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1 Introduction

In the United States legal system, it is customary to let the parties involved in a jury

trial dismiss some of the potential jurors without justification. These dismissals, known as

peremptory challenges, are meant to enable “each side to exclude those jurors it believes will

be most partial toward the other side” thereby “eliminat[ing] extremes of partiality on both

sides”.1 In the last decades, however, peremptory challenges have often been criticized,

mainly because they are perceived as causing some groups — in particular minorities — to

be under-represented in juries.2

The procedure used to let the parties exercise their challenges varies greatly across

jurisdictions and is sometimes left to the discretion of the judge.3 Two classes of procedures

are most frequently used. In Struck procedures (henceforth: STR), the parties can observe

and extensively question all the jurors who could potentially serve on their trial before

exercising their challenges (this questioning process is known as voir dire). In contrast, in

Strike and Replace procedures (henceforth: S&R), smaller groups of jurors are sequentially

presented to the parties. The parties observe and question the group they are presented

with (sometimes a single juror) but must exercise their challenges on that group without

knowing the identity of the next potential jurors.

The goal of this paper is to shed light on the debate that emerged in the legal doctrine

over the relative effectiveness of STR and S&R at satisfying the two objectives of excluding

extreme jurors and ensuring adequate group representation. Bermant and Shapard (1981,

pp. 93-94), for example, argues that, by avoiding uncertainty, STR “always gives advocates

more information on which to base their challenges, and, therefore, [...] is always to be

preferred”. Bermant further notes that “a primary purpose of peremptory challenges is to

eliminate extremes of partiality on both sides” and that “the superiority of the struck jury

method in accomplishing this purpose is manifest.”

1Holland v. Illinois, 493 U.S. 474, 484 (1990).
2For examples of this line of argument against peremptory challenges, see Sacks (1989), Broderick (1992),

Hochman (1993), Marder (1994), and Smith (2014). Despite these attacks, the U.S. has so far resisted aban-
doning peremptory challenges altogether (unlike other countries; like the U.K., where they were abolished
in 1988). Peremptory challenges remain pervasive in all U.S. jurisdictions and have been affirmed by the
U.S. Supreme Court as “one of the most important rights secured to the accused” (Swain v. Alabama 380
U.S. 202 (1965), see LaFave et al., 2009).

3For example, in criminal cases in Illinois, “[State Supreme Court] Rule 434(a) expressly grants a trial
court the discretion to alter the traditional procedure for impaneling juries so long as the parties have
adequate notice of the system to be used and the method does not unduly restrict the use of peremptory
challenges” (People v. McCormick, 328 Ill.App.3d 378, 766 N.E.2d 671, (2d Dist., 2002)).
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Others have argued that, by revealing the identity of all potential jurors before chal-

lenges are exercised, STR facilitates the exclusion of some groups from juries. In Batson v.

Kentucky, and J.E.B. v. Alabama the Supreme Court found it unconstitutional to challenge

potential jurors based on their race or gender.4 However, proving that a challenge is based

on race or gender is often difficult, and the Supreme Courts’ ruling is therefore notoriously

hard to enforce.5 Interestingly, in response, judges themselves have turned to the design

of the challenge procedure and the use of S&R as an instrument to foster adequate group

representation. In a memorandum on judges’ practices regarding jury selection, Shapard

and Johnson (1994) for example report about judges believing that by “prevent[ing] coun-

sel from knowing who might replace a challenged juror” S&R procedures “make it more

difficult to pursue a strategy prohibited by Batson.”

To inform this debate, we extend in Section 2 the model of jury selection proposed in

Brams and Davis (1978) by allowing potential jurors to belong to two different groups. In

the model, each potential juror is characterized by a probability to vote in favor of the

defendant’s conviction. This probability is drawn from a distribution that depends on the

juror’s group-membership. The group distributions are common knowledge but the parties

to the trial, a plaintiff and a defendant, only observe their realization for a particular juror

upon questioning that juror.

A jury must be formed to decide the outcome of the trial and the parties can influence its

composition by challenging (i.e., vetoing) a certain number of potential jurors. Challenges

are exercised according to S&R or STR procedures which, as explained above, differ mainly

in the timing of jurors’ questioning (and, as a consequence, in the parties’ ability to observe

the conviction probability of potential jurors).

We ask how these two procedures perform in achieving the objectives of excluding ex-

treme jurors and ensuring adequate group representation. In Section 3, we provide some

intuition for our main result by introducing an illustrative example where a single juror

must be selected, and the parties each have a single challenge available. In this example,

4476 U.S. 79 (1986); see also J. E. B. v. Alabama, 511 U.S. 127 (1994). The response to these decisions
has consisted in allowing the parties to appeal peremptories from their opponent, so that peremptories
proven to be based merely on the juror’s race can be nullified. These appeals are known as Batson appeals.

5See Raphael and Ungvarsky (1993): “In virtually any situation, an intelligent plaintiff can produce a
plausible neutral explanation for striking Pat despite the plaintiff’s having acted on racial bias. Consequently,
given the current case law, a plaintiff who wishes to offer a pretext for a race-based strike is unlikely to
encounter difficulty in crafting a neutral explanation.” See also Marder (2012) or Daly (2016) for why
judges rarely rule in favor of Batson appeals.
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we show that STR is more effective than S&R at excluding jurors from the tails of the

conviction probability distribution, but is less likely to select minority jurors.

The rest of the paper is devoted to characterizing conditions under which these results

extend beyond the illustrative example of Section 3. In Section 4 we call a juror extreme if

its conviction probability falls below (above) a given threshold. We prove that there always

exists a low enough threshold such that STR is more likely than S&R to exclude extreme

jurors. Moreover, we show that STR always selects fewer extreme jurors than a random

selection would, but that there are some (admittedly somewhat unusual) circumstances

in which S&R would not. Simulations assuming a wide range of conviction probability

distributions reveal that, in terms of excluding extreme jurors, the advantage of STR over

S&R can be substantial, even for relatively high thresholds.

Section 5 compares procedures according to their ability to select minorities, identifying

conditions under which S&R selects more minority jurors than STR. Our proof uses a

limiting argument showing that the result holds when the minority is vanishingly small and

the distributions of conviction probabilities for each group minimally overlap (i.e., groups

are polarized). However, simulations suggest that the result remains true when the size of

the minority is relatively high and the overlap between distributions is significant.

In Section 6, we explore how changing the number of challenges affects the results of

Sections 4 and 5. In any procedure, increasing the number of challenges helps the exclusion

of more extreme jurors, but reduces minority representation.

In Section 7 we show how our main theoretical results extend to a different definition

of extreme juries (i.e., a jury in which the highest (lowest) conviction-probability juror is

below (above) a given threshold). We also explore how the procedures compare in selecting

members of groups that are of similar sizes (such as males and females, as opposed to

minorities which induce groups of unequal sizes).

Related Literature

This paper belongs to a relatively small literature formalizing jury selection procedures.

Brams and Davis (1978) model S&R as a game and derive its subgame-perfect equilibrium

strategies which we use in our theoretical results and simulations. Perhaps closest to our

paper is Flanagan (2015) who shows that, compared to randomly selecting jurors, STR

increases the probability that all jurors come from one particular side of the median of
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the distribution of conviction probabilities (because STR induces correlation between the

conviction probability of the selected jurors). To our knowledge, this literature is silent

on the implications of jury selection for group representation and on the trade-off between

excluding extreme jurors and ensuring adequate group representation induced by using

different procedures. These are the focus and main contributions of this paper.

While the group-composition of a jury has been shown to influence the outcome of a

trial (Anwar et al., 2012, 2019, 2021; Flanagan, 2018; Hoekstra and Street, 2021), legal

scholars often argue in favor of representative juries regardless of their effect on verdicts.

Diamond et al. (2009) for example argue that “unrepresentative juries [...] threaten the

public’s faith in the legitimacy of the legal system.” In an experiment on jury-eligible indi-

viduals, they show that participants rate the outcome of trials as significantly fairer when

the jury is racially heterogeneous than when it is not. This motivates us to consider group-

representativity itself as a desirable feature of jury selection procedures.

The empirical literature on jury selection has also identified systematic patterns of group-

specific challenges from the parties, with the plaintiffs being almost always more likely to

remove minority jurors than defendants (Anwar et al., 2012, 2021; Craft, 2018; Diamond

et al., 2009; Flanagan, 2018; Rose, 1999; Turner et al., 1986). This evidence justifies our

assumption that parties perceive different groups as having polarized distributions of con-

viction probabilities.

The lack of random variation in jury selection procedures makes it difficult for the

empirical literature to provide credible evidence over the effects of the choice of procedure.

Focusing on the number of challenges, Diamond et al. (2009) show that larger juries are

more representative of the pool’s demographic.6 In Section 6, we show that limiting the

number of challenges (while keeping the number of selected jurors fixed) can have a similar

effect, though at the expense of a less effective exclusion of extreme jurors.

2 Model

There are two parties to a trial, the defendant, D, and the plaintiff, P . The outcome of the

trial is decided by a jury of j jurors who must be selected from the population. The parties

share a common belief about the probability that a juror i will vote to convict the defendant.

6The study takes advantage of a feature of civil cases in Florida where juries are made of six jurors unless
one of the parties requests a jury of twelve jurors and pays for the costs associated with such a larger jury.
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We denote this probability ci ∈ [0, 1]. Jurors draw this probability independently from the

same random variable C, with probability distribution f(c). We denote its cumulative with

F (c) and its expected value with µ. Throughout, we assume that C is continuous. To

simplify the notation, we also assume that the boundaries of the support of C are 0 and 1.7

To address the issue of group representation, we assume that jurors belong to one of two

groups, a or b. The parties have common beliefs about the probability that jurors from each

group vote to convict the defendant. We index the distributions representing these beliefs

and their averages with subscript g ∈ {a, b}: fg(c), Fg(c), and µg.
8 The corresponding

random variables are denoted by Ca and Cb. Although throughout conviction probabilities

and their distributions across groups should only be viewed as representing the parties

common-beliefs, we henceforth lighten the terminology and speak directly of conviction

probabilities (rather than parties’ beliefs about conviction probabilities).

We let r denote the proportion of group-a jurors in the population, and when discussing

group representation, we assume that C is obtained by drawing from Ca with probability r

and from Cb with probability (1− r) (in particular, f(c) = rfa(c) + (1− r)fb(c)).

Following the literature (Brams and Davis, 1978; Flanagan, 2015), we assume that during

jury selection the parties do not account for the process of jury deliberations and, perhaps as

a way to cope with the complexity of jury selection, view the jurors’ conviction probabilities

as independent from one another.9 Since conviction in most U.S. trials requires a unanimous

jury, the parties assume that a jury composed of jurors with conviction probabilities {ci}ji=1

convict the defendant with probability Πj
i=1ci. The defendant, therefore, aims at minimizing

the product Πj
i=1ci while the plaintiff wants to maximizing it.

To influence the composition of the jury, the defendant and the plaintiff are allowed

to challenge (veto) up to d and p of the jurors in a panel of n = j + d + p potential

jurors randomly and independently drawn from the population (sometimes also called the

pool).10 To avoid trivial cases, we assume throughout that d, p ≥ 1. The parties use these

challenges in the course of a veto procedure M (formally, an extensive game-form). The

7This assumption is without loss of generality and all our results hold if C is re-scaled in such a way that
F (c) = 0 or [1− F (1− c′)] = 0 for some c, c′ ∈ (0, 1).

8Empirical evidence shows that that parties use their challenges unevenly across groups (see the Related
Literature section of the Introduction).

9See Gerardi and Yariv (2007) and Iaryczower et al. (2018) for cases where jury deliberations have an
impact on outcomes.

10In the legal literature, what we call “panel” is sometimes called “venire” (though terminology varies
and the latter term is sometimes used to speak of what we call the population).
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jury resulting from the procedure is called the effective jury.

The two veto procedures we study are the STRuck procedure (STR) and the Strike

And Replace procedure (S&R). For comparison, we also consider the Random procedure

(RAN ) which simply draws j jurors independently at random from the population. In all

procedures, we assume that once a potential juror i is presented to the parties, the parties

observe the realized value of ci for that juror.11 The two procedures however differ in the

timing with which jurors are presented to the parties.

Under STR, the entire panel of j+d+p potential jurors is presented to the parties before

they have the opportunity to use any of their challenges. Each party, therefore, observes

the value of ci for every juror in the panel. The defendant and the plaintiff then choose to

challenge up to d and p of the jurors in the panel, respectively. In equilibrium, this leads

the plaintiff to challenge the p jurors in the panel with lowest conviction probabilities, and

the defendant to challenge the d jurors with highest conviction probabilities.12 Whether

these challenges happen simultaneously or sequentially has no impact on the equilibrium of

STR and our results therefore apply in either case.13

Under S&R, groups of potential jurors are randomly drawn from the population and

sequentially presented to the parties. In contrast with STR procedures, the parties must

exercise their challenges on jurors from a given group without knowing the identity of jurors

from subsequent groups. There is variation among S&R used in practice in the size of

the groups that are presented in each round.14 For concreteness and tractability, we focus

in this paper on the S&R procedure in which jurors are presented to the parties one at

a time. The defendant and the plaintiff start the procedure with d and p challenges left,

respectively. After each draw, the plaintiff and the defendant observe the potential juror’s

11The assumption that parties have the same assessment of the probability a juror will vote for conviction
is motivated by the practice of letting parties extensively question potential jurors in the voir dire process.
This process typically occurs in the presence of all parties, who therefore have access to the same information
about the jurors’ demographics, background, and opinions.

12Alternative methods used in the field include procedures in which the parties challenge sequentially out
of subgroups of jurors from the panel only. As long as the procedure remains of the struck type (i.e., the
entire panel — and not only the first subgroup — is questioned before the parties start exercising their
challenges), the equilibrium effective jury is often the same as under the STR procedure we consider here.
Other outcome-irrelevant aspects of the equilibrium might, however, be different such as the number of
challenges used by the parties (e.g., if the first group is made of the j “middle” jurors in the panel, they
may in some cases be selected as effective jurors without the parties exercising any of their challenges).

13Since C is continuous, the probability that two jurors in a panel have the same conviction probability
and one of the parties does not use all of its challenges in equilibrium has measure zero and this eventuality
can therefore be neglected.

14As well as in the ability of the parties to challenge, in a later round, potential jurors who were left
unchallenged in previous rounds, a practice known as “backstricking”.
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conviction probability and, if they have at least one challenge left, choose whether or not

to challenge the juror. If a juror is not challenged by either party, it becomes a member of

the effective jury. Any challenged juror is dismissed and the number of challenges available

to the challenging party is decreased by one. The process continues until an effective jury

of j members is formed.

The (subgame perfect) equilibrium of S&R was characterized by Brams and Davis (1978)

and takes the form of threshold strategies. In every subgame, D challenges the presented

juror i if ci is above a certain threshold tD, P challenges i if ci is below some threshold tP ,

and neither of the parties challenges i if ci ∈ [tP , tD].15 We will sometimes refer to these

values as challenge thresholds. As Brams and Davis (1978) show, in any subgame, tP < tD

which implies that a challenge to the same juror by both parties never occurs in equilibrium.

The equilibrium is therefore unaffected by the order in which the parties decide whether to

challenge the presented juror.

In our description of S&R, Nature moves in each round by presenting to the parties a

new potential juror drawn from the population. To facilitate comparisons between STR

and S&R, it will sometimes be useful to consider an equivalent description of S&R in which

Nature first draws a panel of n jurors {c1, . . . , cn} (which the parties are not aware of) and

in each round k presents juror ck to the parties. For similar purposes, it will sometimes be

useful to view RAN as first drawing a panel of n jurors and then (uniformly at random)

selecting j jurors among these n to form the effective jury.

3 Excluding extremes and representation of minorities: An

illustrative example

To illustrate the differences between the two procedures, consider the simple case d = p =

j = 1 together with distributions Ca ∼ U [0, 0.5] and Cb ∼ U [0.5, 1]. Also, suppose that

r = 0.1, i.e., there is a minority of 10% of group-a jurors in the population.

Let Unx [0, 1] denote the x-th order statistic for a U [0, 1] random sample of size n. With

this notation, Figure 1 shows the group-membership and distribution of conviction probabil-

15Each subgame can be characterized by the number of jurors κ that remain to be selected, the number of
challenges left to the defendant δ, and the number of challenges left to the plaintiff π. The parties threshold
in subgame (κ, δ, π) are a function of the value of subgames (κ−1, δ, π), (κ, δ−1, π), and (κ, δ, π−1) (which
are all possible successors to the parties action in (κ, δ, π)) and the distribution of C, see Brams and Davis
(1978).
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Figure 1: Illustrative example, equilibrium outcomes under STR
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Note: The figure describes the equilibirum of STR assuming j = p = d = 1, Ca ∼ U [0, 0.5], Cb ∼ U [0.5, 1],
and r = 0.10. The initial node illustrates distribution C = 0.10 ∗Ca + 0.9 ∗Cb. The numbers on each arrow
indicate the probability of drawing a panel with the group-composition represented in the pointed boxes
(conditional on each panel composition, the circled letter in the box corresponds to the group-membership
of the selected juror). Dashed arrows correspond to outcomes that lead to the selection of a group-a juror
and the graph underneath each box shows the distribution of conviction probabilities for the selected juror.

ity for the juror selected under STR, conditional on the composition of the panel. Observe

that in this example, if there are group-a jurors in the panel, one of them is systematically

challenged by the plaintiff. Therefore, for a group-a juror (i.e., a minority juror) to be

selected under STR, there needs to be at least two group-a jurors in the panel of n = 3

presented to the parties. This occurs with probability 0.03.

In contrast, a group-a juror can be selected under S&R even if the panel contains a single

group-a juror. To understand why, consider the equilibrium of S&R which is illustrated

in Figure 2. If a group-b prospective juror with a sufficiently low conviction probability

(ci ∈ [0.5, 0.62]) is presented first, then it will be challenged by the plaintiff. This leads to a

subgame in which only the defendant has challenges left and a group-a juror is more likely

to be selected than if a juror was randomly drawn from the population. In particular, any

group-a juror presented at the beginning of this later subgame is left unchallenged by the

defendant and selected to be the effective juror (even if this juror is the only group-a juror

in the panel because the third juror — who, in this case, is never presented to the parties —

happens to be a group-b juror). This course of action follows from P ’s choice to challenge

a group-b juror with low conviction probability in the first round, which leaves P without
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Figure 2: Illustrative example, equilibrium strategies and outcomes under S&R
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Note: The figure describes the equilibrium strategies conditional on the conviction probability of the juror
drawn in each round for the case j = d = p = 1, Ca ∼ U [0, 0.5], Cb ∼ U [0.5, 1] and r = 0.10. Dashed arrows
correspond to paths that may lead to the selection of a group-a juror. The numbers on each arrow indicate
the probability of the path conditional on reaching the previous node. The second row of text inside boxes
indicates an equilibrium action, whereas bold text below boxes indicates the group of the selected juror in
the game outcome. In round 3, challenges from both parties are exhausted and the parties do not take any
action.

challenges left in the second round. This choice of P is optimal from the perspective of the

first round of S&R (before the plaintiff learns that the second juror in the panel is a group-a

juror), but suboptimal under STR where, having observed the conviction probability of all

jurors in the panel, the plaintiff would have challenged the group-a juror instead.

Considering only the branch of the S&R game-tree that starts with a challenge from P ,

the probability of selecting a group-a juror is almost 0.05 = 0.31∗(0.54∗0.1+0.10). Adding

the possibility that a minority juror is selected after D challenges in the first round followed

by a challenge from P in the second round (which happens with probability 0.4∗0.47∗0.1 ≈

0.02), the probability of selecting a minority juror under S&R is 0.067.16 This is larger than

16These are the only cases in which a minority juror can be selected under S&R. In particular, jurors
accepted in the first round are always group-b jurors (ci ∈ [0.62, 0.78]). So are jurors accepted in the second
round following a challenge from D is the first round (ci ∈ [0.70, 1]).
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the probability under STR, 0.03, yet smaller than under RAN , 0.10.

In this example, the better representation of minority jurors produced by S&R comes

at the expense of selecting more extreme jurors. Suppose for the sake of illustration that

jurors are considered extreme if they come from the top or bottom 5th percentile of C.

In our example, the bottom and top 5th percentile corresponds to conviction probabilities

below 0.25 and above 0.94, respectively. The selected juror is within the bottom range with

probability 0.015 under STR versus 0.033 under S&R, and in the top range with probability

0.076 under STR versus 0.083 under S&R.

To understand the source of these differences, consider the bottom 5th percentile [0, 0.25]

(a symmetric explanation applies to the top 5th percentile). As indicated in Figure 1, when

STR selects a group-a juror — the type of juror whose conviction probability could possibly

be in the bottom 5th percentile — the distribution of that juror’s conviction probability

follows the middle or upper order-statistics of a random sample from Ca. These order-

statistics are unlikely to result in the selection of a juror with conviction probability in the

bottom 5th percentile. In contrast, as Figure 2 illustrates, all paths leading S&R to select

a group-a juror result in the juror’s conviction probability being drawn from U [0, 0.5] itself,

which makes S&R more likely to select a juror in the bottom 5th percentile than STR.

In the next two sections, we investigate the extent to which the advantages of S&R in

terms of minority-representation and of STR in terms of exclusion of extreme generalizes

beyond this illustrative example.

4 Exclusion of extremes

The peremptory challenge procedures implemented in U.S. jurisdictions are often viewed

as a way to foster impartiality by preventing extreme potential jurors from serving on the

effective jury.17 In the context of our model, we interpret this goal as that of limiting the

presence in the jury of jurors from the tails of the distributions of conviction probabilities.

We define a juror i as extreme if its conviction probability ci lies below or above given

thresholds (see Section 7 for results under an alternative definition). For brevity, we will

focus on jurors who qualify as extreme because their conviction probability lies below some

17See Footnote 1 and its associated quote. For legal arguments in favor of peremptory challenges based
on the Sixth Amendment, see, among others, Beck (1998), Biedenbender (1991), Bonebrake (1988), Horwitz
(1992), and Keene (2009).
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threshold c > 0. All our results about extreme jurors apply symmetrically to jurors whose

conviction probability lies above a given threshold c < 1.

In our example from the previous section, jurors in the bottom 5th percentile of C are

selected less often under STR than S&R. This is not true in general. Fixing a particular

threshold c > 0 — or percentile of C — to characterize jurors as extreme, there always

exists distributions of C and values of d, p, and j such that S&R selects fewer extreme

jurors than STR. However, our first result shows that regardless of the distribution and

of the parameter values, there always exists a sufficiently small threshold such that the

probability of selecting extreme jurors (i.e., below that threshold) is greater under S&R

than under STR.

Let TM (x; c) denote the probability that there are at least x jurors with conviction

probability smaller or equal to c in the jury selected by procedure M .

Proposition 1. For any x ∈ {1, . . . , j}, there exists c > 0 such that TSTR(x; c) < TS&R(x; c)

for all c ∈ (0, c).

All proofs are in the appendix. A symmetric statement, which we omit, applies for

extreme jurors at the right-end of the distribution. Note that Proposition 1 can be rephrased

in terms of stochastic dominance. Let N c
M denote the expected number of jurors of type

ci ≤ c in the jury selected by procedure M . Then, Proposition 1 says that there exists c > 0

and such that N c
S&R has first-order stochastic dominance over N c

STR for all c ∈ (0, c). A

direct corollary of Proposition 1 is therefore that the expected number of extreme jurors is

larger under S&R than under STR.

For some intuition about Proposition 1, consider the case x = 1. As illustrated in

Section 3, the panel must be composed of more than one extreme juror for STR to select

at least one such juror (since, if there is a single extreme juror in the panel, that juror is

systematically challenged by the plaintiff). In contrast, even in panels with a single extreme

juror, the extreme juror can be part of the effective jury resulting from S&R. This happens,

for example, if the extreme juror is presented to the parties after they both exhausted

all their challenges. The single extreme juror can also be accepted by both parties if its

conviction probability is sufficiently close to c and it is presented after the plaintiff used

most of its challenges on non-extreme potential jurors.18 The proof then follows from the

18Subgames in which the defendant has more challenges left than the plaintiff can lead the plaintiff to be
conservative and accept jurors who are “barely extreme” (ci ≈ c) in order to save its few challenges left for
“very extreme” jurors (ci ≈ 0).
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Figure 3: Distributions of conviction probabilities by group under extreme,
moderate, and mild group-polarization

0.0 0.5 1.0

Conviction probability

0

1

2

3

4

5

fa(c): Beta(1, 5)

fb(c): Beta(5, 1)

(a) Extreme

0.0 0.5 1.0

Conviction probability

0.0

0.5

1.0

1.5

2.0

fa(c): Beta(2, 4)

fb(c): Beta(4, 2)

(b) Moderate

0.0 0.5 1.0

Conviction probability c

0.0

0.5

1.0

1.5

2.0

fa(c): Beta(3, 4)

fb(c): Beta(4, 3)

(c) Mild

fact that, as c tends to zero, the probability that the panel contains more than one extreme

juror goes to zero faster than the probability the panel contains a single extreme juror.19

Proposition 1 is silent about the value of the threshold c below which STR selects fewer

jurors than S&R, as well as the size of TS&R(x; c)−TSTR(x; c) for c < c. These values depend

on the model’s parameters. To illustrate, we simulate TSTR(1; c) and TS&R(1; c) using j =

12, d = 6, and p = 6, a typical combination of jury size and number of peremptory challenges

in U.S. jurisdictions. For the distribution of conviction probabilities in the population, we

use symmetric mixtures of beta distributions that represent a population made of two groups

with polarized views. Although the results in this section do not depend on whether jurors

come from polarized groups, using these distributions facilitates comparisons with Section

5 where we study group-representation. We provide simulation results for three mixtures of

the distributions illustrated in Figure 3, which are meant to represent extreme (Panel (a)),

moderate (Panel (b)), and mild levels of polarization (Panel (c)). Additional simulations

19Proposition 1 crucially depends on averaging across all possible panels and does not state that STR
rejects more extreme jurors than S&R for any particular realization of the panel. The latter would obviously
imply Proposition 1 but turns out to be false in general. For a counterexample, let j = d = p = 1. Consider
a panel of three jurors with c2 < c3 < c and c1 > c and where the index of the jurors indicate the order in
which they are presented under S&R. For this panel, STR always leads to the selection of extreme juror 3.
In contrast, provided c2 falls between the challenge thresholds of the defendant and the plaintiff in the first
round (which happens with positive probability), S&R selects non-extreme juror 2.
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Figure 4: Fraction of juries with at least one extreme juror
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Note: For each set of parameters, results on the vertical axis are averages across 50,000 simulated jury
selections, fixing j = 12, d = p = 6, and C ∼ 0.25 ∗ Ca + 0.75 ∗ Cb throughout (distributions Ca and Cb
illustrated in Figure 3). Each line illustrates the fraction of juries with at least one extreme juror, where
a juror is considered extreme if her conviction probability falls below the threshold c corresponding to the
value on the horizontal axis.

results using U [0, 1] are reported in the external appendix ??.

Using these parameters, STR is found to exclude more extreme jurors than S&R even

when the threshold for defining jurors as extreme is relatively high. As illustrated in Fig-

ure 4, the difference between the propensity of STR and S&R to select extreme jurors is

sizable. For example, in all three sets of simulations, less than 1% of juries selected by STR

feature include at least one juror with conviction probability below the 10th percentile of

the distribution (the 10th percentile corresponds to 0.10 under the extreme polarization

distribution, 0.25 under moderate polarization, and 0.28 under mild polarization). Under

S&R, the proportion of juries with at least one juror below the 10th percentile rises to 29%

with extreme polarization, 28% with moderate polarization, and remains quite high at 27%

even under mild polarization. For comparison, a random selection would have resulted in

over 70% of the juries featuring at least one such juror in all scenarios.

In these simulations, both procedures select fewer extreme jurors than a random draw

from the population. Somewhat surprisingly, this is not true in general. There exist dis-

tributions and values of the parameters d, p and j for which S&R selects more extreme
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Figure 5: Fraction of juries with at least one extreme juror (case in which S&R
is more likely to pick extreme jurors than RAN )
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Note: For each set of parameters, results on the vertical axis are averages across 50,000 simulated jury
selections, fixing j = d = p = 1, and C ∼ 0.75 ∗ U [0, 0.1] + 0.25 ∗ U [0.9, 1] throughout. Each line illustrates
the fraction of juries with at least one extreme juror, where a juror is considered extreme if her conviction
probability falls below the threshold c corresponding to the value on the horizontal axis.

jurors than RAN , no matter how small the threshold below which a juror is considered as

extreme. In contrast, as we show in the next proposition, STR always selects fewer extreme

jurors than RAN .

Proposition 2. For any x ∈ {0, . . . , j − 1}, there exists c > 0 such that TSTR(x; c) <

TRAN (x; c) for all c ∈ (0, c).20

Figure 5 illustrates Proposition 2 and the fact that a similar statement does not hold

for S&R. For the simulations in the figure, we let j = d = p = 1 and adopt an extremely

polarized distribution of conviction probabilities with C ∼ 0.75 ∗U [0, 0.1] + 0.25 ∗U [0.9, 1].

In this case (as in others), STR excludes extreme jurors more often than RAN because,

for any realization of the panel, the juror with the lowest conviction probability is never

selected under STR (whereas the same juror is selected with positive probability under

RAN ). Under S&R, however, if the distribution is sufficiently right-skewed, the plaintiff is

more likely than the defendant to challenge in the first round. A challenge by the plaintiff

20Proposition 2 generalizes Theorem 2 in Flanagan (2015) which shows that there always exists c > 0 such
that TSTR(n; c) < TRAN (n; c) for all c ∈ (0, c).
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in the first round leads to a subgame in which only the defendant has challenges left and

the selection of an extreme juror is more likely than under a random draw. When they are

sufficiently large (i) the added probability of selecting an extreme juror when the defendant

has more challenges left than the plaintiff, coupled with (ii) the probability of a challenge

by the plaintiff in the first round can, as in the simulation depicted in Figure 5, lead to

S&R selecting more extreme jurors than RAN .

We could not fully characterize the situations in which S&R selects more extreme jurors

than RAN , and we never observed such a situation in simulations where C is a symmetric

mixture of beta or uniform distributions. The example in Figure 5 (as well as other examples

we found) requires extreme skewness in the distribution, which may be viewed as unlikely. In

this sense, situations in which S&R selects more extreme jurors than RAN might represent

worst-case scenarios for S&R’s ineffectiveness at excluding extreme jurors.

5 Representation of minorities

In this section, we study the extent to which STR’s tendency to exclude more extreme jurors

than S&R impacts the representation of minorities under the two procedures. Without loss

of generality, we let group-a be the minority group. Since the parties do not care intrin-

sically about group-membership, any asymmetry in the use of their challenges arises from

heterogeneity in preferences for conviction between groups. In our simulations, we assume

that group-a is biased in favor of acquittal in the sense that Cb first-order stochastically

dominates Ca.
21

As suggested by Proposition 1, which procedure better represents minorities strongly

depends on the polarization between the two groups, and the concentration of minority

jurors at the tails of the distribution of conviction probabilities. To illustrate, suppose that

d = p = j = 1 and C ∼ U [0, 1]. For this case, the distributions of conviction probabilities

for the juror selected under RAN , STR, and S&R are displayed in Figure 6(a). Consistent

with Proposition 1, below some threshold c ≈ 0.25, the probability of selecting a juror i

with ci < c is lower under STR than under S&R. If the two groups are polarized and the

distribution of Ca is sufficiently concentrated below c, it follows that STR selects a minority

juror less often than S&R. But the same is not true if the distributions lack polarization

21We also simulated the scenario in which the minority is biased towards conviction, the results, which we
report in the Appendix, are symmetrically very close.
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Figure 6: Jury selection and minority representation in size-1 juries
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(b) Minority representation in juries

Note: For each set of parameter, results on the vertical axes are averages across 50,000 simulated jury
selections, fixing j = 1, d = p = 1, and C ∼ r ∗ U [0, r] + (1 − r) ∗ U [r, 1] throughout. The distribution in
panel (a) is independent of r; the lines in panel (b) interpolate results from 20 values of r.

or the minority is too large. For example, let Ca ∼ U [0, r] and Cb ∼ U [r, 1] so that

C ∼ U [0, 1] = rU [0, r]+(1−r)U [r, 1]. Since the parties only care about a juror’s conviction

probability and not about its group-membership per se, the value of r does not affect the

distributions of conviction probabilities for the juror selected under RAN , STR, or S&R.

However, as illustrated in Figure 6(b), low values of r — which concentrate minorities at

the bottom of the distribution — make S&R select more minorities than STR, whereas

higher values of r — which spread the minority over a larger range of conviction-types —

make STR select more minorities than S&R.

From this example, we see that non-overlapping group-distributions are not sufficient to

guarantee that S&R selects more minority jurors than STR. Neither is making the minority

arbitrarily small. For example, regardless of the size of the minority r, concentrating the

support of the minority distribution inside the interval [0.2, 0.3] would result in STR select-

ing more minorities, as can be seen from Panel 6(a). However, combining a small minority

with group-distributions that minimally overlap concentrates the distribution of group-a at

the tails which, as implied by Proposition 1, makes S&R select more minorities than STR.
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Formally, consider a sequence of triples {(Cia, Cib, ri)}∞i=1. If,

(i) ri ∈ (0, 1] for all i ∈ N with limi→∞ r
i = 0, and

(ii) Cia and Cib converge in distribution to C∗a and C∗b , with either P(C∗a < C∗b ) = 0 or

P(C∗a > C∗b ) = 0,

then we say that there is a vanishing minority and group-distributions that do not

overlap in the limit. For any such sequence, let AiM (x) denote the probability that there

are at least x minority jurors in the jury selected by procedure M when group-distributions

are Cia and Cib and the proportion of minority jurors in the population is ri.

Proposition 3. Suppose that, under {(Cia, Cib, ri)}∞i=1, there is a vanishing minority and

group distributions that do not overlap in the limit. Then for all x ∈ {1, . . . , j}, there exists

k sufficiently large such that AiS&R(x) > AiSTR(x) for all i > k.22

Given the result in Proposition 3, it is natural to wonder how small the minority and the

overlap between the group-distributions must be for S&R to select more minority jurors than

STR. When the latter is true, one may also wonder about the size of AS&R(x; r)−ASTR(x; r)

is. Again, the answer depends on the model’s parameters. To inform these questions, we

ran a set of simulations with d = p = 6 and j = 12 using the distributions displayed in

Figure 3, where the green lines in each panel represent fa and the yellow lines fb.

The results of our simulations, displayed in Table 1, suggest that S&R might select

more minority jurors than STR even when the size of the minority is relatively high (as

high as 25%) and the overlap between the group-distributions significant. However, without

stark polarization across groups,23 differences between the procedures’ propensities to select

minority jurors appear to be small. For example, under the distributions we labeled as

“extreme group heterogeneity” and with minorities representing 10% of the population, only

2.3% of juries selected by S&R include at least one minority juror whereas this number rises

to 17.1% under S&R (random selection would generate over 70% of such juries). However,

22Note that, despite the argument presented in the motivating example illustrated in Figure 6, Proposition
3 does not follow directly from Proposition 1. The reason is that, unlike in the motivating example, most of
the sequences {(Cia, Cib, ri)}∞i=1 covered by Proposition 3 are such that Ci = riCia + (1− ri)Cib varies across
the sequence (i.e., Ch 6= Ck for most h, k ∈ N).

23Recall that Ca and Cb represent the parties’ beliefs that randomly drawn group-a or group-b jurors
eventually vote to convict the defendant. Polarized Ca and Cb, therefore, corresponds to groups that
are perceived by the parties to have different probabilities of voting for conviction (whether or not this
materializes when jurors actually vote on conviction at the end of the trial).
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Table 1: Representation of Group-a when Group-a is a minority of the pool

Polarization Extreme Moderate Mild (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of minorities 0.10 0.08 0.18 0.16 0.23 0.23 0.25

Standard deviation 0.11 0.11 0.12 0.12 0.12 0.12 0.12

Fraction of juries with at least 1 0.57 0.45 0.88 0.84 0.96 0.95 0.97

(a) Group-a represents 25% of the jury pool

Polarization Extreme Moderate Mild (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of minorities 0.02 0.00 0.05 0.04 0.09 0.08 0.10

Standard deviation 0.04 0.01 0.07 0.06 0.08 0.08 0.09

Fraction of juries with at least 1 0.17 0.02 0.47 0.38 0.67 0.64 0.72

(b) Group-a represents 10% of the jury pool

Note: The rows report the average number and standard deviation of group-a jury members, and the percent
of juries with at least one group-a jurors, out of 50,000 simulations of jury selection with parameters j = 12
and d = p = 6. Conviction probabilities are drawn for from Beta(5, 1), Beta(1, 5), respectively for Group-a,
Group-b jurors (Extreme), from Beta(4, 2), Beta(2, 4) (Moderate), and from Beta(4, 3), Beta(4, 3) (Mild);
see Figure 3 for the shape of these distributions.

under the distributions we labeled as “mild group heterogeneity”, the same numbers become

66.5% under S&R and 64.5% under STR (random selection would generate over 71.9% of

juries with at least one minority juror in this second case).

6 Changing the number of challenges

The number of challenges that the parties can use are typically specified by state rules of

criminal procedure. In the last decades, several states have reduced the number of challenges

the parties can use.24 In some instances, these reforms also clarify or alter the jury selection

procedures used in the state.25 In the context of such broader reforms, it is natural to ask

how the ability to change both the number of challenges the parties are entitled to and the

24Examples include California’s Senate Bill 843, passed in 2016, which reduces the number of challenges
a criminal defendant is entitled to from 10 to 6 (for charges carrying a maximal punishable of one year in
prison, or less).

25Examples include the 2003 reform of jury selection in Tennessee where some aspects of the jury selection
procedure were codified to apply uniformly across the state, while the number of peremptory challenges was
also slightly reduced (see Cohen and Cohen, 2003).
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Figure 7: The effect of varying the number of challenges
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(b) Fraction of minority jurors

Note: Fraction of juries with at least one juror below the 10th percentile (left panel) and fraction of minority
jurors (right panel) under STR (green starred markers) and S&R (orange square markers). For each set of
parameters, results on the vertical axes are averages across 50,000 simulated jury selections, fixing j = 12
and C ∼ 0.2∗Ca+0.8∗Cb throughout (distributions Ca ∼ Beta(2, 4) and Cb ∼ Beta(4, 2), see Figure 3(b)).
The values of d = p are on the horizontal axes.

procedure through which the parties exert their challenges affect the trade-off between the

exclusion of extreme jurors and the representation of minorities.

Throughout this section, we fix an arbitrary value of j and consider varying d = p. For

any procedure M , let M -y denote the version of M when d = p = y. The notation for

the two previous sections then carries over, with TM -y(x; c) denoting the probability that

at least x jurors with conviction probability below c are selected under M -y, and AM -y(x)

the probability that at least x minority jurors are selected under M -y.26

For illustration, we first consider the case C ∼ 0.2 ∗Ca + 0.8 ∗Cb, with Ca ∼ Beta(2, 4)

and Cb ∼ Beta(4, 2) (Ca and Cb are illustrated in the Figure 3(b)), and consider a juror

as extreme if its conviction probability falls in the bottom 10th percentile of C (0.27).

Unsurprisingly, the fraction of juries with at least one extreme jurors decreases as the

number of challenges awarded to the parties increases, regardless of the procedure that is

26Again, in the case of extreme jurors, we focus on jurors who qualify as extreme because their conviction
probability falls below a certain threshold c, though all of our results hold symmetrically for jurors who
qualify as extreme because their conviction probability lies above a certain threshold c,
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used (Figure 7(a)). Conversely, the fraction of minority jurors decreases with the number of

challenges under both procedures (Figure 7(b)). For both STR and S&R, more challenges

lead to fewer extreme jurors being selected at the expense of a lower minority representation.

As Figure 7(a) illustrates, however, increasing the number of challenges decreases the

selection of extreme jurors much faster under STR than under S&R. As a consequence, for

all values of y ∈ {2, . . . , 18}, there exists w < y such that STR-w performs better than

S&R-y in terms of both objectives.27

The latter is not true in general. Even when there exists w such that STR-w better

represents minorities than S&R-y, STR-w might still exclude fewer extreme jurors than

S&R-y if jurors are considered extreme when their conviction probability falls below an

arbitrary c > 0. However, an extension of Proposition 1 shows that when such a w exists,

there also exists c > 0 such that if jurors are considered extreme when their conviction

probability falls below c, STR-w performs better than S&R-y in terms of both objectives.

Proposition 4. Consider any x ∈ {1, . . . , j} and any y ≥ 1. Suppose that there exists

w ≥ 1 such that ASTR-w(x) > AS&R-y(x). Then for some c > 0, we also have TSTR-w(x; c) <

TS&R-y(x; c) for all c ∈ (0, c).

7 Extensions

7.1 Excluding unbalanced juries

The primary purpose of jury selection is to prevent extreme jurors from serving (see Footnote

1). In our model, it seems natural to interpret this goal as that of limiting the selection of

jurors coming from the tail of the distribution, as we have done so far. Another approach

is to consider the extremism of juries as a whole. For example, extreme juries could be

juries in which the juror with the highest or lowest conviction probability is extreme. Using

variants of the arguments in the proofs of Propositions 1 and 2, one can show that, in that

sense too, STR is more effective than both S&R and RAN at excluding extreme juries.28

27Specifically, in this example, for any y ∈ {2, . . . , 18}, there exists w ∈ {1, . . . , y−1} such that ASTR-w(1) >
AS&R-y(1) and TSTR-w(1; 0.27) < TS&R-y(1; 0.27)).

28Specifically, for any x ∈ {0, . . . , j − 1}, there exists c > 0 and c̄ < 1, such that (a) for every c ∈ (0, c),
the probability that the lowest conviction-probability in the jury is smaller than c is larger under S&R and
RAN than under STR, and (b) for every c ∈ (c̄, 1), the probability that the highest conviction-probability
in the jury is larger than c is larger under S&R and RAN than under STR.
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Another measure of juries’ extremism, proposed by Flanagan (2015), is whether a jury

is excessively “unbalanced” in the sense of featuring a disproportionate proportion of ju-

rors coming from one side of the median of C. Interestingly, Flanagan shows that STR

introduces correlation between the selected jurors, which leads the procedure to select more

unbalanced juries than RAN . Even though panels are the result of independent draws from

the population, jurors selected under STR have conviction probabilities between that of the

lowest and highest challenged juror. For example, the selection of two jurors with convic-

tion probabilities 0.25 and 0.75 indicates that challenges were used on jurors with conviction

probabilities outside the [0.25, 0.75] range. The latter makes it more likely that STR selected

additional jurors between [0.25, 0.75], introducing a correlation between selected jurors.

This intuition is formalized in Corollary 2 of Flanagan (2015) which shows that, even

when the parties have the same number of challenges (d = p), the probability that all

selected jurors come from one side of the median is larger under STR than under RAN .

Our next proposition generalizes this result. Using a new proof technique, we show that for

any x larger than half the jury-size, the probability of selecting at least x jurors from one

side of the median is larger under STR than under RAN . As in Section 4, we focus on the

probability that the selected jurors are below the median (our results apply symmetrically

to selection of jurors above the median). Let med[C] denote the median of C.

Proposition 5. If d = p, then for any x ∈ {n/2 + 1, . . . , n} if n is even, and any x ∈

{n/2 + 1.5, . . . , n} if n is odd, we have TSTR

(
x;med[C]

)
> TRAN

(
x;med[C]

)
.

Figure 8 illustrates Proposition 5 and the fact that a similar statement does not hold

for S&R. For M ∈ {STR,RAN}, the value of TM (x;med[C]) can be computed analytically

and does not depend on the distribution of C.29 For M = S&R, the value of TM (x;med[C])

depends on the distribution in a complex fashion and it is not possible to generally compare

S&R with the two other procedures in terms of TM (x;med[C]). As the figure illustrates,

the fraction of simulated juries with at least x jurors below med[C] can, in some cases (in

the figure, x = 7 and, barely, x = 8 jurors), be larger under S&R than under both RAN

and STR. In other cases, however, the same figure is lower under S&R than under both

RAN and STR.

Figure 8 displays the result of simulations when the distribution of C is highly polarized

(a mixture of Beta(1, 5) and Beta(5, 1)) In External Appendix ?? we present additional

29Specifically, TRAN

(
x;med[C]

)
= P(Bi[j, 0.5] ≥ x) and TSTR

(
x;med[C]

)
= P(Bi[j + d+ p, 0.5] ≥ x+ p).
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Figure 8: Selection of jurors below the median
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Note: Fraction of juries with a at least given number of jurors below the median of C under STR (green
dashed line) and S&R (continuous lines) relative to the same fraction under RAN (i.e. TM (x;med[C]) −
TRAN(x;med[C])). Throughout, we fix j = 12, d = p = 6 and C ∼ r ∗ Beta(1, 5) + (1− r) ∗ Beta(5, 1) (for
r ∈ {0.1, 0.25, 0.5}) whereas the number of jurors below the median is on the horizontal axis. For each set
of parameters, results for S&R are averages across 50,000 simulated jury selections, whereas values for RAN
and STR are computed analytically and are independent of r (see Footnote 29).

simulations for less polarized distributions. These additional simulations suggest that high

levels of polarization are required for S&R to more often select a majority of jurors below

the median than STR. Also, for lower levels of polarization, S&R tends to selects fewer

juries made of a majority of jurors below the median than RAN .30

7.2 Representation of balanced groups

Concerns about the effect of jury selection on group-representation often focus on the rep-

resentation of racial minorities. Even though the U.S. Supreme Court initially banned

challenges based on race only (Batson v. Kentucky, 1986), it later banned challenges based

on gender (J.E.B. v. Alabama, 1994). It is therefore natural to ask whether the advantage

of S&R in terms of minority representation comes at the cost of a worse representation of

gender groups.

Unlike minorities which correspond to groups of unequal sizes represented by small

values of r, gender-groups can be thought of as even-sized groups and are better modeled

30Because the parties’ actions under S&R are influenced by the mean of the distribution but not in any
clear way by the median (and because of the complexity of the game tree), we were unable to formalize the
effect of polarization on these comparisons in terms of the model parameters.
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using r ≈ 0.5. With groups of similar sizes, both procedures almost always select at least

a few members from either group. It is therefore more interesting to compare procedures

directly in terms of the proportion of group-a jurors they select (rather than in terms of the

probability of selecting at least x members from group-a, as we did before).

In this last section, we let r = 0.5 and study the expected proportion of group-a jurors

selected under STR and S&R. We denote these proportions rSTR and rS&R and focus on

how close rSTR and rS&R are from the 50% of group-a jurors that prevail in the population.

As in the last two sections, it is not possible to generally compare STR and S&R in

terms of the procedures’ ability to select an even proportion of group-a and group-b jurors.

In some cases, rSTR can be further away from 50% than rS&R, and the converse may be

true in other cases. For example, with d = p = 6 and j = 12, if Ca ∼ U [0, 1] and

Cb ∼ Beta(1, 5), simulations reveal that rSTR = 43.7% whereas rS&R = 45.8%. In contrast,

when Ca ∼ Beta[4, 2] and Cb ∼ Beta(1, 5), rSTR = 50.3% whereas rS&R = 52.2%.

These examples however suggest that, as the group distributions become more symmet-

rical, rSTR get closer to 50% . Proposition 6 confirms this pattern. If the group-distributions

are symmetrical (or if they do not overlap) and if d = p, then rSTR = 50% whereas S&R

does not necessarily select an even proportion of jurors from each group. This is because

even when r = 50% and distributions are symmetrical, the multiplicative utility function

that the parties use to assess the value of a jury (a consequence of the assumption that

convictions require unanimity) creates asymmetries in the use of challenges under S&R.31

We say that random variables Ca and Cb are symmetric if fa(c) = fb(1− c), ∀c ∈ [0, 1].

Proposition 6. Suppose that r = 0.5 and d = p. If (a) the two group distributions do not

overlap,32 or (b) Ca and Cb are symmetric, then rSTR = rRAN .

Table 2(a) illustrates Proposition 6 and the fact that a similar statement does not hold

for S&R. Unlike STR, S&R can select unequal numbers of group-a and group-b jurors

even when distributions are symmetrical across groups. Therefore, as a consequence of

Proposition 6, rS&R can in these cases be further away than rSTR from the 50% of group-a

31Flanagan (2015) shows that, in this symmetrical case, the asymmetry of the payoffs still forces the
defendant to be more conservative than the plaintiff when using its challenges, hence leading to an uneven
selection of jurors from the two groups.

32That is either P(Ca > Cb) = 0 or P(Cb > Ca) = 0. The same result would apply if the two distributions
did not overlap in the limit as in Proposition 3.
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Table 2: Representation of Group-a jurors with balanced group sizes

Polarization Extreme Moderate Mild (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of group a 0.48 0.50 0.49 0.50 0.50 0.50 0.50

Standard deviation 0.18 0.20 0.16 0.17 0.15 0.15 0.14

(a) Group-a proportion r = 0.5, group distributions as in Figure 3.

Polarization Extreme Moderate Mild (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of group a 0.39 0.40 0.42 0.42 0.45 0.44 0.45

Standard deviation 0.18 0.20 0.16 0.17 0.15 0.15 0.14

(b) Group-a proportion r = 0.45, group distributions as in Figure 3.

Polarization Extreme∗ Moderate∗ Mild∗ (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of group a 0.47 0.50 0.49 0.48 0.49 0.48 0.50

Standard deviation 0.18 0.20 0.15 0.16 0.15 0.16 0.14

(c) Group-a proportion r = 0.5, group distributions slightly asymmetric∗

∗In panel (c) Extreme∗ corresponds to Ca ∼ Beta(1, 5) and Cb ∼ Beta(5, 2), Moderate∗ to Ca ∼ Beta(2, 4)
and Cb ∼ Beta(4, 3), and Mild∗ to Ca ∼ Beta(3, 4) and Cb ∼ Beta(4, 4).

Note: The rows report the average number and standard deviation of group-a jury members out of 50,000
simulations of jury selection with parameters j = 12 and d = p = 6.

jurors that prevail in the population.

Table 2(a) however suggests that these differences may be quantitatively small, and that

sizable differences may require high levels of polarization between groups. Table 2(b) and

2(c) also report the results of simulations in which the symmetries required for Proposition 6

to hold are slightly relaxed. These indicate that the advantage of STR in the representation

of balanced groups established in Proposition 6 (i.e., the fact that rSTR is closer to 50% than

rS&R) may not be robust to even mild relaxations of these symmetries. In particular, when

r = 0.45 (Table 2(b)) or when r = 0.5 but the group-distributions are slightly asymmetric

(Table 2(c)), rSTR is closer than rS&R to the proportion of group-a jurors that prevail in

the population for some levels of polarization.
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8 Conclusion

In this paper, we study the relative performance of two stylized jury-selection procedures.

Strike and Replace presents potential jurors one-by-one to the parties, whereas the Struck

procedure presents all potential jurors before they exercise vetoes. When jurors differ in

their probability of voting for the defendant’s conviction, and on group membership, we

show that when groups have polarized views Strike is more effective at excluding jurors

with extreme views, but generally selects fewer members of a minority group than Strike

and Replace, leading to a conflict between these two goals.

Besides the selection of juries, this research may be suggestive of applications to other

contexts where the mechanisms or procedures used to select (groups of) agents may have

disparate outcomes on group-representation. One example is the voting rules that hiring

committees use to select job candidates for interviews and fly-outs.

Sociologists Small and Pager (2020) argue that systemic factors may lead to disparate

outcomes even in the absence of taste-based or statistical discrimination, the traditional

explanations for group inequalities in Economics. In the context modeled in this paper,

it may appear natural that asymmetric group preferences generate asymmetric outcomes.

Our results emphasize that the the choice of the selection procedure may exacerbate such

asymmetries. This paper formalizes an example in which the pursuit of one objective,

preventing extreme jurors to serve on juries, may lead to larger group disparities even if

mechanisms and institutions are formally race-neutral.

A Appendix: Proofs

A.1 Preliminary technical results

Limit of a ratio of binomial probabilities

Lemma 1. For all η ∈ N and any k ∈ {1, . . . , η − 1},

lim
π→0

P[Bi(η, π) = k]

P[Bi(η, π) > k]
=∞.

Proof. Using the standard formula for the p.d.f. of a binomial and the representation of the
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c.d.f. of the binomial with regularized incomplete beta function, we can re-write the ratio as

P[Bi(η, π) = k]

1− P[Bi(η, π) ≤ k]
=

(
η
k

)
πk(1− π)η−k

1− (η − k)
(
η
k

) ∫ 1−π
0 xη−k−1(1− x)kdx

(1)

As π → 0, both the numerator and the denominator tend to 0. We use L’Hopital’s rule to

complete the proof:

(∂/∂π)
(
η
k

)
πk(1− π)η−k

(∂/∂π)
(

1−
[
(η − k)

(
η
k

) ∫ 1−π
0 xη−k−1(1− x)kdx

])

=

(
η
k

)
∗
[
kπk−1(1− π)η−k + πk(η − k)(1− π)η−k−1

]
−(η − k)

(
η
k

)
[(−1) ∗ (1− π)η−k−1πk]

=
kπk−1(1− π)η−k

(η − k)(1− π)η−k−1πk
+
πk(η − k)(1− π)η−k−1

(η − k)(1− π)η−k−1πk

=
k(1− π)

(η − k)π
+ 1 −−−→

π→0
∞

�

Continuity of challenge thresholds in S&R as Ci converges in distribution

Lemma 2. Consider a sequence of random variables {Ci}∞i=1 that converges in distribution

to some random variable C∗. Let tI(γ,C
i
)

denote the challenge threshold used by party I ∈

{D,P} in an arbitrary subgame γ of S&R when the distribution of conviction probabilities

is Ci. For any such subgame γ, we have limi→∞ tI(γ,C
i
)

= tI(γ,C
∗).

Proof. In any subgame γ̃, tI(γ̃, C
i
)

is the ratio of the value of continuation subgames if I

challenges the presented juror, or if both parties abstain from challenging (Brams and Davis,

1978). Therefore, limi→∞ tI(γ,C
i
)

= tI(γ,C
∗) follows directly if we show that the value of

any subgame, which we denote V (γ,Ci
)
, converges to V (γ,C∗) as i tends to infinity.33

The latter follows directly from the recursive characterization of V (γ,Ci
)

in Brams and

Davis (1978). Recall that each subgame γ can be characterized by the number of jurors

κ that remain to be selected, the number of challenges left to the defendant δ, and the

33Because we assume that all distributions of conviction probabilities are continuous, there are no issues
related to the possibility for the bottom of one of these ratios to converge to zero.
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number of challenges left to the plaintiff π. With this notation, the recursive proof that

for all κ, δ, π ≥ 0, V
(
[κ, δ, π], Ci

)
converges to V

(
[κ, δ, π], Ci

)
as i tends to infinity can be

decomposed in a number of cases. Let F i(c) denote the the c.d.f. of Ci, F ∗(c) the c.d.f.

of C∗, and F (c) the c.d.f. of an arbitrary distribution C, with µi, µ∗, and µ being the

corresponding expected values. In each step, the initial formula for V
(
[κ, δ, π], Ci

)
is taken

from Brams and Davis (1978).

Case 1: κ = 0, δ ≥ 0, π ≥ 0. In this case, V
(
[0, δ, π], C) = 1 for all C and the

convergence of V
(
[0, δ, π], Ci

)
to V

(
[0, δ, π], C∗) follows trivially.

Case 2: κ > 0, δ = 0, π = 0. In this case, V
(
[κ, 0, 0], C) = µκ for all C and the

convergence of V
(
[0, δ, π], Ci

)
to V

(
[0, δ, π], C∗) follows from the fact that Ci converges in

distribution to C∗.

Case 3: κ > 0, δ = 0, π > 0. In this case, for all C,

V
(
[κ, 0, π], C) = V (κ− 1, 0, π) ∗

[
1−

∫ 1

tI([κ,0,π],C)
F (c) dc

]
,

and tI([κ, 0, π], C) = V
(
[κ, 0, π−1], C)/V

(
[κ−1, 0, π], C). The convergence of V

(
[κ, 0, π], Ci

)
to V

(
[κ, 0, π], C∗) then follows recursively from the previous cases and from Ci converging

in distribution to C∗.

Case 4: κ > 0, δ > 0, π = 0. In this case, for all C,

V
(
[κ, δ, 0], C) = V

(
[κ, δ − 1, 0], C)− V

(
[κ− 1, δ, 0], C) ∗

∫ tD([κ,δ,0],C)

0
F (c) dc,

where tD([κ, δ, 0], C) = V
(
[κ, δ−1, 0], C)/V

(
[κ−1, δ, 0], C). The convergence of V

(
[κ, δ, π], Ci

)
to V

(
[κ, δ, π], C∗) then follows recursively from the previous cases and from Ci converging

in distribution to C∗.

Case 5: κ > 0, δ > 0, π > 0. In this case, for all C,

V
(
[κ, δ, π], C) = V

(
[κ, δ − 1, π], C)− V

(
[κ− 1, δ, π], C) ∗

∫ tD([κ,δ,π],C)

tI([κ,δ,π],C)
F (c) dc,

where tD([κ, δ, π], C) = V
(
[κ, δ − 1, π], C)/V

(
[κ − 1, δ, π], C) and and tI([κ, δ, π], C) =

V
(
[κ, δ, π − 1], C)/V

(
[κ − 1, δ, π], C). The convergence of V

(
[κ, δ, 0], Ci

)
to V

(
[κ, δ, 0], C∗)
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follows recursively from the previous cases and from Ci converging in distribution to C∗. �

Comparative statics of probabilities from a symmetric binomial

Lemma 3. P[Bi(η + 2, 0.5) ≥ k + 1] > P[Bi(η, 0.5) ≥ k] if and only if k > η
2 + 1

2 .

Proof. We can decompose P[Bi(η + 2, 0.5) ≥ k + 1] in terms of Bi(η, 0.5) and Bi(2, 0.5):

P[Bi(η + 2, 0.5) ≥ k + 1]

= P[Bi(η, 0.5) ≥ k + 1] + P[Bi(η, 0.5) = k] ∗ P[Bi(2, 0.5) ≥ 1] +

P[Bi(η, 0.5) = k − 1] ∗ P[Bi(2, 0.5) = 2]

= P[Bi(η, 0.5) ≥ k + 1] + P[Bi(η, 0.5) = k] ∗ 0.75 + P[Bi(η, 0.5) = k − 1] ∗ 0.25

Also,

P[Bi(η, 0.5) ≥ k] = P[Bi(η, 0.5) ≥ k + 1] + P[Bi(η, 0.5) = k].

The last two equalities imply that P[Bi(η + 2, 0.5) ≥ k + 1] > P[Bi(η, 0.5) ≥ k] iff

P[Bi(η, 0.5) = k] ∗ 0.75 + P[Bi(η, 0.5) = k − 1] ∗ 0.25 > P[Bi(η, 0.5) = k]

P[Bi(η, 0.5) = k − 1] ∗ 0.25 > P[Bi(η, 0.5) = k] ∗ 0.25

P[Bi(η, 0.5) = k − 1] > P[Bi(η, 0.5) = k](
η

k − 1

)
0.5k−10.5η−(k−1) >

(
η

k

)
0.5k0.5η−k

η!

(η − [k − 1])!(k − 1)!
>

η!

(η − k)!k!

(η − k)!

(η − [k − 1])!
>

(k − 1)!

k!

1

η − k + 1
>

1

k

k >
η

2
+

1

2

�

Relationship between order statistics of symmetric distributions

For any number of draws w and any k ≤ w, let Ck,wg denote the k-th order statistic out of

w draws from distribution Cg, and fk,wg (x) the corresponding probability density function.
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Lemma 4. Suppose that Ca and Cb are symmetric. Then, for any w ∈ N and any k ∈

{1, . . . , w}, we have fk,wa (c) = fw−k+1,w
b (1− c) for all c ∈ [0, 1].

Proof. Recall that, by definition, Ca and Cb being symmetric implies fa(c) = fb(1− c) for

all c ∈ [0, 1], which, in turn, implies Fa(c) = Fb(1− c) for all c ∈ [0, 1]. We therefore have,

fka (c) = k

(
w

k

)
fa(c)[Fa(c)]

k−1[1− Fa(c)]w−k

= k

(
w

k

)
fb(1− c)[1− Fb(1− c)]k−1[1− (1− Fb(1− c))]w−k

= k
w!

(w − k)!k!
fb(1− c)[1− Fb(1− c)]k−1[fb(1− c)]w−k

= (w − k + 1)
w!

(w − k + 1)!(k − 1)!
fb(1− c)[(1− Fb(1− c)]k−1[Fb(1− c)]w−k

= (w − k + 1)
w!

(w − k + 1)!(w − (w − k + 1)!
fb(1− c)[1− Fb(1− c)]k−1[Fb(1− c)]w−k

= (w − k + 1)

(
w

w − k + 1

)
fb(1− c)[1− Fb(1− c)]k−1[Fb(1− c)]w−k

= fw−k+1
b (1− c)

�

A.2 Proof of Proposition 1

Consider an arbitrary c ∈ (0, 1) and let us refer to jurors with conviction probability no

larger than c as extreme jurors. Let TM (x; c|k) denote the probability that at least x

extreme jurors are selected by procedure M conditional on there being exactly k of extreme

jurors in the panel of n. By the Law of Total Probability,

TM (x; c) =
n∑
k=x

P
[
Bi
(
n, F (c)

)
= k

]
TM (x; c|k). (2)

Consider first the STR procedure. Note that for all c, we have TSTR(x; c|x) = 0 because

if there are exactly x extreme jurors in the panel, one of them is necessarily challenged by

the plaintiff under STR (recall that p ≥ 1). Therefore, by (2), we have

TSTR(x; c) =

n∑
k=x+1

P
[
Bi
(
n, F (c)

)
= k

]
TSTR(x; c|k) ≤ P

[
Bi
(
n, F (c)

)
> x

]
, (3)
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where the last inequality follows from the fact that TSTR(x; c|k) ∈ [0, 1] for all k (as

TSTR(x; c|k) is a probability).

Next, consider procedure S&R. Our goal is to construct a lower bound for the probability

of selecting an extreme juror and show that, as c→ 0, this lower bound does not converge

to 0 as fast as (3). To do so, we introduce an decreasing function σ(c) > 0 such that, when

c is sufficiently small, TS&R(x; c|k) ≥ σ(c) for any k ≥ x. To construct σ, consider the

restricted sample space in which there are k extreme jurors in the panel.

Let tP be the lowest challenge threshold used by the plaintiff in any subgame of S&R.

Clearly, tP > 0.34 Henceforth, we focus on c ∈ (0, tP ). We first consider the function α(c)

defined as the probability that cj ∈ (c, tP ) for all the (n − k) non-extreme jurors in the

panel. Because C is continuous and 0 is the lower-bound of its support, there exists y > 0

sufficiently small such that α(c) > 0 for all c ∈ [0, y].35 Also, α(c) is weakly decreasing in

c. By construction of tP , for such panels (with k extreme jurors and cj ∈ (c, tP ) for all

the (n − k) non-extreme jurors), the plaintiff uses all its challenges on the p first jurors it

is presented with, and the defendant never uses any challenges.36 Hence, for these panels,

the probability that all k extreme jurors are selected is the probability that none of these

jurors are among the p first presented jurors, i.e.,
(
n−p
k

)
/
(
n
k

)
. Overall, for c ∈ (0, tP ), we

have TS&R(x; c|k) ≥ α(c)∗
(
n−p
k

)
/
(
n
k

)
, and σ(c) := α(c)∗

(
n−p
k

)
/
(
n
k

)
has the desired property.

Applying TS&R(x; c|k) ≥ σ(c) to (2) with M = S&R, we obtain for all c sufficiently

small (specifically c ∈ (0, tP ))

TS&R(x; c) ≥
n∑
k=x

P
[
Bi
(
n, F (c)

)
= k

]
∗ σ(c) ≥ P

[
Bi
(
n, F (c)

)
= x

]
∗ σ(c). (4)

Overall, combining (3) and (4) yields

lim
c→0

TS&R(x; c)

TSTR(x; c)
≥ lim

c→0

P
[
Bi
(
n, F (c)

)
= x

]
∗ σ(c)

P
[
Bi
(
n, F (c)

)
> x

] =∞, (5)

34Formally, if Γ denotes the set of subgames of S&R and tP (γ) the plaintiff’s challenge threshold in any
subgame γ ∈ Γ, then tP = minγ∈Γ tp(γ) (the minimum is well-defined since Γ is of finite size). In any
subgame γ of S&R, there is always a c > 0 low enough such that if the juror who is presented to the parties
in the first round of γ is of type c, the plaintiff will challenge that juror. Therefore, tP > 0.

35Because 0 is the lower-bound of the defined support, P(C ∈ [0, ε]) > 0 for all ε > 0. By continuity of C,
there must therefore exists some δ > 0 such that P(C ∈ [δ/2, δ]) > 0. We then have α(c) > 0 for all c < δ.

36The latter follows because in any subgame the defendant’s threshold is always higher plaintiff’s (in
equilibrium, the defendant and the plaintiff never both want to challenge the presented juror).
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where the last equality follows from Lemma 1 and the fact that σ(c) > 0 is decreasing

in c.37 In turn, limc→0 TS&R(x; c)/TSTR(x; c) = ∞ and the fact that limc→0 TS&R(x; c) =

limc→0 TSTR(x; c) = 0 together imply implies that there exists some c > 0 small enough

such that TSTR(x; c) < TS&R(x; c) for all c ∈ (0, c).

A.3 Proof of Proposition 2

Using the same notation as in the proof of Proposition 1, we have

TRAN(x; c) ≥ P
[
Bi
(
n, F (c)

)
= x

]
∗ TRAN(x; c|x). (6)

Note that TRAN(x; c|x) is the probability that an Hypergeometric random variable with x

success, n − x failures, and j draws, results in the draw of exactly x successes. Therefore,

TRAN(x; c|x) > 0. Finally, combining (6) and (3) yields

lim
c→0

TRAN(x; c)

TSTR(x; c)
≥ lim

c→0

P
[
Bi
(
n, F (c)

)
= x

]
∗ TRAN(x; c|x)

P
[
Bi
(
n, F (c)

)
> x

] =∞,

where the last equality follows from Lemma 1 and the fact that TRAN(x; c|x) > 0. The

result then follows as in the proof of Proposition 1.

A.4 Proof of Proposition 3

The structure of the proof is similar to that of the previous propositions. We focus on the

case we analyzed in the main paper, where the minority uniformly favors the defendant,

i.e., limi→∞ P(Cia > Cib) = 0. The proof for the other case is symmetrical.

As in the previous proofs, for any arbitrary triple (Cia, C
i
b, r

i), we first decompose

AiSTR(x) and AiS&R(x) by conditioning on the number of minority jurors in the panel.

First, consider STR and let us decompose AiSTR(x) conditional, on the one hand, on the

panel containing more than x minority jurors — which occurs with probability P
[
Bi(n, ri) >

x
]
, and on the other, on the panel containing exactly x minority jurors — which occurs

with probability P
[
Bi(n, ri) = x

]
. In the first case (i.e., more than x minority jurors in the

panel), the probability that the panel contains at least x minority jurors is an upper bound

37To apply Lemma 1, note that because C is continuous and the lower-bound of the support of C is 0, we
have F (c) > 0 for all c > 0 and limc→0 F (c) = 0.
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on the probability that STR selects them. In the second case (i.e., exactly x minority

jurors in the panel), STR selects at least x minority jurors provided that none of the

minority jurors in the panel are challenged. This occurs with a probability no larger than

the probability that the lowest conviction-probability among minorities is larger than the p-

th conviction probability among majority jurors (since the latter is required for the plaintiff

not to challenge any of the minority jurors in the panel). Recall that for any number of

draws w and any k ≤ w, we let Ck,wg denote the k-th order statistic out of w draws from

group g ∈ {a, b}. With this notation, we therefore have,

AiSTR(x) ≤ P
[
Bi(n, ri) > x

]
+ P

[
Bi(n, ri) = x

]
∗ P
(
[Cia]

1,x > [Cib]
p,n−x). (7)

Note that because limi→∞ P(Cia > Cib) = 0, we have limi→∞ P
(
[Cia]

1,x > [Cib]
p,n−x) = 0.

Second, consider S&R. Clearly, AiS&R(x) is no smaller than the probability for S&R

to select at least x minority jurors when there are exactly x minority jurors in the panel.

The latter is equal to P
[
Bi(n, ri) = x

]
∗ σ(x; ri, Cia, C

i
b), where σ(x; ri, Cia, C

i
b) denotes the

probability that S&R selects x minority jurors conditional on having x minority jurors in

the panel, as a function of ri, Cia, and Cib. In summary, with this notation, we have,

AiS&R(x) ≥ P
[
Bi(n, ri) = x

]
∗ σ(x; ri, Cia, C

i
b). (8)

We now show that limi→∞ σ(x; ri, Cia, C
i
b) > 0. For all i ∈ N, let Ci = riCia + (1− ri)Cib.

Observe that because limi→∞ ri = 0 and because Cib converges in distribution to C∗b , Ci

converges in distribution to C∗b . By Lemma 2, this implies that for any subgame γ of S&R

and both I ∈ {D,P}, we have limi→∞ tI(γ,C
i
)

= tI(γ,C
∗
b

)
. Note that tI(γ,C

∗
b

)
lies in

the interior of the support of C∗b for both I ∈ {D,P}. Also recall that in the limit, the

supports of Cia and Cib do not overlap as we have P(C∗a > C∗b ) = 0. Therefore, in the limit,

the defendant never challenges a minority juror, which in turn implies that

(a) as i tends to infinity, the probability that the defendant challenges one of the x minority

jurors in the panel tends to zero.

Because tI(γ,C
∗
b

)
lies in the interior of the support of C∗b for both I ∈ {D,P}, there is

also a range of conviction probabilities [c, c] low enough inside the support of C∗b such that

P (C∗b ∈ [c, c]) > 0 and P challenged the juror presented in subgame γ if her conviction
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probability lies within [c, c]. Furthermore, the probability that a juror with c ∈ [c, c] is a

majority juror is strictly positive (and tends to one as i→∞). Overall, in the limit,

(b) the probability that the plaintiff challenges a majority juror presented in subgame γ is

strictly positive.

Combining (a) and (b), in the limit and given a panel containing x minority jurors, there

is a positive probability that p majority jurors are presented first, are all challenged by P ,

and are followed by the xminority jurors which are left unchallenged by the parties (resulting

in a jury composed of at least x minority jurors). That is, limi→∞ σ(x; ri, Cia, C
i
b) > 0.

We are now equipped to complete the proof. Combining (7) and (8) yields

lim
i→∞

AiSTR(x)

AiS&R(x)

≤ lim
i→∞

P
[
Bi(n, ri) > x

]
+ P

[
Bi(n, ri) = x

]
∗ P
(
[Cia]

1,x > [Cib]
p,n−x)

P
[
Bi(n, ri) = x

]
∗ σ(ri, Cia, C

i
b)

= lim
i→∞

P
[
Bi(n, ri) > x

]
P
[
Bi(n, ri) = x

]
∗ σ(ri, Cia, C

i
b)

+
P
[
Bi(n, ri) = x

]
∗ P
(
[Cia]

1,x > [Cib]
p,n−x)

P
[
Bi(n, ri) = x

]
∗ σ(ri, Cia, C

i
b)

= lim
i→∞

P
[
Bi(n, ri) > x

]
P
[
Bi(n, ri) = x

] ∗ 1

σ(ri, Cia, C
i
b)

+
P
(
[Cia]

1,x > [Cib]
p,n−x)

σ(ri, Cia, C
i
b)

= lim
i→∞

P
[
Bi(n, ri) > x

]
P
[
Bi(n, ri) = x

]︸ ︷︷ ︸
=0, by Lemma 1

∗ lim
i→∞

1

σ(ri, Cia, C
i
b)︸ ︷︷ ︸

<∞, by limi→∞ σ(x;ri,Cia,C
i
b)>0

+ lim
i→∞

P
(
[Cia]

1,x > [Cib]
p,n−x)

σ(ri, Cia, C
i
b)︸ ︷︷ ︸

=0,
by limi→∞ P([Cia]1,x>[Cib]

p,n−x)=0,

and limi→∞ σ(x;ri,Cia,C
i
b)>0

= 0

In turn, limi→∞AiSTR(x)/AiS&R(x) ≤ 0 and limi→∞AiSTR(x) = limi→∞AiS&R(x) = 0 to-

gether imply that ∃k sufficiently large such that AiS&R(x) > AiSTR(x) for all i > k.

A.5 Proof of Proposition 4

The structure of the proof is similar to that of the previous propositions. Observe that (3)

and (4) are true regardless of the number of challenges awarded to the parties in STR or

S&R. That is, by the same arguments as in the proof of Proposition 1, the following two
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inequalities hold regardless of the values of w, y, ASTR-w(x), or AS&R-y(x),38

TSTR-w(x; c) =
n∑

k=x+1

P
[
Bi
(
n, F (c)

)
= k

]
TSTR-w(x; c|k) ≤ P

[
Bi
(
n, F (c)

)
> x

]
,

TS&R-y(x; c) ≥
n∑
k=x

P
[
Bi
(
n, F (c)

)
= k

]
∗ σ(c) ≥ P

[
Bi
(
n, F (c)

)
= x

]
∗ σ(c).

(9)

The proof follows as in the proof of Proposition 1 (in particular, see (5)).

A.6 Proof of Proposition 5

The probability that STR selects at least x jurors with conviction-probability above the

median is the probability that at least x + d of the jurors in the panel have conviction-

probability above the median (since d of these jurors are challenged by the defendant).

Because d = p, for any x ∈ {1, . . . , n}, we therefore have

TSTR

(
x;med[C]

)
= P [Bi(j + d+ p, 0.5) ≥ x+ d] = P [Bi(j + 2d, 0.5) ≥ x+ d]

In contrast, we have

TRAN

(
x;med[C]

)
= P [Bi(j, 0.5) ≥ x].

Therefore, by repeated application of Lemma 3, x > (n/2)+(1/2) implies TSTR

(
x;med[C]

)
>

TRAN

(
x;med[C]

)
. Since n is integer-valued, the last inequality corresponds to x ≥ n/2 + 1

if n is even and x ≥ n/2 + 1.5 if n is odd.

A.7 Proof of Proposition 6

Part (a). Under STR, since the group-distributions do not overlap, each party first uses all

of its challenges on one of the two groups before challenging the lowest conviction probability

jurors from the other group. For concreteness and without loss of generality, suppose that

group a favors the defendant (i.e., P(Ca > Cb) = 0). Let m denote the number of jurors

from group-a in the panel.

Note that because r = 0.5, the probability that m = k is the same as the probability

that m = n−k for all k ∈ {1, . . . , bn/2c}. Also, because d = p, the number of group-a jurors

38Recall that the proposition assumes w, y ≥ 1.
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who are selected when m = k is equal to the number of group-b jurors who are selected

when m = n − k.39 Therefore, the expected number of group-a jurors in the jury selected

by STR is exactly j/2.

Part (b). The proof is similar to the proof of Part (a). Consider the set of panel

configurations {a, b}n where, for example, vector (a, b, a, . . . , b, b, b) ∈ {a, b}n indicates that

the juror with the lowest conviction probability in the panel is a group-a juror, the juror

with second-lowest conviction probability is a group-b juror, the juror with the third-lowest

conviction probability is a group-a juror, ..., and the jurors with the three highest conviction

probabilities are all group-b jurors. To explain the structure of the proof, suppose that n

is even (we explain below how the argument generalizes to any n). We first construct a

partition of {a, b}n into two subsets Sa and Sb of equal size and construct a bijection q

between Sa and Sb. We then show that for every panel configuration l ∈ Sa which results

in ml group-a jurors being selected, (a) the panel configuration q[l] result j −ml group-a

jurors being selected, and (b) panel configurations l and q[l] are equally likely. As in the

proof of Part (b), the result then follows directly.

Similar to the proof of Part (b), the bijection q[l] is obtained by (i) mirroring l around

the bn/2c position, and (ii) inverting the group of each juror in the resulting panel config-

uration. For example, panel configuration q[(a, a, b, a)] is obtained by mirroring (a, a, b, a)

around position bn/2c, which results in (a, b, a, a), and then inverting the group of each

jurors in (a, b, a, a), which results in (b, a, b, b). Formally, if inv[l] denotes the configura-

tion that results from turning all the a’s in l into b’s and all the b’s in l into a’s, then

q[(l1, l2, . . . , ln−1, ln)] = inv[(ln, ln−1, . . . , l2, l1)].

Let Sa and Sb be two sets that together contain all l for which l 6= q[l] and are such

that l ∈ Si implies q[l] /∈ Si. Since q
[
q[l]
]

= l, the sets Sa and Sb have equal sizes. Also

let S∗ contain all l for which l = q[l], if any (S∗ 6= ∅ if and only if n is even). Note that

{Sa, Sb, S∗} forms of partition of {a, b}n. Therefore, if we let (#m|l) denote the number

of group-a juror that are selected conditional on configuration l and P(l) the probability of

39First, suppose that k ≤ p. Then, if m = k, no jurors from group-a (and j jurors from group-b)
are selected, whereas if m = n − k, no jurors from group-b (and j jurors from group-a) are selected.
Second, suppose that k ∈ {p + 1, . . . , bn/2c}. Then, if m = k, k − p = k − d jurors from group-a (and
j − (k − p) = j − (k − d) jurors from group-a) are selected, whereas if m = n− k, k − d = k − p jurors from
group-b (and j − (k − d) = j − (k − p) jurors from group-b) are selected.
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configuration l, we have

rSTR =
∑
l∈Sa

P(l) ∗ (#m|l) + P(q[l]) ∗ (#m|q[l]) +
∑
l∈S∗

P(l) ∗ (#m|l).

Part (b) then follows from the fact that (A) P(l) = P(q[l]) for all l ∈ Sa, (B) (#m|l) =

n− (#m|q[l]) for all l ∈ Sa, and (C) (#m|l) = j/2 for all l ∈ S∗.

Properties (B) and (C) follow directly from the construction of q and the fact that d = p.

Property (A), on the other hand, follows from Lemma 4 which establishes the symmetry of

order statistics for symmetric distributions. A formal proof of (A) using Lemma 4 requires

heavy and tedious notation. Instead, we show how (A) follows from Lemma 4 in a simple

example that clarifies how the argument generalizes to other cases.

Consider the case of (a, a, b) for which q[(a, a, b)] = (a, b, b). We can obtain the probabil-

ity of any configuration by integrating the p.d.f. of the appropriate order statistics from the

bottom to the top of [0, 1]. For example, using the notation for order statistics introduced

before Lemma 4, we have

P[(a, a, b)] = P[m = 2] ∗ P [(a, a, b)|m = 2]

= P[Bi(3, 0.5) = 2] ∗
∫ 1

a
f1,2a (x)

[∫ 1

x
f2,2a (y)

(∫ 1

y
f1,1b (w) dw

)
dy

]
dx. (10)

We can also obtain the probability of any configuration by reverting the list of order statistics

and integrating from the top to the bottom of [0, 1]. For example,

P[(a, b, b)]

= P[m = 1] ∗ P [(a, b, b)|m = 1]

= P[Bi(3, a.5) = 1] ∗
∫ 1

a
f2,2b (1− x)

[∫ 1

x
f1,2b (1− y)

(∫ 1

y
f1,1a (1− w) dw

)
dy

]
dx. (11)

Finally, by Lemma 4, f1,2a (x) = f2,2b (1−x), f2,2a (y) = f1,2b (1−y), and f1,1b (w) = f1,1a (1−w),

which together with symmetry of the binomial with 0.5 probability of success implies that

the expressions in (10) and (11) are equal.
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