𝐴𝑂𝐵𝐶 |= 𝜏1, we have

| 𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
\
(
𝐶𝑂𝑃𝑠

(
𝑌,

(
𝑞1
𝑠

)𝑂𝑃)
∪ 𝐴𝑂𝐵𝐶

)
|= 𝜏1,

which implies

| 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
| − | 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞1
𝑠

)𝑂𝑃)
|= 𝜏1.

Therefore, we have

| 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
|= 𝜏1 +

(
𝑞1
𝑠

)𝑂𝑃
+

(
𝑞1
𝑠

)𝑂𝐵𝐶
− 𝜏1

=

(
𝑞1
𝑠

)𝑂𝑃
+

(
𝑞1
𝑠

)𝑂𝐵𝐶
=

(
𝑞𝑁𝑠

)𝑂𝑃
+

(
𝑞𝑁𝑠

)𝑂𝐵𝐶
,

which implies 𝜏𝑁 = 0. Thus, 𝑁 is the last iteration.
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(⇒) Let 𝑁 be the last iteration of 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠). Toward a contradiction, suppose that
neither (1) nor (2) holds. That is, in the final step(

𝑞𝑁𝑠

)𝑂𝑃
<

(
𝑞1
𝑠

)𝑂𝑃
+

(
𝑞1
𝑠

)𝑂𝐵𝐶
=⇒

(
𝑞𝑁𝑠

)𝑂𝐵𝐶
> 0,

and
|
(
𝐶𝑂𝑃𝑠 (𝐴, (𝑞𝑁𝑠 )𝑂𝑃) \𝐶𝑂𝑃𝑠 (𝐴, (𝑞1

𝑠 )𝑂𝑃)
)
\ 𝐴𝑂𝐵𝐶 |≠ 𝜏1,

which implies

| 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
| − | 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞1
𝑠

)𝑂𝑃)
|≠ 𝜏1.

Thus, we have

| 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
|≠ 𝜏1 +

(
𝑞1
𝑠

)𝑂𝑃
+

(
𝑞1
𝑠

)𝑂𝐵𝐶
− 𝜏1 =

(
𝑞1
𝑠

)𝑂𝑃
+

(
𝑞1
𝑠

)𝑂𝐵𝐶
≠

(
𝑞𝑁𝑠

)𝑂𝑃
+

(
𝑞𝑁𝑠

)𝑂𝐵𝐶
.

This implies that

| 𝐴𝑂𝐵𝐶 \𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
| + | 𝐶𝑂𝑃𝑠

(
𝑌,

(
𝑞𝑁𝑠

)𝑂𝑃)
|≠

(
𝑞𝑁𝑠

)𝑂𝑃
+

(
𝑞𝑁𝑠

)𝑂𝐵𝐶
.

Since 𝐶𝑂𝑃𝑠 (·, ·) is a q-responsive choice function, we have two cases to consider:

Case 1: | 𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃) |<
(
𝑞𝑁𝑠

)𝑂𝑃
. In this case, all individuals are accepted by

𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃) . Hence,

𝐴𝑂𝐵𝐶 \𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
= ∅.

This implies 𝜏𝑁 =
(
𝑞𝑁𝑠

)𝑂𝐵𝐶
> 0. That means 𝑁 is not the final iteration. This is a contra-

diction.
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Case 2: | 𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃) |= (
𝑞𝑁𝑠

)𝑂𝑃
. In this case,

| 𝐴𝑂𝐵𝐶 \𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
|≠

(
𝑞𝑁𝑠

)𝑂𝐵𝐶
,

since 𝑁 −1 is not the final iteration of 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) by construction, i.e., 𝜏𝑁−1 > 0, we have

(𝑖) 𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁−1
𝑠

)𝑂𝑃) ⊂ 𝐶𝑂𝑃𝑠 (
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
(𝑖𝑖) | 𝐴𝑂𝐵𝐶 \𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞𝑁−1
𝑠

)𝑂𝑃) |= (
𝑞𝑁−1
𝑠

)𝑂𝐵𝐶 − 𝜏𝑁−1 =
(
𝑞𝑁𝑠

)𝑂𝐵𝐶
(𝑖) and (𝑖𝑖) imply

𝐴𝑂𝐵𝐶 \𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
⊂ 𝐴𝑂𝐵𝐶 \𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
and

| 𝐴𝑂𝐵𝐶 \𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
|≤| 𝐴𝑂𝐵𝐶 \𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞𝑁−1
𝑠

)𝑂𝑃)
|=

(
𝑞𝑁𝑠

)𝑂𝐵𝐶
.

Then, by | 𝐴𝑂𝐵𝐶 \𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑛𝑠

)𝑂𝑃) |≠ (
𝑞𝑁𝑠

)𝑂𝐵𝐶 , we have

| 𝐴𝑂𝐵𝐶 \𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
|<

(
𝑞𝑁𝑠

)𝑂𝐵𝐶
,

which implies that 𝜏𝑁 > 0. Hence, 𝑁 is not the final iteration. This is a contradiction. This
ends the proof of Lemma 1.

Proof of Theorem 1. We prove Theorem 1 by showing that backward transfers choice
rules satisfy both substitutability and size monotonicity.

Substitutability. Consider 𝑖, 𝑗 ∈ I and 𝐴 ⊂ I \ {𝑖, 𝑗} such that 𝑖 ∉ 𝐶𝐵𝑇𝑠 (𝐴∪ {𝑖}). We
need to show that 𝑖 ∉ 𝐶𝐵𝑇𝑠 (𝐴∪ {𝑖, 𝑗}).

Let 𝜏𝑘 and 𝜏̃𝑘 denote the number of vacant OBC positions at the end of iteration 𝑘

under 𝐶𝐵𝑇𝑠 (𝐴∪ {𝑖}, 𝑞𝑠) and 𝐶𝐵𝑇𝑠 (𝐴∪ {𝑖, 𝑗}, 𝑞𝑠), respectively. Let 𝑁 and 𝑁 be the last steps
of 𝐶𝐵𝑇𝑠 (𝐴∪ {𝑖}, 𝑞𝑠) and 𝐶𝐵𝑇𝑠 (𝐴∪ {𝑖, 𝑗}, 𝑞𝑠), respectively. Note that, by Lemma 1, 𝑁 ≤ 𝑁
and

(
𝑞𝑁𝑠

)𝑂𝑃 ≥
(
𝑞𝑁𝑠

)𝑂𝑃
, where

(
𝑞𝑁𝑠

)𝑂𝑃 and
(
𝑞𝑁𝑠

)𝑂𝑃
are the capacities of open-category at

the last steps of 𝐶𝐵𝑇𝑠 (𝐴∪ {𝑖}, 𝑞𝑠) and 𝐶𝐵𝑇𝑠 (𝐴∪ {𝑖, 𝑗}, 𝑞𝑠), respectively. Let 𝐴𝑡 ⊆ 𝐴∪ {𝑖}
denotes the set of individuals who belong to reserve category 𝑡 ∈ R = {𝑆𝐶, 𝑆𝑇,𝑂𝐵𝐶}. For
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each 𝑡 ∈ R, define 𝐴
′
𝑡 = 𝐴𝑡 \𝐶𝑂𝑃𝑠

(
𝐴∪ {𝑖},

(
𝑞𝑁𝑠

)𝑂𝑃) .

If 𝑖 ∉ 𝐶𝐵𝑇𝑠 (𝐴∪ {𝑖} , 𝑞𝑠), then we know that 𝑖 is not in the top
(
𝑞𝑁𝑠

)𝑂𝑃 in the set 𝐴∪ {𝑖}.
This implies that 𝑖 is not in top

(
𝑞𝑁𝑠

)𝑂𝑃
in the set 𝐴∪ {𝑖, 𝑗}. So, 𝑖 cannot be chosen for an

open-category position from 𝐴∪ {𝑖, 𝑗}.
We now show that 𝑖 cannot be chosen for a reserve category t(𝑖) ∈ R seat. First, suppose

that t(𝑖) = 𝑂𝐵𝐶. Since 𝑖 was not chosen for an OBC position from the set 𝐴∪ {𝑖}, and
when 𝑗 is added to the set 𝐴∪ {𝑖}, 𝑖 cannot be chosen for an OBC position because adding
𝑗 (weakly) increases the competition for OBC positions.

Now, suppose that t(𝑖) ∈ {𝑆𝐶, 𝑆𝑇}. The capacities of reserved SC and ST categories
are the same for the choice processes starting with 𝐴∪ {𝑖} and 𝐴∪ {𝑖, 𝑗} in every iteration
of the 𝐶𝐵𝑇𝑠 . Moreover, we have

𝐴∪ {𝑖, 𝑗} \𝐶𝑂𝑃𝑠
(
𝐴∪ {𝑖, 𝑗},

(
𝑞𝑁𝑠

) t(𝑖)
)
⊇ 𝐴∪ {𝑖} \𝐶𝑂𝑃𝑠

(
𝐴∪ {𝑖},

(
𝑞𝑁𝑠

)𝑂𝑃)
,

for both 𝑡 = 𝑆𝐶 and 𝑡 = 𝑆𝑇 . That is, the competition for the SC and ST positions will
be (weakly) higher in the choice process starting with 𝐴∪ {𝑖, 𝑗} than the choice process
starting with 𝐴 ∪ {𝑖}. Since 𝑖 was not chosen for reserved t(𝑖) position from 𝐴 ∪ {𝑖} \
𝐶𝑂𝑃𝑠

(
𝐴∪ {𝑖},

(
𝑞𝑁𝑠

)𝑂𝑃) , we can conclude that 𝑖 will not be chosen for reserved t(𝑖) position

from 𝐴∪{𝑖, 𝑗}\𝐶𝑂𝑃𝑠
(
𝐴∪ {𝑖, 𝑗},

(
𝑞𝑁𝑠

) t(𝑖)
)
. Therefore, 𝑖 cannot be chosen for reserved t(𝑖) ∈

R positions. This ends our proof of substitutability.

Size monotonicity. Consider 𝑖 ∈ I and 𝐴 ⊆ I \ {𝑖}. We need to show that | 𝐶𝐵𝑇𝑠 (𝐴) |≤|
𝐶𝐵𝑇𝑠 (𝐴∪ {𝑖}) |. We consider following two cases:

Case 1. | 𝐴 |≤ 𝑞𝑂𝑃𝑠 +𝑞𝑂𝐵𝐶𝑠 . In this case, all individuals in 𝐴 will be chosen. When 𝑖 is
added to the set 𝐴, the number of chosen individuals increases by one and becomes | 𝐴 | +1,
if | 𝐴 |< 𝑞𝑂𝑃𝑠 + 𝑞𝑂𝐵𝐶𝑠 . When | 𝐴 |≤ 𝑞𝑂𝑃𝑠 + 𝑞𝑂𝐵𝐶𝑠 , since the number of chosen individuals is
| 𝐴 |, adding 𝑖 to the set 𝐴 does not change the number of chosen individuals.

Case 2. | 𝐴 |> 𝑞𝑂𝑃𝑠 +𝑞𝑂𝐵𝐶𝑠 . The backward transfers choice rule𝐶𝐵𝑇𝑠 selects𝑚𝑖𝑛
{
| 𝐴 |, 𝑞𝑠

}
individuals, unless either | 𝐴′

𝑆𝐶
|< 𝑞𝑆𝐶𝑠 or | 𝐴′

𝑆𝑇
|< 𝑞𝑆𝑇𝑠 , where 𝐴

′
𝑡 = 𝐴𝑡 \𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞𝑁𝑠

)𝑂𝑃)
for 𝑡 ∈ {𝑆𝐶, 𝑆𝑇}. Note that 𝑁 represents the last iteration of the backward transfers choice
rule. In other words, the choice rule 𝐶𝐵𝑇𝑠 behaves as a q-responsive choice function if the
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number of remaining SC and ST individuals after open-category positions are filled are
at least as many as the number of reserved SC and ST positions, respectively. Therefore,
when both | 𝐴′

𝑆𝐶
|≥ 𝑞𝑆𝐶𝑠 or | 𝐴′

𝑆𝑇
|≥ 𝑞𝑆𝑇𝑠 , the number of chosen individuals will be 𝑞𝑠 and

adding individual 𝑖 to the set 𝐴 does not change the number of chosen individuals. When
either | 𝐴′

𝑆𝐶
|< 𝑞𝑆𝐶𝑠 or | 𝐴′

𝑆𝑇
|< 𝑞𝑆𝑇𝑠 , the number of chosen individuals from 𝐴∪ {𝑖} either

stays the same or increases by one.
Substitutability and size monotonicity of backward transfers choice rules imply strategy-

proofness of the DA with respect to backward transfers choice rules, following Hatfield and
Milgrom (2005). This ends our proof.

Proof of Theorem 2. We adapt the following definition from Definition 8 of Afacan
(2017): A choice rule 𝐶

′
𝑠 is an improvement over a choice rule 𝐶𝑠 for individual 𝑖 if, for

any set of individuals 𝐴 (i) if 𝑖 ∈ 𝐶𝑠 (𝐴), then 𝑖 ∈ 𝐶 ′
𝑠 (𝐴), and (ii) if 𝑖 ∉𝐶𝑠 (𝐴) ∪𝐶

′
𝑠 (𝐴), then

𝐶𝑠 (𝐴) = 𝐶
′
𝑠 (𝐴). Consider a reserve category 𝑟 ∈ R member 𝑖. Let 𝐶𝐵𝑇𝑠 be the backward

transfers choice rule individual 𝑖 faces when she does not report her category 𝑟 member-
ship, and 𝐶𝐵𝑇𝑠 be the backward transfers choice rule individual 𝑖 faces when she reports

her membership to 𝑟. Our Proposition 3 states that 𝐶𝐵𝑇𝑠 is an improvement over 𝐶𝐵𝑇𝑠 for
individual 𝑖 according to the given definition of improvement.

Mechanism 𝜓 respects improvements if for any problem (𝑃,𝐶) and 𝐶
′

such that 𝐶
′

is
an improvement over 𝐶 for individual 𝑖, 𝜓(𝑃,𝐶 ′)𝑅𝑖𝜓(𝑃,𝐶).

Theorem 2 of Afacan (2017) states that the generalized DA respects improvements if
choice rules of institutions satisfy the unilateral substitutes of Hatfield and Kojima (2010),
the irrelevance of rejected contracts of Aygün and Sönmez (2013), and the size mono-

tonicity of Hatfield and Milgrom (2015). As we show in Theorem 1, backward transfers
choice rules satisfy substitutability. In our setting without contracts, substitutability and
unilateral substitutability are equivalent. Moreover, backward transfers choice rules satisfy
size monotonicity, which—in conjunction with substitutability—implies the irrelevance of
rejected contracts condition. Therefore, Afacan (2017)’s Theorem 2 hold in our setting
with backward transfers choice rules. Then, we can conclude that when individuals report
their reserved category membership, they can never be hurt under the DA mechanism with
respect to backward transfers choice rules.

Proof of Theorem 3. As it was shown in the proof of Theorem 1, backward transfers
choice rules are substitutable and size monotonic. Therefore, by Theorem 4 of Hatfield
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and Milgrom (2005), the generalized DA outcome is the individual-optimal stable out-
come, where stability is defined with respect to a profile of backward transfers choice rules(
𝐶𝐵𝑇𝑠

)
𝑠∈S . That is, each applicant weakly prefers the outcome of the generalized DA to her

assignment in any other stable matching.
Let 𝑣 be the outcome of the multi-run DA at preference profile 𝑃 = (𝑃𝑖)𝑖∈I . That is,

𝑣 = Φ
(
𝑃,𝑞𝐿

)
, where 𝐿 denotes the last iteration of the DA in multi-run DA algorithm.

We will show that 𝑣 is stable with respect to the profile of backward transfers choice rules(
𝐶𝐵𝑇𝑠

)
𝑠∈S .

Individual Rationality for Individuals. Since the preference profile in the multi-run
DA and the DA with respect to backward transfers choice rules are the same, for every
individual 𝑖 ∈ I, 𝑣(𝑖)𝑅𝑖∅.

Individual Rationality for Institutions. We need to show that the outcome of the multi-
run DA at preference profile 𝑃 is individually rational for institution 𝑠 ∈ S with respect to
its backward transfers choice rule 𝐶𝐵𝑇𝑠 , for all institutions 𝑠 ∈ S. That is, 𝐶𝐵𝑇𝑠 (𝑣 (𝑠)) = 𝑣 (𝑠)
for all institutions 𝑠 ∈ S, where 𝑣(𝑠) denotes the set of applicants who are matched to
institution 𝑠 under the multi-run DA.

We will first prove a lemma that will be the key to prove individual rationality for insti-
tutions. We introduce the necessary notation first. Consider a set of applicants 𝐴 ⊆ I.
Let 𝐴𝑆𝐶 , 𝐴𝑆𝑇 , and 𝐴𝑂𝐵𝐶 be sets of individuals who belong to SC, ST, and OBC, re-
spectively, in the set 𝐴. In the backward transfers choice rules, let 𝑞𝑠 = 𝑞1

𝑠 be the initial
vector of capacities of categories, 𝑁 be the last iteration, and 𝑞𝑁𝑠 denote the vector of
capacities of categories at institution 𝑠 ∈ S in the last iteration of 𝐶𝐵𝑇𝑠 . By definition,
𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) = 𝐶𝑅𝑒𝑠

(
𝐴,𝑞𝑁𝑠

)
. We denote by 𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞𝑛𝑠

)𝑂𝑃) the set of individuals chosen

from the open category given a set of applicants 𝐴 , and capacity
(
𝑞𝑛𝑠

)𝑂𝑃 of the open-
category at iteration 𝑛 of the backward transfers choice rule. This choice rule selects appli-
cants following the priority ordering �𝑠 of institution 𝑠 up to the capacity

(
𝑞𝑛𝑠

)𝑂𝑃.
By Lemma 1, 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) is finalized as soon as either one of the conditions in Lemma

1 is satisfied. In the last iteration, call it 𝐿, of the multi-run DA we have either

| 𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃)
∪ 𝐴𝑂𝐵𝐶 |=

(
𝑞1
𝑠

)𝑂𝑃
+

(
𝑞1
𝑠

)𝑂𝐵𝐶
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or (
𝑞𝐿𝑠

)𝑂𝑃
=

(
𝑞1
𝑠

)𝑂𝑃
+

(
𝑞1
𝑠

)𝑂𝐵𝐶
.

Then, we have
(
𝑞𝐿𝑠

)𝑂𝑃 ≥
(
𝑞𝑛𝑠

)𝑂𝑃, which implies

𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞𝑛𝑠

)𝑂𝑃) ⊆ 𝐶𝑂𝑃𝑠 (
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃)
,

which, in turn, implies

𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑛𝑠

)𝑂𝑃) ⊆ 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃)
.

Hence, we have

| 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑛𝑠

)𝑂𝑃) |≤| 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠 (
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃)
| .

By Lemma 1 and the fact that 𝐿 satisfies either | 𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃) ∪ 𝐴𝑂𝐵𝐶 |=
(
𝑞1
𝑠

)𝑂𝑃 +(
𝑞1
𝑠

)𝑂𝐵𝐶 or
(
𝑞𝐿𝑠

)𝑂𝑃
=

(
𝑞1
𝑠

)𝑂𝑃 + (
𝑞1
𝑠

)𝑂𝐵𝐶 in multi-run DA, we conclude

| 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑛𝑠

)𝑂𝑃) |=| 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠 (
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃)
| .

Moreover, since 𝐶𝑂𝑃𝑠 (·, ·) is q-responsive, we have

𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝑛𝑠

)𝑂𝑃)
= 𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃)
,

which implies

𝐴𝑂𝐵𝐶 ∪𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃)
⊆ 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) .

Moreover, by the construction of multi-run DA we have

| 𝐴𝑆𝐶 \𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃) |≤ (
𝑞1
𝑠

)𝑆𝐶
| 𝐴𝑆𝑇 \𝐶𝑂𝑃𝑠

(
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃) |≤ (
𝑞1
𝑠

)𝑆𝑇
because there are no de-reservations from categories SC and ST, and hence, capacities of
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these categories remain unchanged in the course of multi-run DA. Thus, we have

𝐴𝑆𝐶 \𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃) ⊆ 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠)

𝐴𝑆𝑇 \𝐶𝑂𝑃𝑠
(
𝐴,

(
𝑞𝐿𝑠

)𝑂𝑃) ⊆ 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠)

which completes our proof. Hence, the outcome of the multi-run DA at preference profile
𝑃, i.e., the matching 𝑣, is individually rational for every institution with respect to their
backward transfers choice rules.

No Blocking. Toward a contradiction, suppose that (𝑖, 𝑠) is a blocking pair. That is,
𝑠𝑃𝑖𝑣(𝑖) and 𝑖 ∈ 𝐶𝐵𝑇𝑠 (𝑣(𝑠) ∪ {𝑖}). Let 𝐴𝑆𝐶𝑠 , 𝐴𝑆𝑇𝑠 , and 𝐴𝑂𝐵𝐶𝑠 denote the set of applicants in
𝑣(𝑠) that are members of SC, ST, and OBC, respectively. There are three cases to consider.

(𝑖) 𝑂𝐵𝐶 = t(𝑖). Since 𝑠𝑃𝑖𝑣(𝑖) and OBC applicants get weakly better of in multi-run
DA, we can conclude that individual 𝑖 applied to 𝑠 and get rejected by 𝑠 in every iteration
of the multi-run DA. Since 𝑖 was never chosen, we know that the number of chosen OBC
members is at least as high as the initial capacity of the OBC category in every iteration.
Therefore, | 𝐴𝑂𝐵𝐶𝑠 |≥ 𝑞𝑂𝐵𝐶𝑠 . Moreover, individual 𝑖 is not in top 𝑞𝑂𝑃𝑠 candidates in the set
𝑣(𝑠) and every applicant in 𝐴𝑂𝐵𝐶𝑠 has higher merit score than 𝑖. Thus, 𝑖 cannot be chosen
from 𝑣(𝑠) ∪{𝑖} in the backward transfers choice rule𝐶𝐵𝑇𝑠 . This contradicts with (𝑖, 𝑠) being
a blocking pair.

(𝑖𝑖) 𝑆𝐶 = t(𝑖) or 𝑆𝑇 = t(𝑖). Let us consider 𝑆𝐶 = t(𝑖). Since 𝑠𝑃𝑖𝑣(𝑖) and SC applicants
get weakly better of in multi-run DA, we can conclude that individual 𝑖 applied to 𝑠 and get
rejected by 𝑠 in every step of the multi-run DA. Since 𝑖 is not chosen by 𝑠, all candidates
in 𝐴𝐺𝐶𝑠 ∪ 𝐴𝑆𝐶𝑠 have higher scores than 𝑖. Moreover, there is no unfilled seat at reserved SC
category. Since adding SC candidates who have lower scores than candidates in 𝐴𝐺𝐶𝑠 ∪ 𝐴𝑆𝐶𝑠
to 𝑣(𝑠) cannot change the capacity vector of the final iteration of 𝐶𝐵𝑇𝑠 , 𝑖 cannot be chosen
from 𝑣(𝑠) ∪ {𝑖}. This is a contradiction. The case where 𝑆𝑇 = t(𝑖) is proved similarly.

(𝑖𝑖𝑖) {𝐺𝐶} = t(𝑖). Since 𝑠𝑃𝑖𝑣(𝑖) and GC applicants get weakly better of in multi-run
DA, individual 𝑖 applied to 𝑠 and get rejected by 𝑠 in every iteration of the multi-run DA.
Since 𝑖 was never chosen, we know that 𝑖 is not in top

(
𝑞𝑁

)𝑂𝑃
𝑠

, i.e., number of open-
category seats in the final iteration of the multi-run DA. Therefore, 𝑖 cannot be chosen from
𝑣(𝑠) ∪ {𝑖}. This is a contradiction. Therefore, there is no blocking pair.

We have shown that the outcome of the multi-run DA at problem 𝑃, i.e., matching 𝑣,
is stable with respect to backward transfers choice rules 𝐶𝐵𝑇 . Therefore, the applicant-
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optimal stable (with respect to backward transfers choice rules 𝐶𝐵𝑇 ) matching 𝜇 Pareto
dominates matching 𝑣.

Proof of Proposition 4. Suppose that individual 𝑖, who is a reserve category 𝑟 ∈ R mem-
ber, is not chosen by 𝐶𝐹𝑇𝑠 (·, 𝑞𝑠) when she reports her membership to category 𝑟 ∈ R, that
is t𝑖 = 𝑟. We need to show that she is not chosen when she reports t′

𝑖
= 𝐺𝐶. When 𝑖 re-

ports t𝑖 = 𝑟 and not chosen, that means 𝑖 gets rejected for open-category positions under
𝐶𝐹𝑇𝑠 . When 𝑖 reports t′

𝑖
= 𝐺𝐶, she gets rejected for open category positions, because she

cannot change the set of applicants who apply for open-category positions and the number
of unfilled OBC seats that are transferred to open-category to be filled at the very end.

Proof of Theorem 4. In forward transfer choice rules, vacant OBC seats are transferred
to open-category that succeed the reserve category OBC. We can write the capacity of the
extra open-category positions that are filled at the end as

𝑞𝐸𝑂𝑃 (𝑟𝑂𝑃, 𝑟𝑆𝐶 , 𝑟𝑆𝑇 , 𝑟𝑂𝐵𝐶) = 𝑟𝑂𝐵𝐶 ,

where 𝑟𝑂𝑃, 𝑟𝑆𝐶 , 𝑟𝑆𝑇 , and 𝑟𝑂𝐵𝐶 denote the number of unfilled slots in categories open-
category, SC, ST, and OBC, respectively. This choice protocol straightforwardly satisfies
the monotonicity and non-excessive reduction properties of Westkamp (2013), which imply
the substitutability and size monotonicity of forward transfers choice rules. By Theorem 2
of Westkamp (2013), the DA with respect to forward transfers choice rules is strategy-proof
for individuals.

Proof of Theorem 5. Let𝐶𝐹𝑇𝑠 be the forward transfers choice rule individual 𝑖 faces when
she does not report her category 𝑟 membership, and 𝐶𝐹𝑇𝑠 be the forward transfers choice
rule individual 𝑖 faces when she reports her membership to 𝑟 . Our Proposition 4 states
that 𝐶𝐹𝑇𝑠 is an improvement over 𝐶𝐹𝑇𝑠 for individual 𝑖 according to the improvement notion
defined in the proof of Theorem 2. Since forward transfers choice rules satisfy substi-
tutability and size monotonicity, and hence the irrelevance of rejected contracts condition,
we can invoke Theorem 2 of Afacan (2017). Therefore, when individuals report their re-
served category membership, they can never be hurt under the DA mechanism with respect
to forward transfers choice rules.
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Proof of Theorem 6. Consider an institution 𝑠 ∈ S and a set of individuals 𝐴 ⊆ I. Let
𝑞𝑠 =

(
𝑞𝑂𝑃𝑠 , 𝑞𝑆𝐶𝑠 , 𝑞

𝑆𝑇
𝑠 , 𝑞

𝑂𝐵𝐶
𝑠

)
be the vector of initial distribution of capacities over categories.

Let
(
(𝑞𝑁𝑠 )𝑂𝑃, 𝑞𝑆𝐶𝑠 , 𝑞𝑆𝑇𝑠 , (𝑞𝑁𝑠 )𝑂𝐵𝐶

)
and

(
𝑞𝑂𝑃𝑠 , 𝑞𝑆𝐶𝑠 , 𝑞

𝑆𝑇
𝑠 , 𝑞

𝑂𝐵𝐶
𝑠 ,𝜆

)
be the final capacity vectors

of categories under the backward and forward transfers choice rules, 𝐶𝐵𝑇𝑠 and 𝐶𝐹𝑇𝑠 , respec-
tively. Note that 𝑁 denotes the final iteration of 𝐶𝐵𝑇𝑠 and 𝜆 denotes the number of unfilled
OBC seats that are converted into open-category positions under 𝐶𝐹𝑇𝑠 .

Let 𝐴𝑡 ⊆ 𝐴 denotes the set of individuals who belong to reserve category 𝑡 ∈ R =

{𝑆𝐶, 𝑆𝑇,𝑂𝐵𝐶}. For each 𝑡 ∈ R, define

𝐴
′
𝑡 = 𝐴𝑡 \𝐶𝑂𝑃𝑠

(
𝐴,𝑞𝑂𝑃𝑠

)
𝐴𝑡 = 𝐴𝑡 \𝐶𝑂𝑃𝑠

(
𝐴, (𝑞𝑁𝑠 )𝑂𝑃

)
First note that by definition of the backward transfers choice rule 𝐶𝐵𝑇𝑠 , we have

𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) =𝐶𝑂𝑃𝑠
(
𝐴, (𝑞𝑁𝑠 )𝑂𝑃

)
∪𝐶𝑆𝐶𝑠

(
𝐴𝑆𝐶 , 𝑞

𝑆𝐶
𝑠

)
∪𝐶𝑆𝑇𝑠

(
𝐴𝑆𝑇 , 𝑞

𝑆𝑇
𝑠

)
∪𝐶𝑂𝐵𝐶𝑠

(
𝐴𝑂𝐵𝐶 , (𝑞𝑁𝑠 )𝑂𝐵𝐶

)
(1)

Similarly, by the definition of the forward transfers choice rule 𝐶𝐵𝑇𝑠 , we have

𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) =𝐶𝑂𝑃𝑠
(
𝐴,𝑞𝑂𝑃𝑠

)
∪𝐶𝑆𝐶𝑠

(
𝐴

′

𝑆𝐶 , 𝑞
𝑆𝐶
𝑠

)
∪𝐶𝑆𝑇𝑠

(
𝐴

′

𝑆𝑇 , 𝑞
𝑆𝑇
𝑠

)
∪𝐶𝑂𝐵𝐶𝑠

(
𝐴

′

𝑂𝐵𝐶 , 𝑞
𝑂𝐵𝐶
𝑠

)
∪𝐶𝑂𝑃𝑠 (𝑅,𝜏1) (2)

where 𝑅 is the set of remaining individuals, i.e., 𝑅 = 𝐴 \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠).
Since we have (𝑞𝑁𝑠 )𝑂𝑃 ≥ 𝑞𝑂𝑃𝑠 and each category chooses individuals following the merit

scores up to the capacity, i.e., they are all q-responsive choice functions, we have

𝐶𝑂𝑃𝑠

(
𝐴,𝑞𝑂𝑃𝑠

)
⊆ 𝐶𝑂𝑃𝑠

(
𝐴, (𝑞𝑁𝑠 )𝑂𝑃

)
.

For each 𝑡 ∈ {𝑆𝐶, 𝑆𝑇}, since 𝐶𝑡𝑠
(
𝐴

′
𝑡 , 𝑞

𝑡
𝑠

)
is the top 𝑞𝑡𝑠 candidates, we have the following:

for each individual 𝑖 ∈ 𝐶𝑂𝑃𝑠
(
𝐴

′
𝑡 , 𝑞

𝑡
𝑠

)
, we have

𝑖 ∈ 𝐶𝑂𝑃𝑠
(
𝐴, (𝑞𝑁𝑠 )𝑂𝑃

)
∪𝐶𝑡𝑠

(
𝐴𝑡 , 𝑞

𝑡
𝑠

)
,

which implies 𝐶𝑡𝑠
(
𝐴

′
𝑡 , 𝑞

𝑡
𝑠

)
⊆ 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠). That is, every SC and ST individual who are

chosen from the reserved SC and ST categories under the forward transfers choice rule are
also chosen under the backward transfers choice rule.

Let
𝑚𝑡 =|

(
𝐶𝑂𝑃𝑠

(
𝐴, (𝑞𝑁𝑠 )𝑂𝑃

)
\𝐶𝑂𝑃𝑠

(
𝐴,𝑞𝑂𝑃𝑠

))
∩ 𝐴𝑡 |,
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for 𝑡 ∈ {𝑂𝑃,𝑆𝐶, 𝑆𝑇}. By Lemma 1, we have either
(𝑖) 𝑚𝑂𝑃 +𝑚𝑆𝐶 +𝑚𝑆𝑇 = 𝜏1, or
(𝑖𝑖) 𝑚𝑂𝑃 +𝑚𝑆𝐶 +𝑚𝑆𝑇 < 𝜏1 and 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) = 𝐴.
In the case of (𝑖𝑖), we have | 𝐴 |< 𝑞𝑂𝑃𝑠 + 𝑞𝑂𝐵𝐶𝑠 . This implies 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) = 𝐴. For the

case (𝑖), we have

| 𝐶𝑂𝑃𝑠
(
𝐴, (𝑞𝑁𝑠 )𝑂𝑃

)
| + | 𝐶𝑂𝐵𝐶𝑠

(
𝐴𝑂𝐵𝐶 , (𝑞𝑁𝑠 )𝑂𝐵𝐶

)
|= 𝑞𝑂𝑃𝑠 + 𝑞𝑂𝐵𝐶𝑠 (3)

which implies

| 𝐶𝑂𝑃𝑠
(
𝐴,𝑞𝑂𝑃𝑠

)
| + | 𝐶𝑂𝐵𝐶𝑠

(
𝐴

′

𝑂𝐵𝐶 , (𝑞
𝑁
𝑠 )𝑂𝐵𝐶

)
|= 𝑞𝑂𝑃𝑠 + 𝑞𝑂𝐵𝐶𝑠 − 𝜏1 (4)

We also have the following inequalities

0 < | 𝐶𝑆𝐶𝑠
(
𝐴

′

𝑆𝐶 , 𝑞
𝑆𝐶
𝑠

)
| − | 𝐶𝑆𝐶𝑠

(
𝐴𝑆𝐶 , 𝑞

𝑆𝐶
𝑠

)
|< 𝑚𝑆𝐶 (5)

0 < | 𝐶𝑆𝑇𝑠
(
𝐴

′

𝑆𝑇 , 𝑞
𝑆𝑇
𝑠

)
| − | 𝐶𝑆𝑇𝑠

(
𝐴𝑆𝑇 , 𝑞

𝑆𝑇
𝑠

)
|< 𝑚𝑆𝑇 (6)

Given the equalities (1) and (2), summing over equalities (3) and (4) and inequalities (5)
and (6), we have the following inequality:

−𝜏1 < | 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) | − | 𝐶𝑂𝑃𝑠 (𝑅, 𝜏1) | + | 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) |< 𝑚𝑆𝐶 +𝑚𝑆𝑇 − 𝜏1 (7)

There are two cases to consider given inequality (7):

Case 1. | 𝐶𝑂𝑃𝑠 (𝑅, 𝜏1) |=| 𝑅 |. In this case, we have 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) = 𝐴 ⊇ 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠). This
implies | 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) |≥=| 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) |.

Case 2. | 𝐶𝑂𝑃𝑠 (𝑅, 𝜏1) |= 𝜏1. In this case, from inequality (7), we have

0 < | 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) | − | 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) |< 𝑚𝑆𝐶 +𝑚𝑆𝑇 ,

which also implies | 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) |≥=| 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) |.
Therefore, for any given set 𝐴 ⊆ I, the forward transfers choice rule selects at least as
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many individuals backward transfers choice rule selects, i.e.,

| 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) |≥| 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) | .

We now show that 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) merit-based dominates 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠). First, note that we
can write the set of selected individuals under the forward transfers choice rule 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠)
as

𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠) ∪𝐶𝑂𝑃𝑠
(
𝑅, 𝜏1

)
,

where 𝑅 = 𝐴 \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠) and 𝜏1 is the number of unfilled OBC positions that are made
open-category positions (and, filled at the very end of the processing sequence). We have
already shown that if 𝑖 ∈ 𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠), then 𝑖 ∈ 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠). That is, any individual who
are chosen either in Stage 1 or Stage 2 of the forward transfers choice rule is chosen by
the backward transfer choice rule. We will now construct an injection 𝑔 : 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) →
𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠). For all individuals in 𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠), which is a subset of both 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) and
𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠), we set 𝑔(𝑖) = 𝑖.

Since we have | 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) |≥| 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) |, we also have

| 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠) |≥| 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠) | .

We call𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠) | as 𝐶𝑂𝑃𝑠
(
𝑅,𝜏1) , which is a q-responsive choice func-

tion. That is, among the remaining individuals either all of them or the top 𝜏1 of them will
be chosen following the merit scores.

Given the set of individuals𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠) and𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠), we
map the top-scoring individual in 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠), call her 𝑗1, to the top-scoring
individual in 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠), call her 𝑗̃1. That is, 𝑔( 𝑗1) = 𝑗̃1. We map the second
top-scoring individual in 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠), call her 𝑗2, to the second top-scoring
individual in 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠), call her 𝑗̃2. That is, 𝑔( 𝑗2) = 𝑗̃2. We process in the
same fashion, until we exhaust all individuals in the set 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠), in 𝐾
steps. If { 𝑗1, ..., 𝑗𝐾} =

{
𝑗̃1, ..., 𝑗̃𝐾

}
, then we will have

𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠) ⊇ 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) \𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠) ,

which implies
𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) ⊇ 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) .
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In this case, we are done according to the merit-based domination definition. Oth-
erwise, i.e., { 𝑗1, ..., 𝑗𝐾} ≠

{
𝑗̃1, ..., 𝑗̃𝐾

}
, then there must exist an individual in 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) \

𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠), call her 𝑔( 𝑗 ′), who has a strictly higher score than the individual 𝑗
′
in𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠) \

𝐶𝑅𝑒𝑠𝑠 (𝐴,𝑞𝑠) because 𝐶𝑂𝑃𝑠
(
𝑅,𝜏1) , which is a q-responsive choice function. Therefore, in

this case, 𝐶𝐹𝑇𝑠 (𝐴,𝑞𝑠) | is a better set of individuals on the basis of merit than 𝐶𝐵𝑇𝑠 (𝐴,𝑞𝑠).
This ends our proof.
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